

Towards an Adaptive, Fully Automated Performance Modeling Methodology for Cloud Applications

Ioannis Giannakopoulos¹, <u>Dimitrios Tsoumakos²</u> and Nectarios Koziris¹

 ¹:Computing Systems Laboratory, School of ECE, National Technical University of Athens, Greece {ggian, nkoziris}@cslab.ece.ntua.gr
²: Department of Informatics, Ionian University, Greece dtsouma@ionio.gr

Introduction

Performance Modeling (or profiling)

"The ability to predict an application's behavior, given the parameters that affect it as input"

Valuable for:

- Optimal Resource Configuration
- Bottleneck Identification

- Application Scaling
- Multi-Engine Analytics

Approaches

Existing approaches:

- White-box
 - Analytical Modeling
 - Interpretable Models
 - Good Accuracy for simple cases
 - Require Experience
 - Poor Results for complex cases

WordCount

Approaches

Existing approaches:

- White-box
 - Analytical Modeling Ο
 - Interpretable Models Ο
 - Good Accuracy for simple cases Ο
 - **Require Experience** Ο
 - Poor Results for complex cases 0
- Black-box
 - Benchmarking & ML Ο
 - Require no experience Ο
 - Accuracy Ο
 - Data Size Require time/computation Ο

Nodes-

Cores

"Black-box" Profiling Challenges

Traditional Challenges:

- 1. Which dimensions?
 - a. data (e.g., dataset size, # of columns, distribution, etc.)
 - b. resources (e.g., # nodes, # cores, RAM, etc.)
 - c. workload (e.g., k parameter of k-means, clustering implementation, etc.)
- 2. Which model?
 - a. Linear Models
 - b. Neural Networks
 - c. Support Vector Machines

New Challenge: Massive Configuration Space

The challenges - Distributed Design

Nodes = [2]

Nodes = [2,4]

Nodes = [2,4,6]

The challenges - Cloud Computing

WordCount	Nodes = [2,4,6] Cores = [1] RAM= [1]	3 combinations
WordCount	Nodes = [2,4,6] Cores = [1,2] RAM= [1]	6 combinations
WordCount	Nodes = [2,4,6] Cores = [1,2] RAM= [1,2]	12 combinations

The configuration space grows exponentially with the #dimensions and the #values per dimension!

Problem statement

Given:

- 1. Application A
- 2. Configuration space $D = d_1 \times d_2 \times \dots \times d_n$
- 3. A positive number *B*

"Estimate an application profile $F_A:D \rightarrow R$ using D_s of size B, with the highest possible accuracy!"

or:

"Find the top-B **representative** configurations to train a ML classifier"

Optimality & Observations

Optimality & Observations

Optimal solution is **NP-Hard:**

- For each possible set of size B:
 - Deploy configuration
 - Train ML classifier
 - Evaluate it (test set)

Even deploying the entire D is not feasible:

• Prohibitive time + cost

Two observations regarding performance functions:

- Locality
- (piecewise) Linearity

Set 1 and Set 2

Locality

"Neighboring" configurations (tend to) give similar performance

Hint:

Divide-and-Conquer to solve more (but simpler) problems

(piecewise) Linearity

"Neighborhoods" (tend to) present linear behavior (especially for resource-related dimensions)

Hint:

Start with linear models

Methodology

Overview

Algorithm 1 DT-based Adaptive Profiling Algorithm

- 1: procedure DTADAPTIVE(D, B, b)
- 2: $tree \leftarrow \text{TREEINIT}(\emptyset), samples \leftarrow \emptyset$
- 3: while $|samples| \leq B$ do
- 4: $tree \leftarrow PARTITION(tree, samples)$
- 5: $s \leftarrow \text{SAMPLE}(D, tree, samples, b)$
- 6: $d \leftarrow \text{DEPLOY}(s)$
- 7: $samples \leftarrow samples \cup d$
- 8: $model \leftarrow CREATEMODEL(samples)$
- 9: return model

Space Partitioning with Decision Trees

Decision Trees:

- Tree Structures
- Space Partitioning
- Node types:
 - Test nodes: Space Boundaries

PARTITION

SAMPLE

DEPLOY

Leaves: Linear Models

MODEL

Space Partitioning with Decision Trees

Space Partitioning \rightarrow Decision Tree construction

- Substitute Leaves with Test nodes
- Which line to use?
 - Maximize leaf homogeneity
 - Well-known criteria: GINI Impurity, Entropy, Variance minimization, etc.
- Optimization Problem
 - Objective Function: $Score(I) = -\frac{|L_1|R_1^2 + |L_2|R_2^2}{|L_1| + |L_2|}$

Intuitively: the split line will generate two regions which best fit to linear models

Space Sampling

Objective: distribute a deployment budget **b** (b<B) to each leaf

Space Sampling

Objective: distribute a deployment budget b (b<B) to each leaf

Space Sampling

- How can we decide on the budget of each leaf?
 - Leaf error (exploitation)
 - Leaf size (exploration)

• Leaf's score: Score(leaf) =
$$w_{error} \cdot \frac{error(leaf)}{maxError} + w_{size} \cdot \frac{size(leaf)}{maxSize}$$

- # of samples assigned to each leaf *I*: *Score(I) x b*
- Uniform sampling inside the leaf

Space Sampling

Exploration vs Exploitation

 $W_{error} = 1.0$ $W_{size} = 0.0$

Space Sampling

Exploration vs Exploitation

 $W_{error} = 1.0$ $W_{size} = 0.5$

Space Sampling

Exploration vs Exploitation

 $W_{error} = 0.0$ $W_{size} = 1.0$

Deployment

- AURA: A Python-based deployment tool with error-recovery enhancements
- Application description: DAG of scripts for each module
- Transient failures (network glitches, poor coordination, etc.)
- AURA re-executes only scripts that failed
- Achieve idempotence via lightweight filesystem snapshotting

Deployment DAG example

Hadoop Application Description:

- 1 Master node
- 2 Slave nodes

Modeling

- Training a new Decision Tree from scratch
- When **B** comparable to #dimensions, DT degenerates into linear regression
 - Use multiple Regressors (e.g., ANNs, SVMs, etc.)
 - Keep the one with the lowest Cross Validation score
 - In practice, such budgets are too low to extract meaningful models
- Piecewise linearity
 - Approximates complex functions given higher deployment budgets

Evaluation

Methodology & Performance Functions

- Testbed: private Openstack Cluster (8 nodes, 200 cores, 600G RAM, 8TB disk)
- Competitors:
 - PANIC
 - More samples between points samples with highest variance
 - Active Learning (Uncertainty Sampling)
 - More samples to areas of highest uncertainty
 - Uniform Sampling
 - Uniform distribution of samples
- Modeling with WEKA regressors

exploitation

exploitation

exploration

Methodology & Performance Functions

Application (perf. metric)	Dimensions	Values		
	YARN nodes	4–20		
	# cores per node	2-8		
Spark Bayes	memory per node	2–8 GB		
(execution time)	# of documents	$0.5-2.5 (\times 10^6)$		
	# of classes	50-200 classes		
	YARN nodes	2–20		
Hadoop Wordcount	# cores per node	2-8		
(execution time)	memory per node	2–8 GB		
	dataset size	5–50 GB		
	# of servers	1–10		
Media Streaming	video quality	144p–1440p		
(throughput)	request rate	50-500 req/s		
	# of MongoD	2–10		
MongoDB	# of MongoS	2-10		
(throughput)	request rate	5–75 ($\times 10^3$) req/s		

SR: |D_s| / |D| x 100%

Cost-aware profiling

$Score(leaf) = w_{error}$	error(leaf)	size(leaf)	cost(leaf)
	maxError	$-w_{size}$ maxSize	$-w_{cost}$ $\overline{maxCost}$

Ann/tions	SR		MSE		Cost		
App/nons	SK	0.2	0.5	1.0	0.2	0.5	1.0
Bayes	3%	+1%	-1%	-2%	-1%	-1%	-1%
	20%	+4%	+10%	+5%	-7%	-9%	-12%
Wordcount	3%	-1%	-5%	-1%	-4%	-6%	-1%
	20%	0%	+13%	+19%	-6%	-8%	-18%
Media Str.	3%	-1%	-3%	+3%	-1%	-5%	-6%
	20%	-6%	-2%	-8%	-7%	-11%	-26%
MongoDB	3%	+6%	+12%	+13%	-2%	-3%	-4%
	20%	-1%	-7%	-7%	-6%	-9%	-12%

Conclusions

- Divide-and-Conquer strategy
- "zoom-in" to *interesting* areas of the configuration space
- exploration vs exploitation
- Space Partitioning: important dimensions are partitioned more frequently
- Dimension Importance: linearity

Towards an Adaptive, Fully Automated Performance Modeling Methodology for Cloud Applications I.Giannakopoulos, D. Tsoumakos and N. Koziris IEEE International Conference on Cloud Engineering, April 17-20, Orlando, Florida, USA

