Cross-layer Optimization for Virtual Machine Resource Management

Ming Zhao, Arizona State University Lixi Wang, Amazon Yun Lv, Beihang Universituy Jing Xu, Google

http://visa.lab.asu.edu

Virtualized Infrastructures, Systems, & Applications

QoS in Clouds

- No support for QoS by existing cloud service providers
- Users have to pay for capacity, not performance
- But ultimately, users care about only performance

\bigcirc				
Amazon EC2 Service Level Agreement				
Monthly Uptime Percentage	Service Credit			
<99.95% but ≥99.0%	10%			
<99.0%	30%			

Instance Type	vCPU	Memory (GB)	Storage (GB)	Clock Speed (GHz)
t2.micro	1	1	EBS Only	2.5
t2.small	1	2	EBS Only	2.5
t2.medium	2	4	EBS Only	2.5
•••		•••		•••

Challenges to QoS Guarantees

- Dynamic VM workloads and dynamic resource contention
- But existing resource management treats VMs as black boxes
 - Unable to adapt applications according to changing resource availability

VISA

Motivations

- Many applications need to be tuned according to resource availability, e.g.,
 - o A web server's number of concurrent threads
 - A database's query cost estimation
 - o A search engine's crawling, indexing, or searching strategy
 - o A simulator's modeling resolution
 - o ...
 - o Only need to tuned once on physical machines
- But when they are virtualized, they are stuck with their initial configurations
 - o VM-level resource contention is hidden to the applications

VISA

Ming Zhao, PhD

Motivating Examples

- When the database VM's resource allocation changes, different query optimization leads to different performance
 - o E.g., sequential_page_cost and random_page_cost (seq:rand)

Varying VM disk bandwidth for TPC-H Q8

Varying VM memory allocation for TPC-H Q8

VISA

5

Motivating Examples

- When the map service VM's resource allocation changes, different map configuration decides response time
 - o E.g., JPEG compression quality (JCQ)

Typical VM Resource Management • VMs managed as blackboxes Applications unware of VM resource variability W(t), R(t)Online Application & Performance **VM Sensors** Model Modeling P(t) Real-time Online Monitoring Prediction R(t+1) Resource Application₁ Allocator Dynamic Resource Allocation W(t): Workload characteristics R(t): VM resource usages Virtual Machines P(t): Query performance Physical Machine

Outline

- Introduction
- Approach
- Results
- Conclusions

VICA

Ming Zhao, PhD

9

Research Questions

- How to pass VM resource info from host to guest?
 - o Through middleware running host and guests
 - No change to applications or VM systems
- How to adapt applications accordingly?
 - o What configuration parameters to tune?
 - Based on application knowledge
 - Using machine learning methods (e.g., PCA)
 - · Not the focus of this study
 - How to tune the parameters according to the VM resource availability?

Ming Zhao, PhD

General Approach

- Goal: find the optimal configuration C_{i_opt} for application i that maximizes its performance P_i for a given VM resource allocation R_i
- Method:
 - Create a model $C_i \rightarrow P_i$ for different resource allocations R_i
 - · E.g., using regression analysis
 - o Use this mapping to find C_{i_opt} for any given resource allocation R_i

VISA

Ming Zhao, PhD

11

Dynamic Application Adaptation

- Host-layer resource adjustment at fine time granularity (e.g., every 10s)
- Guest-layer adaptation at coarse time granularity (e.g., every minute)
- Performance model can be quickly updated (e.g., using fuzzy modeling)

VICA

Case Study: Virtualized Databases

- Databases represent applications with sophisticated internal optimizations
 - Query optimizer automatically evaluates the cost of different query execution plans and chooses the most efficient one
- Cross-layer optimization for virtualized databases
 - Adapts the query cost estimation and find the optimal query plan for its current resource availability
 - o E.g., Adapts sequential_page_cost to random_page_cost ratio

VISA

Ming Zhao, PhD

13

Database $C_i \rightarrow P_i$ Model

- Run a simple query that reads a large table with either sequential- or index-scan methods
- Iterate with different I/O allocations
- Measure performance impact for each scanning method
- Build mapping between I/O allocations and the rand:seq

14

VISA

Evaluation

- Hardware: a server with 2 six-core Xeon processors, 32GB RAM, and 500GB SAS disk
- VM environment:
 - o Xen 3.3.1 with Ubuntu Linux
- Benchmark:
 - o TPC-H queries

VISA

Ming Zhao, PhD

15

TPC-H

- *Dynamic*: dynamically adjust *seq:rand* based on VM's current resource availability
- Static: seq:rand fixed to 1:4

• *Dynamic* improves performance by 33.5%

Case Study: Virtualized Map Services

- Map services represent applications that can tune their QoS based on resource availability
 - o E.g., JCQ affects response time and image quality
 - \circ Higher JCQ \rightarrow better map resolution, but more data transfer

17

Evaluation

- Hardware: a server with 2 six-core Xeon processors, 32GB RAM, and 500GB SAS disk
- VM environment:
 - o Microsoft Hyper-V 6.2 with Windows Server
- Benchmark:
 - o Terrafly: a production web-based map system

VISA

Ming Zhao, PhD

Conclusions

- Cloud is dynamic
 - o It is important to enable applications to adapt to changing resource availability in the cloud
- A systematic solution with cross-layer optimization
 - o 33.5% improvement in performance for TPC-H
 - o 40% in image quality for TerraFly
- Future work
 - o Distributed/parallel applications
 - o Integration with VM migrations

Ming Zhao, PhD

21

Acknowledgement

- Sponsors
 - National Science Foundation: CAREER award CNS-1619653, CNS-1629888, IIS-1633381, and CMMI-1610282
- VISA Research Lab
 - o http://visa.lab.asu.edu
- Thanks! Questions?

