
Keeping	up	with	the	
architects.

Andrew	Warfield,	UBC	and	Coho	Data



About	this	keynote.	
(And	the	things	I'm	not	going	to	talk	about.)



Not	going	to	talk	about	any	of	this	stuff	right	now	
(but	happy	to	in	the	hallway	track)
• Finished	PhD	at	Cambridge	in	2006
• Worked	in	industrial	research	(AT&T	and	Intel)
• Two	startups	(XenSource and	Coho	Data)	
• Associate	prof	at	UBC
• Three	kids
• I	went	heli skiing	last	Friday.



Here's	what	I	am	going	to	do

• Make	some	pretty	obvious	observations	about	technology	directions.
• Draw	some	dodgy	and	highly	speculative	conclusions	from	those	
observations.
• Try	to	influence	your	research.

• Disclaimer:	this	is	not	a	conference	talk,	nor	is	it	5	stapled	together	
conference	talks.
• Another	disclaimer:	I'm	going	to	give	you	more	problems	than	
solutions.



So	let's	go…



Section	5:	Evaluation.

• (At	the	end	of	the	day,	all	systems	papers	are	about	performance.)
• Probably	because	it's	one	of	the	only	things	we	know	how	to	measure.
• There	are	two	types	of	performance	results:

1. Small	improvements	in	a	very	large	system.	
2. Speed	ups	that	are	so	significant	that	they	change	functionality.		

• Google	and	Facebook	and	Amazon	and	Microsoft	are	probably	a	lot	better	
at	solving	meaningful	problems	with	their	systems	than	you	are.		



Here	are	the	high-level	trends/ideas	behind	
this	talk
1. Diminishing	scarcity.
2. Practical/sensible	to	own	your	own	hardware	again.
3. The	software	we	have	is	turning	out	to	be	a	bigger,	slower,	more	

onerous	burden	than	the	hardware	it	runs	on.
• It	is	a	poor	match	for	changing	performance	and	failure	characteristics	of	
hardware.

• It	is	a	poor	match	for	the	operational	needs	of	users.



Consequences	of	these	ideas

• The	goal	posts	are	moving	in	terms	of	what	we	design	systems	for.

• Human	costs	associated	with	running	our	systems	are	a	bigger	
expense	and	inconvenience,	at	all	levels,	than	the	piecewise	
performance	of	components.
• They	are	actually	a	barrier.

• The	end	of	scarcity	marks	the	beginning	of	a	push	for	efficient	
predictability.
• This	is	why	storage	customers	by	flash.		It’s	also	a	hard	systems	problem.



So	what	do	we	need	to	understand,	
as	systems	researchers,	to	help?



One	significant	hardware	chage:	
Rack	scale



11

This	is	a	google	data	center	circa	2001.	GFS	(2003):	largest	
deployments	had	over	1,000	storage	nodes,	hundreds	of	clients,	

300	TB	of	storage	space



http://itq.nl/intels-take-open-compute-project-rack-scale-architecture/

https://www.supermicro.com/solutions/SRSD.cfm



What	is	"rack	scale"?

• Everything	in	a	rack	will	share	a	high	performance	bus.
• Within	a	rack,	optical	interconnects	are	expected	to	reach	terabit	bandwidth	in	the	
near	term	with	sub-microsecond	latencies.

• The	server	as	we	know	it	will	be	completely	disaggregated.	
• CPUs,	GPUs,	storage,	network	interfaces,	and	volatile	memory	will	each	move	to	
independent	physical	enclosures.		Arbitrary	composition	and	independent	scale.

• Rack	resources	will	be	very	dense.		
• Like,	really dense.
• As	a	ballpark,	within	a	rack	we	are	likely	to	see	thousands	of	cores,	tens	of	petabytes	
of	persistent	memory,	and	terabytes	of	RAM.

• In	short,	a	single	datacenter	rack	with	a	capital	value	in	the	low	millions	of	
dollars,	will	be	as	capable	as	entire	first-generation	(e.g.	2003-era)	
"warehouse"	datacenters	from	public	cloud	providers



Consequences	of	the	rack	scale	trend	on	software	
design.



What’s	changing?

1. Storage	is	becoming	dense.
• Problematically	dense!

2. The	memory	hierarchy	is	having	an	identity	crisis.
3. Application	latency	is	a	cruel	taskmaster.



Trend	1:	Dense	nonvolatile	storage	capacity.



Dense	Nonvolatile	Capacity

• Flash	vendors	have	finally	started	to	relax	about	the	durability	
problem.	
• The	jaw	dropping	bit:	we	will	see	4PB	in	1u	in	a	small	number	of	
years.	
• At	a	price	that	approaches	spinning	disk.	

• The	bad	news:	in	the	immediate	term,	interconnection	will	be	a	
problem.			
• And	in	the	longer	term	it	may	not	get	a	whole	lot	better.



Trends
SSD Cap	/	1u Xput	per	data

2	TB 64TB 312MB/s/TB

8	TB 256TB 78	MB/s/TB

32	TB 1PB 20	MB/s/TB

128	TB 4PB	 5	MB/s/TB

18



Trends
SSD Cap	/	1u Xput	per	data

2	TB 64TB 312MB/s/TB

8	TB 256TB 78	MB/s/TB

32	TB 1PB 20	MB/s/TB

128	TB 4PB	 5	MB/s/TB

NVMe	device:	x4	PCIe
Broadwell	CPU:	40	PCIe	lanes

19



Trends
SSD Cap	/	1u Xput	per	data

2	TB 64TB 312MB/s/TB

8	TB 256TB 78	MB/s/TB

32	TB 1PB 20	MB/s/TB

128	TB 4PB	 5	MB/s/TB

NVMe	device:	x4	PCIe
Broadwell	CPU:	40	PCIe	lanes

TOR	cross-rack	links	typically	oversubscribed	at	3	or	4:1

20



This	is	very	different	from	all	the	storage	
systems	that	we've	built	in	the	past.
• No	seek	penalty.	

• Means	that	background	I/O	is	actually	reasonable	to	do.
• Migration	for	performance.	
• Alternate	representations	(e.g.	materialized	views,	intentional	DUPlication)	often	for	
performance.

• Metadata	all	day	long.	
• Sprinkler	heads	are	a	problem.

• 4PB	is	an	awfully	scary	failure	domain.
• Sensible	application	of	erasure	coding	needs	five	or	more	nodes.	
• East/west	traffic	is	constrained.

• Capacity-motivated	deletion	is	silly	in	most	cases.
• But	real	deletion	probably	needs	to	be	encryption	based.



Mirador (FAST	’17)

Centralized	three-stage	pipeline	continuously	optimizes	placement
22



Trend	2:	The	magic	of	persistent	memory.



Persistent	Memory

• Everyone	is	excited	about	3D	Xpoint.
• (What	the	heck	is	3d	xpoint?)

• Bad	news:	persistent	RAM	is	a	total	PITA.
• Because	it's	not	really	persistent	RAM:	ram	as	you	think	about	it	is	a	total	ilusion.
• It's	really	a	super	duper	fast	disk.	
• In	fact,	it's	a	super	duper	fast	*single*	*unreliable*	disk.	But	more	on	this	in	a	sec.	

• But	wait,	this	doesn't	mean	that	XPoint isn't	a	spectacularly	good	idea.
• With	it,	RAM	is	about	to	break	through	the	memory	wall	(core	to	capacity	ratio).
• Technologies	like	XPoint will	give	us	a	multiplier	on	working	set.
• Persistence	will	massively	speed	up	restart	times,	especially	for	read-only	data.



One	more	spanner:	Disaggregation.

• Some	significant	amount	of	memory	is	about	to	move	off	host.
• Nobody	seems	to	agree	on	how	this	is	going	to	happen.

• "remote"	memory	vs	shared	physical	bus	vs	Rack-scale	CC	NUMA	
• All	of	these	things	are	interesting	in	two	ways.

• First,	failure	domains	are	very	different...	in	ways	that	Apps	and	OSes	are	NOT	
used	to	reasoning	about.	

• Second,	they	afford	an	entirely	new	(and	exciting!)	form	of	dynamism.							
• Map	Reduce	and	Spark	have	a	good	but	very	coarse-grained	notion	of	partitioning.
• These	systems	have	the	potential	to	be	so	much	more	dynamic.
• Same	for	scale	out	data	stores.
• Same	for	state	replication	and	HA



So	what's	going	to	happen	here

• Total	chaos.
• Persistent	memory	looks	like	a	really	fast	disk.		Disaggregated	memory	
looks	like	an	extension	of	the	cache	hierarchy.
• Our	view	of	memory,	locality,	and	persistence	is	in	trouble.
• Interfaces	and	abstractions	really	need	to	change	in	support	of	this.
• One	prediction:	file	system	and	virtual	memory	will	merge.

• Loads	of	reasons	to	do	this	-- serialization	overheads,	reboots,	sharing.
• but	still	many	open	questions.



Trend	2:	Application	latency.



Latency

• Tell	me	if	you’ve	heard	this	one	before:	CPUs	aren't	getting	faster
• I/O	is	getting	faster	and	wider.
• Latency	is	becoming	a	dominant	metric.

• Direct	impact	on	e.g.	purchase	probability.
• But	it's	a	much	harder	metric	to	work	with	than	throughput.

• Shrinking	I/O	latencies	results	in	increased	computational	density.
• Because	I/O	wait	goes	away	(e.g.	DBMS)

• But	a	latency	focus	imposes	a	lot	of	constraints	on	software	design.		
• Especially	tail-latency	SLOs.	
• Need	to	reason	about	the	slow	path	as	a	common	case.



0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Contention	Free Single	Lock

Number	of	Cores

Th
ro
ug
hp

ut
	(K

	IO
PS
)

THE COST OF CONTENTION



Core

DPDK

TCP

SPDK

Block	I/O

Decibel	Logic

User	space

Kernel

Core
Core

Hardware	Queues

Decibel	(NSDI	‘17)

• How	should	we	structure	a	
storage	system	to	provide	virtual	
local	disks?

• Partition	like	crazy,	crusade	
against	latency,	push	all	
unnecessary	functionality	up	the	
stack.

• This	generalizes	to	applications.



0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Local Decibel	(DPDK) Decibel	(Legacy)

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Local Decibel	(DPDK) Decibel	(Legacy)

Decibel	Performance	(70/30	Mixed	Workload)

422 vs	450 vs	490μs

Throughput	(K	IOPS) Latency	(μs)

Number	of	Cores Number	of	Cores



Everything	hurts	latency

• Redundancy	is	a	good	example	of	why	this	gets	hard.
• For	in	memory,	network	RTT	will	approach	media	store	time.
• So	a	remote	write	doubles	the	cost.	
• Worse:	Replication	at	lower	layers	of	the	system	is	invariably	amplified.
• This	is	why	emerging	data	stores	don't	do	it.

• A	real	latency	focus	drives	software	architecture	in	a	very	specific	direction.	
• Contention	is	a	source	of	hard-to-reason-about	performance	variance.
• So	avoid	contention	at	all	costs.		Design	it	out	up	front.	
• (If	you	do	this	right,	you	benefit	from	not	having	to	hire	developers	that	understand	
locking.)

• Doing	this	right	means	designing	data	and	code-level	partitioning	very	carefully.	
• Less	academically	rewarding	than	OCC	and	lock	freedom,	but	see	parenthetic	point	
above.



And	with	that,	I’m	mostly	done.



Here	are	the	high-level	trends/ideas

1. Diminishing	scarcity.
2. Practical/sensible	to	own	your	own	hardware	again.
3. Software	needs	to	change.



Closing	thought.

• Nobody	is	going	to	adopt	your	stuff	unless	you	make	it	as	easy	as	heck	
for	them	to	do	it.
• Expose	your	research	results	as	a	service,	or	as	something	as	close	to	
a	service	as	is	possible.		
• Put	them	in	containers,	host	them	on	AWS.		

• Solve	application	problems.			
• Early	experiences	working	with	physical	scientists.


