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About this keynote.
(And the things I'm not going to talk about.)



Not going to talk about any of this stuff right now
(but happy to in the hallway track)

* Finished PhD at Cambridge in 2006

* Worked in industrial research (AT&T and Intel)
e Two startups (XenSource and Coho Data)

* Associate prof at UBC

* Three kids

* | went heli skiing last Friday.



Here's what | am going to do

* Make some pretty obvious observations about technology directions.

* Draw some dodgy and highly speculative conclusions from those
observations.

* Try to influence your research.

* Disclaimer: this is not a conference talk, nor is it 5 stapled together
conference talks.

* Another disclaimer: I'm going to give you more problems than
solutions.



So let's go...



Section 5: Evaluation.

* (At the end of the day, all systems papers are about performance.)
* Probably because it's one of the only things we know how to measure.
* There are two types of performance results:

1. Small improvements in a very large system.
2. Speed ups that are so significant that they change functionality.

* Google and Facebook and Amazon and Microsoft are probably a lot better
at solving meaningful problems with their systems than you are.



Here are the high-level trends/ideas behind
this talk

1. Diminishing scarcity.
2. Practical/sensible to own your own hardware again.

3. The software we have is turning out to be a bigger, slower, more
onerous burden than the hardware it runs on.

* It is a poor match for changing performance and failure characteristics of
hardware.

* It is a poor match for the operational needs of users.



Consequences of these ideas

* The goal posts are moving in terms of what we design systems for.

* Human costs associated with running our systems are a bigger
expense and inconvenience, at all levels, than the piecewise
performance of components.

* They are actually a barrier.

* The end of scarcity marks the beginning of a push for efficient
predictability.

* This is why storage customers by flash. It’s also a hard systems problem.



So what do we need to understand,
as systems researchers, to help?



One significant hardware chage:
Rack scale



This is a google data center circa 2001. GFS (2003): largest
deployments had over 1,000 storage nodes, hundreds of clients,
300 TB of storage space

11



Fully Modular

Resources
Supermicro RSD: Total Solution with the Highest Efficiency

Pre-packaged and Pre-validated Rack solutions

Supermicro RSD

Pod Manager

« Northbound
Redfish REST APIs

« Disaggregated
Resource
Management

- Telemetry

Hot Storag:
(2U Ultra NV

* Pooled
compute

* Pooled
Memory

Compute

» Deep Discovery

« Firmware
Configuration
Management

- Power Management

« Firmware Updates

Storage

« Pooled https://www.supermicro.com/solutions/SRSD.cfm
Storage

http://itq.nl/intels-take-open-compute-project-rack-scale-architecture/



What is "rack scale"?

* Everything in a rack will share a high performance bus.
* Within a rack, optical interconnects are expected to reach terabit bandwidth in the
near term with sub-microsecond latencies.
* The server as we know it will be completely disaggregated.

* CPUs, GPUs, storage, network interfaces, and volatile memory will each move to
independent physical enclosures. Arbitrary composition and independent scale.

* Rack resources will be very dense.
* Like, really dense.

* As a ballpark, within a rack we are likely to see thousands of cores, tens of petabytes
of persistent memory, and terabytes of RAM.

* In short, a single datacenter rack with a capital value in the low millions of
dollars, will be as capable as entire first-generation (e.g. 2003-era)
"warehouse" datacenters from public cloud providers



Consequences of the rack scale trend on software
design.



What’s changing?

1. Storage is becoming dense.
* Problematically dense!

2. The memory hierarchy is having an identity crisis.
3. Application latency is a cruel taskmaster.



Trend 1: Dense nonvolatile storage capacity.



Dense Nonvolatile Capacity

* Flash vendors have finally started to relax about the durability
problem.
* The jaw dropping bit: we will see 4PB in 1u in a small number of
years.
* At a price that approaches spinning disk.

* The bad news: in the immediate term, interconnection will be a

problem.
 And in the longer term it may not get a whole lot better.



Trends

SSD Cap/1lu |Xput per data
2TB 64TB 312MB/s/TB
8 TB 256TB 78 MB/s/TB
32 1TB 1PB 20 MB/s/TB
128 TB | 4PB 5 MB/s/TB
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SSD Cap/1lu |Xput per data
2TB 64TB 312MB/s/TB
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NVMe device: x4 PCle
Broadwell CPU: 40 PCle lanes




Trends

SSD Cap/1lu |Xput per data
2TB 64TB 312MB/s/TB
38 TB 256TB 78 MB/s/TB
32 TB 1PB 20 MB/s/TB
128 TB | 4PB 5 MB/s/TB

NVMe device: x4 PCle
Broadwell CPU: 40 PCle lanes
TOR cross-rack links typically oversubscribed at 3 or 4:1



This is very different from all the storage
systems that we've built in the past.

* No seek penalty.
Means that background 1/0O is actually reasonable to do.
Migration for performance.

Alternate representations (e.g. materialized views, intentional DUPlication) often for
performance.

Metadata all day long.

 Sprinkler heads are a problem.
* 4PB is an awfully scary failure domain.
* Sensible application of erasure coding needs five or more nodes.
» East/west traffic is constrained.

* Capacity-motivated deletion is silly in most cases.
* But real deletion probably needs to be encryption based.
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Trend 2: The magic of persistent memory.



Persistent Memory

* Everyone is excited about 3D Xpoint.
* (What the heck is 3d xpoint?)
* Bad news: persistent RAM is a total PITA.
e Because it's not really persistent RAM: ram as you think about it is a total ilusion.
* It's really a super duper fast disk.
* In fact, it's a super duper fast *single* *unreliable* disk. But more on this in a sec.
* But wait, this doesn't mean that XPoint isn't a spectacularly good idea.
* With it, RAM is about to break through the memory wall (core to capacity ratio).

* Technologies like XPoint will give us a multiplier on working set.
* Persistence will massively speed up restart times, especially for read-only data.



One more spanner: Disaggregation.

e Some significant amount of memory is about to move off host.

* Nobody seems to agree on how this is going to happen.
* "remote" memory vs shared physical bus vs Rack-scale CC NUMA

* All of these things are interesting in two ways.
* First, failure domains are very different... in ways that Apps and OSes are NOT
used to reasoning about.

* Second, they afford an entirely new (and exciting!) form of dynamism.
* Map Reduce and Spark have a good but very coarse-grained notion of partitioning.
* These systems have the potential to be so much more dynamic.
e Same for scale out data stores.
* Same for state replication and HA



So what's going to happen here

* Total chaos.

* Persistent memory looks like a really fast disk. Disaggregated memory
looks like an extension of the cache hierarchy.

e Our view of memory, locality, and persistence is in trouble.
* Interfaces and abstractions really need to change in support of this.

* One prediction: file system and virtual memory will merge.
* Loads of reasons to do this -- serialization overheads, reboots, sharing.
* but still many open questions.



Trend 2: Application latency.



Latency

* Tell me if you’ve heard this one before: CPUs aren't getting faster

* |/O is getting faster and wider.

e Latency is becoming a dominant metric.
* Direct impact on e.g. purchase probability.
e Butit's a much harder metric to work with than throughput.

* Shrinking I/O latencies results in increased computational density.
e Because I/O wait goes away (e.g. DBMS)

* But a latency focus imposes a lot of constraints on software design.

* Especially tail-latency SLOs.
* Need to reason about the slow path as a common case.
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Decibel (NSDI “17)

User space
Core
Core
Decibel Logic
TCP Block I/O
DPDK SPDK
Kernel

e How should we structure a

storage system to provide virtual
local disks?

* Partition like crazy, crusade
against latency, push all
unnecessary functionality up the
stack.

* This generalizes to applications.
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Everything hurts latency

* Redundancy is a good example of why this gets hard.
* For in memory, network RTT will approach media store time.
* So a remote write doubles the cost.
* Worse: Replication at lower layers of the system is invariably amplified.
* This is why emerging data stores don't do it.

* Areal latency focus drives software architecture in a very specific direction.
* Contention is a source of hard-to-reason-about performance variance.
* So avoid contention at all costs. Design it out up front.
(IfY< u do this right, you benefit from not having to hire developers that understand
ing.)
Doing this right means designing data and code-level partitioning very carefully.

Lebss academically rewarding than OCC and lock freedom, but see parenthetic point
above.



And with that, I’'m mostly done.



Here are the high-level trends/ideas

1. Diminishing scarcity.
2. Practical/sensible to own your own hardware again.

3. Software needs to change.



Closing thought.

* Nobody is going to adopt your stuff unless you make it as easy as heck
for them to do it.

* Expose your research results as a service, or as something as close to
a service as is possible.
e Put them in containers, host them on AWS.

 Solve application problem:s.
* Early experiences working with physical scientists.



