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About	this	keynote.	
(And	the	things	I'm	not	going	to	talk	about.)



Not	going	to	talk	about	any	of	this	stuff	right	now	
(but	happy	to	in	the	hallway	track)
• Finished	PhD	at	Cambridge	in	2006
• Worked	in	industrial	research	(AT&T	and	Intel)
• Two	startups	(XenSource and	Coho	Data)	
• Associate	prof	at	UBC
• Three	kids
• I	went	heli skiing	last	Friday.



Here's	what	I	am	going	to	do

• Make	some	pretty	obvious	observations	about	technology	directions.
• Draw	some	dodgy	and	highly	speculative	conclusions	from	those	
observations.
• Try	to	influence	your	research.

• Disclaimer:	this	is	not	a	conference	talk,	nor	is	it	5	stapled	together	
conference	talks.
• Another	disclaimer:	I'm	going	to	give	you	more	problems	than	
solutions.



So	let's	go…



Section	5:	Evaluation.

• (At	the	end	of	the	day,	all	systems	papers	are	about	performance.)
• Probably	because	it's	one	of	the	only	things	we	know	how	to	measure.
• There	are	two	types	of	performance	results:

1. Small	improvements	in	a	very	large	system.	
2. Speed	ups	that	are	so	significant	that	they	change	functionality.		

• Google	and	Facebook	and	Amazon	and	Microsoft	are	probably	a	lot	better	
at	solving	meaningful	problems	with	their	systems	than	you	are.		



Here	are	the	high-level	trends/ideas	behind	
this	talk
1. Diminishing	scarcity.
2. Practical/sensible	to	own	your	own	hardware	again.
3. The	software	we	have	is	turning	out	to	be	a	bigger,	slower,	more	

onerous	burden	than	the	hardware	it	runs	on.
• It	is	a	poor	match	for	changing	performance	and	failure	characteristics	of	
hardware.

• It	is	a	poor	match	for	the	operational	needs	of	users.



Consequences	of	these	ideas

• The	goal	posts	are	moving	in	terms	of	what	we	design	systems	for.

• Human	costs	associated	with	running	our	systems	are	a	bigger	
expense	and	inconvenience,	at	all	levels,	than	the	piecewise	
performance	of	components.
• They	are	actually	a	barrier.

• The	end	of	scarcity	marks	the	beginning	of	a	push	for	efficient	
predictability.
• This	is	why	storage	customers	by	flash.		It’s	also	a	hard	systems	problem.



So	what	do	we	need	to	understand,	
as	systems	researchers,	to	help?



One	significant	hardware	chage:	
Rack	scale
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This	is	a	google	data	center	circa	2001.	GFS	(2003):	largest	
deployments	had	over	1,000	storage	nodes,	hundreds	of	clients,	

300	TB	of	storage	space



http://itq.nl/intels-take-open-compute-project-rack-scale-architecture/

https://www.supermicro.com/solutions/SRSD.cfm



What	is	"rack	scale"?

• Everything	in	a	rack	will	share	a	high	performance	bus.
• Within	a	rack,	optical	interconnects	are	expected	to	reach	terabit	bandwidth	in	the	
near	term	with	sub-microsecond	latencies.

• The	server	as	we	know	it	will	be	completely	disaggregated.	
• CPUs,	GPUs,	storage,	network	interfaces,	and	volatile	memory	will	each	move	to	
independent	physical	enclosures.		Arbitrary	composition	and	independent	scale.

• Rack	resources	will	be	very	dense.		
• Like,	really dense.
• As	a	ballpark,	within	a	rack	we	are	likely	to	see	thousands	of	cores,	tens	of	petabytes	
of	persistent	memory,	and	terabytes	of	RAM.

• In	short,	a	single	datacenter	rack	with	a	capital	value	in	the	low	millions	of	
dollars,	will	be	as	capable	as	entire	first-generation	(e.g.	2003-era)	
"warehouse"	datacenters	from	public	cloud	providers



Consequences	of	the	rack	scale	trend	on	software	
design.



What’s	changing?

1. Storage	is	becoming	dense.
• Problematically	dense!

2. The	memory	hierarchy	is	having	an	identity	crisis.
3. Application	latency	is	a	cruel	taskmaster.



Trend	1:	Dense	nonvolatile	storage	capacity.



Dense	Nonvolatile	Capacity

• Flash	vendors	have	finally	started	to	relax	about	the	durability	
problem.	
• The	jaw	dropping	bit:	we	will	see	4PB	in	1u	in	a	small	number	of	
years.	
• At	a	price	that	approaches	spinning	disk.	

• The	bad	news:	in	the	immediate	term,	interconnection	will	be	a	
problem.			
• And	in	the	longer	term	it	may	not	get	a	whole	lot	better.



Trends
SSD Cap	/	1u Xput	per	data

2	TB 64TB 312MB/s/TB

8	TB 256TB 78	MB/s/TB

32	TB 1PB 20	MB/s/TB

128	TB 4PB	 5	MB/s/TB
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Trends
SSD Cap	/	1u Xput	per	data

2	TB 64TB 312MB/s/TB

8	TB 256TB 78	MB/s/TB

32	TB 1PB 20	MB/s/TB

128	TB 4PB	 5	MB/s/TB

NVMe	device:	x4	PCIe
Broadwell	CPU:	40	PCIe	lanes

TOR	cross-rack	links	typically	oversubscribed	at	3	or	4:1

20



This	is	very	different	from	all	the	storage	
systems	that	we've	built	in	the	past.
• No	seek	penalty.	

• Means	that	background	I/O	is	actually	reasonable	to	do.
• Migration	for	performance.	
• Alternate	representations	(e.g.	materialized	views,	intentional	DUPlication)	often	for	
performance.

• Metadata	all	day	long.	
• Sprinkler	heads	are	a	problem.

• 4PB	is	an	awfully	scary	failure	domain.
• Sensible	application	of	erasure	coding	needs	five	or	more	nodes.	
• East/west	traffic	is	constrained.

• Capacity-motivated	deletion	is	silly	in	most	cases.
• But	real	deletion	probably	needs	to	be	encryption	based.



Mirador (FAST	’17)

Centralized	three-stage	pipeline	continuously	optimizes	placement
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Trend	2:	The	magic	of	persistent	memory.



Persistent	Memory

• Everyone	is	excited	about	3D	Xpoint.
• (What	the	heck	is	3d	xpoint?)

• Bad	news:	persistent	RAM	is	a	total	PITA.
• Because	it's	not	really	persistent	RAM:	ram	as	you	think	about	it	is	a	total	ilusion.
• It's	really	a	super	duper	fast	disk.	
• In	fact,	it's	a	super	duper	fast	*single*	*unreliable*	disk.	But	more	on	this	in	a	sec.	

• But	wait,	this	doesn't	mean	that	XPoint isn't	a	spectacularly	good	idea.
• With	it,	RAM	is	about	to	break	through	the	memory	wall	(core	to	capacity	ratio).
• Technologies	like	XPoint will	give	us	a	multiplier	on	working	set.
• Persistence	will	massively	speed	up	restart	times,	especially	for	read-only	data.



One	more	spanner:	Disaggregation.

• Some	significant	amount	of	memory	is	about	to	move	off	host.
• Nobody	seems	to	agree	on	how	this	is	going	to	happen.

• "remote"	memory	vs	shared	physical	bus	vs	Rack-scale	CC	NUMA	
• All	of	these	things	are	interesting	in	two	ways.

• First,	failure	domains	are	very	different...	in	ways	that	Apps	and	OSes	are	NOT	
used	to	reasoning	about.	

• Second,	they	afford	an	entirely	new	(and	exciting!)	form	of	dynamism.							
• Map	Reduce	and	Spark	have	a	good	but	very	coarse-grained	notion	of	partitioning.
• These	systems	have	the	potential	to	be	so	much	more	dynamic.
• Same	for	scale	out	data	stores.
• Same	for	state	replication	and	HA



So	what's	going	to	happen	here

• Total	chaos.
• Persistent	memory	looks	like	a	really	fast	disk.		Disaggregated	memory	
looks	like	an	extension	of	the	cache	hierarchy.
• Our	view	of	memory,	locality,	and	persistence	is	in	trouble.
• Interfaces	and	abstractions	really	need	to	change	in	support	of	this.
• One	prediction:	file	system	and	virtual	memory	will	merge.

• Loads	of	reasons	to	do	this	-- serialization	overheads,	reboots,	sharing.
• but	still	many	open	questions.



Trend	2:	Application	latency.



Latency

• Tell	me	if	you’ve	heard	this	one	before:	CPUs	aren't	getting	faster
• I/O	is	getting	faster	and	wider.
• Latency	is	becoming	a	dominant	metric.

• Direct	impact	on	e.g.	purchase	probability.
• But	it's	a	much	harder	metric	to	work	with	than	throughput.

• Shrinking	I/O	latencies	results	in	increased	computational	density.
• Because	I/O	wait	goes	away	(e.g.	DBMS)

• But	a	latency	focus	imposes	a	lot	of	constraints	on	software	design.		
• Especially	tail-latency	SLOs.	
• Need	to	reason	about	the	slow	path	as	a	common	case.
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Decibel	(NSDI	‘17)

• How	should	we	structure	a	
storage	system	to	provide	virtual	
local	disks?

• Partition	like	crazy,	crusade	
against	latency,	push	all	
unnecessary	functionality	up	the	
stack.

• This	generalizes	to	applications.
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Everything	hurts	latency

• Redundancy	is	a	good	example	of	why	this	gets	hard.
• For	in	memory,	network	RTT	will	approach	media	store	time.
• So	a	remote	write	doubles	the	cost.	
• Worse:	Replication	at	lower	layers	of	the	system	is	invariably	amplified.
• This	is	why	emerging	data	stores	don't	do	it.

• A	real	latency	focus	drives	software	architecture	in	a	very	specific	direction.	
• Contention	is	a	source	of	hard-to-reason-about	performance	variance.
• So	avoid	contention	at	all	costs.		Design	it	out	up	front.	
• (If	you	do	this	right,	you	benefit	from	not	having	to	hire	developers	that	understand	
locking.)

• Doing	this	right	means	designing	data	and	code-level	partitioning	very	carefully.	
• Less	academically	rewarding	than	OCC	and	lock	freedom,	but	see	parenthetic	point	
above.



And	with	that,	I’m	mostly	done.



Here	are	the	high-level	trends/ideas

1. Diminishing	scarcity.
2. Practical/sensible	to	own	your	own	hardware	again.
3. Software	needs	to	change.



Closing	thought.

• Nobody	is	going	to	adopt	your	stuff	unless	you	make	it	as	easy	as	heck	
for	them	to	do	it.
• Expose	your	research	results	as	a	service,	or	as	something	as	close	to	
a	service	as	is	possible.		
• Put	them	in	containers,	host	them	on	AWS.		

• Solve	application	problems.			
• Early	experiences	working	with	physical	scientists.


