
Concurrency in the Cloud
Johannes Gehrke

Microsoft Office Product Group
johannes@microsoft.com

By Steve Jurvetson - https://www.flickr.com/photos/jurvetson/31409423572/, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=55002144

https://twitter.com/ValaAfshar

https://bits.blogs.nytimes.com/2011/04/06/the-new-commodore-64-updated-with-its-old-exterior/

A small Hardware Revolution

• Moore’s Law
• In 1965, Intel Corp. cofounder Gordon Moore predicted that the density of

transistors in an integrated circuit would double every year.
• Later changed to reflect 18 months progress.

http://lecs.cs.ucla.edu/Resources/testbed/testbed-overview.html

A small Hardware Revolution

• Experts on ants estimate that there are 1016 to 1017 ants on earth. In
the year 1997, we produced one transistor per ant.
[Gordon Moore, http://www.intel.com/pressroom/archive/speeches/gem93097.htm]

Image from https://www.123rf.com/photo_14232419_the-big-ant-hill-in-a-woods.html

One Example: The Microsoft Cloud

https://blogs.msdn.microsoft.com/uk_faculty_connection/2016/09/19/azure-data-centers-and-regions/

What is Interesting about the Cloud?

My days in academia:
• Scalability
• Elasticity
• Multi-tenancy
• Infrastructure, new abstractions
• Resource management
• Security
• Energy
• …

Now in industry in addition:
• Keeping up with growth/scale
• Running the service
• Innovation across the stack,

from hardware to software
• Machine learning
• Practical security
• Storage

New Hardware

• Compute
• Network
• Memory

https://www.microsoft.com/en-us/research/project/project-catapult/

Example: Office 365 Security

https://products.office.com/en-us/exchange/online-email-threat-protection

Storage

One Example: Azure DocumentDB
• Global availability

• Navigate CAP theorem
• Single-system image of any table, across all datacenters
• Physical realities such as the speed of light matter

• Automatic multi-region replication
• Automatic partition management
• Associate any number of regions with your database account
• Policy based geo-fencing

• Multi-homing APIs
• Apps don’t need to be redeployed during regional failover

• Offers comprehensive SLA that includes latency, throughput, availability and consistency

• https://azure.microsoft.com/en-us/services/documentdb/
Slide based on material from Rimma Nehme and Dharma Shukla

• Globally distributed with reads and writes served from local region

• Write optimized, latch-free database engine designed for SSDs and low latency
access

• Synchronous and automatic indexing at sustained ingestion rates

Guaranteed Low LatencyGuaranteed Low Latency

• Globally distributed with reads and writes served from local region

• Write optimized, latch-free database engine designed for SSDs and low
latency access

• Synchronous and automatic indexing at sustained ingestion rates

Slide courtesy of Rimma Nehme and Dharma Shukla

Elastically scale throughput from 10 to 100s of
millions of requests/sec across multiple regions

Customers pay by the hour for the provisioned
throughput.

Transparent server side partition management and
routing

Support for requests/sec and requests/min for
different workloads

9 PM PST
Less throughput

More throughput

More throughput

Less throughput

11 PM PST

Pr
ov

isi
on

ed
 re

qu
es

t /
 se

c

Time

12000000

10000000

8000000

6000000

4000000

2000000

Nov 2016 Dec 2016

Black Friday

Hourly throughput (request/sec)

Elastically Scalable Throughput

Slide courtesy of Rimma Nehme and Dharma Shukla

The 99.99 SLA

Slide courtesy of Rimma Nehme and Dharma Shukla

Global distribution forces us to navigate the CAP theorem

Intuitive programming model for well-defined, relaxed
consistency models

Five well-defined consistency levels to choose from

Can be overridden on a per request basis

Well-Defined Consistency Models

Slide courtesy of Rimma Nehme and Dharma Shukla

Under the Hood

• TC guarantees ACID
• Logical concurrency control
• Logical recovery
• No knowledge of physical data storage

• DC provides atomic record store
• Physical data storage
• Atomic record modifications
• Must be logically consistent during operation

• May require its own recovery

Transactional
Component (TC)

Data
Component

(DC)

Record
Operations
(~CRUD)

Slide adapted from David Lomet

Recall: Optimistic Concurrency Control

Validation

T5

T4

T3

T2

T1

T0

T3

Critical
Section

Read Phase

Validation Phase

Write Phase

T0
Validator

Validation in OCC

• Compare read set with all previously committed write sets

Read XT1

Update Local X Write XValidate

T0

Validate

T1

Optimistic Concurrency Control in Practice [1]

• Separation into functional components
• Design principle: simplicity and loose coupling

T3

Critical
Section

Read Phase

Validation Phase

Write Phase Storage

ValidationProcessor

[1] Bailu Ding, Lucja Kot, Alan J. Demers, Johannes Gehrke: Centiman: elastic, high performance optimistic
concurrency control by watermarking. SoCC 2015: 262-275

Scale-Out Processing

Distributed Storage

Distributed
Validation

Processor

Processor

Processor

Scale-Out Storage

Distributed
Validation

Processor

Processor

Processor

Versioned KV
Store

Versioned KV
Store

Versioned KV
Store

Versioned KV
Store

Multi-Versioned Storage

Read X (V0)
Write X (Local)

Validate (TS1)

Write X (V1)

Read Y (V0)
Write Y (Local)

Validate (TS2)

Write Y (V2) Read X (V1)
Write X (Local)

Validate (TS3)

Write X (V3)

X, V0 Y, V0

X, V1

Y, V2

X, V3

Storage (Versioned KV)
T1

T2

T3

Reading Inconsistent Snapshots?

• Updates not installed atomically
• Approach: Check against inconsistent reads at validation

Write X

T0
Write Phase

T1
Read Phase

Write Y

Read X

Read Y

Partial Updates

Write X

T0
Write Phase

T1
Read Phase

Write Y

Inconsistent Snapshot

T2
Read Phase

Read X

Read Y

Write Z
Read Z

Write Phase

Scale-Out Validation

Distributed
Validation

Processor

Processor

Processor

Versioned KV
Store

Versioned KV
Store

Versioned KV
Store

Versioned KV
Store

Scale-Out Validation (Contd.)

Processor

Processor

Processor

Versioned KV
Store

Versioned KV
Store

Versioned KV
Store

Versioned KV
Store

Validator Validator Validator

But: Divergent Decisions

T3 R(…), W(X),
W(Y)

Validator A
X

Validator B
Y

No conflict! Conflict: abort!

T4 R(X), W(X)

Thinks T3 committed, detects
conflict between T3 and T4

Validator A
X

SD7
SD8
PB48

Slide 27

SD7 Why not use distributed OCC which runs a 2PC like validation algorithm? For instance:
http://web.cs.ucdavis.edu/~wu/ecs251/ecs251_DMVOCC.pdf
Sudipto Das, 2/16/2016

SD8 I think there are many variants of distributed OCC which does not have the problem of divergent decisions.
While this is a good illustration, people will be quick to latch on that this is not the state-of-the-art.
Sudipto Das, 2/16/2016

PB48 Bailu, do you have an experimental result that shows the throughput of a 2PC-like distributed validation?
Phil Bernstein, 2/16/2016

Eliminate Spurious Aborts: Proactive

• Processor informs validators about the final decision
• Synchronous: slows down the system
• Asynchronous: Adds additional complexity since we need to revoke

updates

T3 R(…), W(X), W(Y)

Validator A
X

Validator B
Y

No conflict! Conflict: abort!
Distributed Storage

Distributed
Validation

Distributed
Processing

Response

Validation Request

Final Decision

Eliminate Spurious Aborts: Lazy

• Old updates will be eventually discarded, i.e. garbage collection
• Reply on garbage collection to eliminate spurious updates

0

20

40

60

80

100

0 60 120 180 240

Sp
ur

io
us

 A
bo

rt
 R

at
e

(%
)

Time / Second

60S 30S 20S 10S

Eliminate Spurious Aborts: Lazy

• Lower the spurious abort rate by reducing the expiration time
• Risk of aggressive garbage collection: abort due to insufficient

information

T2

Validator

Read X, V0T10

Update Local X Validate Write X, V2T2

Validate

Read X, V2T15 Validate

Eliminate Spurious Aborts: Lazy

• Lower the spurious abort rate by reducing the expiration time
• Risk of aggressive garbage collection: abort due to insufficient

information

T2

Validator

T10
Read X, V0T10

Update Local X Validate Write X, V2T2

Validate

Read X, V2T15 Validate

Eliminate Spurious Aborts: Lazy

• Lower the spurious abort rate by reducing the expiration time
• Risk of aggressive garbage collection: abort due to insufficient

information

T2

Validator

T10
Read X, V0T10

Update Local X Validate Write X, V2T2

Validate

Read X, V2T15 Validate

T10

Eliminate Spurious Aborts: Lazy

• Lower the spurious abort rate by reducing the expiration time
• Risk of aggressive garbage collection: abort due to insufficient

information

T2

Validator

T10
Read X, V0T10

Update Local X Validate Write X, V2T2

Validate

Read X, V2T15 Validate

T10

GC

T5

Eliminate Spurious Aborts: Lazy

• Lower the spurious abort rate by reducing the expiration time
• Risk of aggressive garbage collection: abort due to insufficient

information

T2

Validator

T10
Read X, V0T10

Update Local X Validate Write X, V2T2

Validate

Read X, V2T15 Validate

T15

T10

GC

T5

Eliminate Spurious Aborts: Lazy

• Lower the spurious abort rate by reducing the expiration time
• Risk of aggressive garbage collection: abort due to insufficient

information

T2

Validator

T10
Read X, V0T10

Update Local X Validate Write X, V2T2

Validate

Read X, V2T15 Validate

T15

T10

T15

GC

T5

Eliminate Spurious Aborts: Reactive

• Garbage collection: Aborts due to insufficient info vs. spurious aborts
• Approach: Asynchronously propagate information by watermarks

T3 R(…), W(X), W(Y)

Validator A
X

Validator B
Y

No conflict! Conflict: abort!
Distributed Storage

Distributed
Validation

Distributed
Processing

Response

Validation Request

w/ Watermarks

Validation with Watermarks

• Each read on a record has a watermark
• The watermark is of the same type as the timestamp
• Guarantee: all updates to the record made by transactions with

timestamp less than or equal than the watermark have been reflected
in the read

Version
10

Watermark
15T20

Read X

T13
T10
T3

Updates on X

Watermark 15

Spurious
update

PB26

Slide 37

PB26 Rude question: Is timestamp assignment really orthogonal to your system? It could be a bottleneck (if
centralized) and could contribute to the abort rate (if transactions arrive late at validators). How will you answer
this question?
Phil Bernstein, 2/16/2016

Watermarks Reduce Spurious Aborts

• Spurious updates age out when watermark advances beyond the
updating transactions

• Lazy and flexible truncation of history

Version
10

Watermark
15T20

Read X
T13

T10

T3

Updates on X

Watermark 15

Aged out
(including spurious
updates)

Check > T15

Implementing Watermarks

Storage

Processor Processor Processor

Completion
Watermark

KV Pair

Completion
Watermark

KV Pair

Completion
Watermark

KV Pair

Completion
Watermark

Completion
Watermark

Completion
Watermark

Transaction Transaction Transaction

Read Watermark:
Min of Processor
Completion
Watermarks

Architecture

Processor

Processor

Processor

Versioned KV
Store

Versioned KV
Store

Versioned KV
Store

Versioned KV
Store

Sharded
Validator

with
Watermark

Sharded
Validator

with
Watermark

Sharded
Validator

with
Watermark

Experiment on TPC-C

• TPC-C variant
• Updating transaction only: 50% NewOrder and 50% Payment

• Deployment
• 50 processor and 50 storage nodes
• 500 warehouses. Data is randomly shuffled to storage instances
• 200 concurrent transactions at max per processor

Experimental Results on TPC-C

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8

Th
ro

ug
hp

ut

Th
ou

sa
nd

s

Number of Validators

Experiment Result on TATP

0

1

2

3

4

5

1 2 3 4

Th
ro

ug
hp

ut M
ill

io
ns

Number of Validators

Centiman w/o Read-only Opt Centiman w/ Read-only Opt

SD17
SD18
PB58

Slide 43

SD17 Rude question: You seem to choose workloads that partition well - for instance TPC-C and TATP. What about
performance for workload that don't partition well, for example take the Uniform workload in YCSB-like setting
we used for Hyder experiments, or for TPC-E? For TPC-C, were you running the 15% new order transactions that
went to a different warehouse? What is the fraction of distributed transactions in your experiments?
Sudipto Das, 2/16/2016

SD18 In general, linear scaling in a distributed transaction processing system will be questioned. Either you didn't
stress the system enough for performance to saturate/plateau or thrash, or there is something tricky happening
in the experiments. Watch out for those kinds of questions.
Sudipto Das, 2/16/2016

PB58 I agree.
Phil Bernstein, 2/16/2016

Summary: Scaling Out OCC

Processor

Processor

Processor

Versioned KV
Store

Versioned KV
Store

Versioned KV
Store

Versioned KV
Store

Sharded
Validator

with
Watermark

Sharded
Validator

with
Watermark

Sharded
Validator

with
Watermark

Extensions

• Optimizations
for read-only transactions

• Local re-ordering of
transactions to further reduce abort rate

• Use of IEEE Precision Time Protocol (PTP) [1]
• Synchronize server clocks with < 1 μs precision
• Permits ordering based on local timestamps
• Reduces spurious aborts by further ~40%

• Native integration with software-defined flash storage layer

[1] Pulkit A. Misra, Jeffrey S. Chase, Johannes Gehrke, Alvin R. Lebeck: Enabling
Lightweight Transactions with Precision Time. ASPLOS 2017: 779-794

What About Distribution?

Distribution

• Who is the most popular wizard in the world of wizards?
• Transaction 1: Cast one vote for Harry
• Transaction 2: Cast one vote for Voldemort
• Transaction 3: Who is leading?

• State replicated across two data centers

West Coast East Coast

Images: http://www.edgeconnex.com/services/edge-data-centers-proximity-matters/, and http://harrypotter.wikia.com/

Distribution (Contd.)

• T1: Cast one vote for Harry
• T2: Cast one vote for Voldemort
• T3: Who is leading?

Voldemort Harry

100,000 75,000

Voldemort Harry

100,000 75,000

West Coast East Coast

Distribution (Contd.)

• Cast one vote for Harry on the west coast

Voldemort Harry

100,000 75,000

Voldemort Harry

100,000 75,000

West Coast East Coast

Distribution (Contd.)

• Cast one vote for Harry on the west coast

Voldemort Harry

100,000 75,001

Voldemort Harry

100,000 75,001

West Coast East Coast

Distribution (Contd.)

• New state is equivalent to the old
state for T1, T2, and T3

• Equivalent: All transactions will return
the same values

• This equivalence will hold for a while

• T1: Cast one vote for Harry

• T2: Cast one vote for
Voldemort

• T3: Who is leading?

Voldemort Harry

100,000 75,001

Voldemort Harry

100,000 75,001

West Coast East Coast

Distribution (Contd.)

• New database state:
• (Voldemort; 100,000), (Harry; 99,999)

• Cast one vote for Harry on the east coast

Voldemort Harry

100,000 99,999

Voldemort Harry

100,000 99,999

West Coast East Coast

Distribution (Contd.)

• Cast one vote for Harry on the east coast
• New state is no longer equivalent to old

state for T3  synchronization is necessary

Voldemort Harry

100,000 100,000

Voldemort Harry

100,000 100,000

• T1: Cast one vote for Harry

• T2: Cast one vote for
Voldemort

• T3: Who is leading?

West Coast East Coast

Minimizing Synchronization

• Idea [G1983] : Distribute “equivalence” into slack on both sides
• Avoid synchronization as long as the change is within slack
• Slack is consumed independently at each site without synchronization

Voldemort Harry

100,000 75,000

Voldemort Harry

100,000 75,000
Slack

12,499

Slack

12,500

West Coast East Coast

Minimizing Synchronization (Contd.)

• Many votes

Voldemort Harry

100,000 75,000

Voldemort Harry

100,000 75,000
Slack

12,499

Slack

12,500

West Coast East Coast

Minimizing Synchronization (Contd.)

• Many votes

Voldemort Harry

100,000 87,499

Voldemort Harry

100,000 75,500

Slack

0

Slack

12,000

West Coast East Coast

Minimizing Synchronization (Contd.)

• Many votes
• Synchronize to redistribute slack

Voldemort Harry

100,000 87,499

Voldemort Harry

100,000 75,500

Slack

0

Slack

12,000

West Coast East Coast

Minimizing Synchronization (Contd.)

• Slack has been redistributed

Voldemort Harry

100,000 87,999

Voldemort Harry

100,000 87,999

Slack

9,000

Slack

3,000

West Coast East Coast

Minimizing Synchronization (Contd.)

• Idea: Defer propagation of writes when it is safe to do so
• Much related work on protocols for distributing slack for special situations

[G1983,…]

• Problems:
• Need to re-invent new protocol for each new type of transaction
• Hard to do manually
• Error-prone to introduce extra code

• Idea: Given the transaction code, automatically synthesize the right slack
distribution protocol

Homeostasis Protocol

• Step 1: Analyze transactions to identify “flexibility” in transactions
automatically

• Intuition: Identify the coarsest granularity at which data must be consistent
for correctness  “consistency equivalence classes”

• Step 2: Exploit flexibility in transactions to avoid communication
• Intuition: Use the equivalence classes to automatically devise protocol that

coordinates when necessary

Example
• Two sites

• Two transactions: T1 submitted at Site 1, T2 submitted at Site 2

x = 10Site 1 Site 2 y=13

Example (Contd.)

• “Tiny” language L
• No loops, but expressive enough to encode all five TPC-C transactions

Symbolic Tables

• Analysis computes a symbolic table
• Mapping from predicates on database to partially evaluated transactions
• Concise representation of relationship between input and output

Analysis Rules

,ොݔ)݀ܽ݁ݎ (ݔ

Symbolic Table Construction

,ොݕ)݀ܽ݁ݎ (ݕ

ොݔ) ݂݅ + ොݕ < 10)

ොݔ ≔ ොݔ + 1 ොݔ ≔ ොݔ − 1

,ݔ)݁ݐ݅ݎݓ (ොݔ

ݔ + ݕ ≥ 10 ݔ] ≔ ݔ − 1]

ݔ + ݕ < 10 ݔ] ≔ ݔ + 1]

ොݔ + ݕ ≥ 10 ݔ] ≔ ොݔ − 1]

ොݔ + ݕ < 10 ݔ] ≔ ොݔ + 1]

ොݔ + ොݕ ≥ 10 ݔ] ≔ ොݔ − 1]

ොݔ + ොݕ < 10 ݔ] ≔ ොݔ + 1]

݁ݑݎݐ ݔ] ≔ ොݔ + 1]

݁ݑݎݐ ݔ] ≔ ොݔ − 1]

݁ݑݎݐ ݔ] ≔ [ොݔ

Offline Precomputation

• Compute joint symbolic table for the complete workload

Homeostasis Protocol

• We want to run without synchronization until data changes enough to
affect behavior

• We achieve this through treaties

• Global treaty: Invariant on system state
• Governs how far data can drift before sync
• Will be computed using symbolic tables

• Local treaties: Local constraints that can be enforced at each site

Compute Global Treaty

• The last row of the symbolic table applies
• Global treaty in this case is x+y >= 20

x = 10Site 1 y = 13Site 2

Homeostasis Protocol

߮஽ ߶ భ் ߶ మ்

ݔ + ݕ < 10 ݔ] ≔ ݔ + 1] ݕ] ≔ ݕ + 1]

ݔ + ݕ ≥ 10 ݔ)⋀ + ݕ < 20) ݔ] ≔ − ݔ 1] ݕ] ≔ ݕ + 1]

ݔ + ݕ ≥ 20 ݔ] ≔ − ݔ 1] ݕ] ≔ − ݕ 1]

ܳ{ భ், మ்} ≔

x 12

y 13

x 11 x 10 x 9

y 12 y 11 y 10

Treaty:
ݔ + ݕ ≥ 20

ଵܶ ଵܶ

ଶܶ

ଵܶ

ଶܶ ଶܶ

New Treaty:
ݔ + ݕ ≥ 10 ݔ)⋀ + ݕ < 20)

Site 1

Site 2

Global and Local Treaties

• Naïve approach: Check global treaty on every write
• Requires communication on every (update) transaction

• Lazy approach: “Factorize” global treaty into locally enforceable
treaties

• Example:
• Enforce at Site 1 and at Site 2

Enforcing Global Treaties

x 12

y 13

x 11 x 10 x 9

y 12

ଵܶ ଵܶ

ଶܶ

ଵܶ
Site 1

Site 2

ݔ ≥ 10

ݕ ≥ 10

ݔ ≥ 9

Optimizing for Workload

x 12

y 13

x 11 x 10 x 9

y 12
ଶܶ

Site A

Site B

ݔ ≥ 10

ݕ ≥ 10

ݔ ≥ 9

Global and Local Treaties (Contd.)

• Multiple correct factorizations of global treaties exist
• Option 1:

• Trivially suboptimal
• Option 2:

Global and Local Treaties (Contd.)

• Multiple correct factorizations of global treaties exist
• Option 1:

• Trivially suboptimal
• Option 2:
• Option 3:

Optimizing for Workload

ݔ ≥ 9

ݕ ≥ 11

x 12

y 13

x 11 x 10 x 9

y 12 y 11 y 10

ଵܶ ଵܶ

ଶܶ

ଵܶ

ଶܶ ଶܶ

Site A

Site B

Optimal for this
transaction sequence

Protocol: Summary

• Compute global treaty using symbolic table

• Factorize into local treaties

• Run disconnected until a local treaty violation occurs

• (Recompute new treaties and continue)

Evaluation

• Replicated system

• Microbenchmark and TPC-C workloads

• Compare against:
• 2PC (sync at every transaction)
• local (never sync and lose consistency)
• opt (hand-coded demarcation protocol)

TPC-C Throughput

• Hotness Value = % of xacts that order the 1% "hot" items

Homeostasis

• Homeostasis protocol reduces need for synchronization without
sacrificing consistency

• Fully automated approach based on program analysis

• Provably correct execution

Open Problems

• Expand language for treaties
• For all of SQL
• For general programs
• Combine with replication

• Data layer synthesis
• To finetune to hardware characteristics
• To finetune for the workload

Thank you!

johannes@microsoft.com

References

• Bailu Ding, Lucja Kot, Alan J. Demers, Johannes Gehrke: Centiman:
Elastic, High-Performance Optimistic Concurrency Control by
Watermarking. SoCC 2015: 262-275

• Sudip Roy, Lucja Kot, Gabriel Bender, Bailu Ding, Hossein Hojjat,
Christoph Koch, Nate Foster, Johannes Gehrke: The Homeostasis
Protocol: Avoiding Transaction Coordination Through Program
Analysis. SIGMOD Conference 2015: 1311-1326

• Pulkit A. Misra, Jeffrey S. Chase, Johannes Gehrke, Alvin R. Lebeck:
Enabling Lightweight Transactions with Precision Time. ASPLOS 2017:
779-794

