OPTIiC: Opportunistic Graph Processing
in Multi-Tenant Clusters

Muntasir Raihan Rahman, Nokia Bell Labs
Indranil Gupta, University of lllinois Urbana-Champaign
Akash Kapoor, Princeton University
Haozhen Ding, Airbnb

Distributed Protocols Research Group (DPRG)
http://dprg.cs.uiuc.edu/

OPTIC: Opportunistic graph Processing on Multi-
Tenant Clusters

OPTIiC is the first multi-tenant system for graph processing

OPTIC bridges the gap between graph processing layer and cluster
scheduler layer

Key techniques
— New algorithm for graph computation progress estimation
— Smart prefetching of resources

We implemented our system on top of Apache Giraph + YARN stack

We obtain 20-82% improvement in job completion time for realistic
workloads under realistic network conditions

Graphs are Ubiquitous

Biological

* Food Web

* Protein Interaction Network
* Metabolic Network

Man-made

e Online Social Network (OSN)
 Web Graph

 The Internet

08 A .) GF“’
LR g SR A
. f » “w v o

< Namseuae S0 0

. .

¢ .‘“' o o> o ‘f S

8 ‘.oo" RS 5 ”m, "
* .i At ... b

Protein Interaction Network

Graphs are Massive Scale: Facebook Graph: |V|=1.1B, |E|=150B (May 2013)

The Internet Topology

fountry Code: from mask
DE

hr

See http://www.cybergeography.org/atlas/topology.html for more Internet topologies.

The Internet Graph

Distributed Graph Processing

Apache Giraph Dato PowerGraph Powerlyra

@fr GraphX Google

Google Pregel

Graph Lab

Carnegie Mellon

Databricks GraphX

Anatomy of a Graph Processing Job

(— \

* Preprocessing time included
in total job turnaround time

* (Can be significant
[LFGraph@Trios 2013]

Termination
(1) write results to disk
(2) teardown

J

I

~—

Graph
Computation
(Gather-Apply-
Scatter)

>| Synchronize at barrier

S

Graph Processing on Multi-tenant Clusters

4)

Graph Processing Engines do not take advantage of multi-tenancy in
cluster scheduler

GAP

Cluster Schedulers un-aware of graph nature of jobs
* Only assume map-reduce or similar abstractions

OPTIC: Opportunistic Graph Processing on Multi-
Tenant Clusters

Key Idea: Opportunistic Overlapping of
(1) Graph Preprocessing Phase of Waiting Jobs with
(2) Graph Computation Phase of Current Jobs

System Assumptions

* Synchronous graph processing (workers sync periodically)
Over-subscribed cluster (always a waiting job)

No pre-emption

All input graphs stored in Distributed File System (e.g., HDFS)
Disk locality matters

Key ldea, Simplified: Opportunistic Overlapping

90% completeI

Start preprocessing phase of next waiting job
at cluster resources running maximum progress job (MPJ)

LIl (]

Cluster Scheduler

Benefits:

* MPJ most likely to free up cluster resources first

 When the next waiting job is scheduled,
preprocessing phase is already underway

1# Prefetching Resources

Challenges

2# Estimating Progress

Challenge # 1: How to Prefetch

Desired Feature: Minimal Interference on Current Running Jobs

ﬁ ogress.- Aware Memory ﬂogress-Aware Disk \
Prefetching

i D
e Prefetch graph of waiting Prefetching (PADP) .
. : : * Prefetch graph of waiting
job directly into memory of e .
job into disk of MPJ
MPJ server(s) server(s)
* MPJ server memory being

used to store and compute |+ Local disk fetch avoids network contention

on MPJ graph * DARE@IEEE Cluster data (Amazon 20 server virtual cluster)
* Interferes with MPJ, e Amazon EC2 disk bandwidth mean 141.5 MB/s
potentially increase MP)J * Amazon EC2 network bandwidth mean 73.2 MB/s
k run-time - * Cheaper to fetch from local disk than from network

MPJ=Max Progress Job

Architecture: OPTIiC with PADP

Progress
Estimation Engine

4)
Graph Processing Engine
OPTIC Scheduler 100000
-
Central Job Queue
4)
Cluster Scheduler
_ J
r ™
Replica
Distributed File System Placement Engine
. y,

10

OPTiC-PADP Scheduling Algorithm

(munnine sob

)

ﬁ’TiC scheduler \

* For next waiting job in queue
o Fetch progress information
of running jobs

o Determine server(s) S

1. Creating additional replicas in disk increases the (non-zero) storage performance cost
2. Butthere is a lot of available space on disks, which are mostly under-utilized
3. So the actual dollar cost of the system is close to zero

-

Cluster Scheduler
* Scheduled next waiting job
when MPJ finishes

_

~

J

N S

(Next Waiting Job)
* Scheduledon $
e Fetch graph from local disk
instead of remote disk in DFS

_ J

Challenge # 2:
Estimating Progress of Graph Computation

1. Profiling:

— Profile the run-time of various graph algorithms on different cluster
configurations for different graph sizes

— Huge overhead, job details dependent (-)

2. Use Cluster Scheduler Progress Estimator:
— For example Giraph programs are mapped to map-reduce programs

— Use cluster map-reduce progress estimator to estimate graph
computation progress

— Cluster dependent (-)

Profile-free, Cluster-agnostic Progress Estimation

Use Graph Processing Layer Metrics:

— Track the evolution of active vertex count (AVC)

* Avertex is active as long as there are some incoming messages from previous
iteration

— At termination AVC =0
— Profile-independent, Cluster-agnostic (+)

Active Vertex Count Percentage (AVYCP)

Active Vertex Count Percentage (AVCP)

04

0.2

0.2

_U
Q
oQ
)
-
Q
-}
=
it Percentage (AVCP)

SSSP

Decreasing

(1) Initial non-decreasing phase

: AVCP at or going towards 1

(2) Decreasing phase: AVCP going towards O

\\ \ // .r'
1 Pt - | 1 4 L .
10 20 30 40 50 0 1
T T T T 1 -~ _ T — T T
K-core decomposition " Flat
P 1 & osl Connected Comp _
=
=
2
. — e 0.6
Decreasing B

Progress Measure: How far from final AVCP=0%

—_ e

Iteration

Iteration

14

Progress Comparator Algorithm

MPJ = Max Progress Job

Non-decreasing Decreasing
job1 [
AVCP 0% 70% 100% 0%
CASE 1: Jobs in different phases
bz
AVCP 0% 100% 50% 0%

Job2 in 2"d Decreasing Phase: MPJ

15

Progress Comparator Algorithm (2)

Nor|-decreasil
Jobl

70%

AVCP 0%

Job2 -

MPJ = Max Progress Job

Decreasing

100% 0%

CASE 2: Both jobs in Non-dec phase

AVCP 0% 20

L

M

100% 0%

The intervals introduce some randomness for jobs with AVCP
close to each other (e.g., if Job 2 was at 60% (M) instead)

Job1 closer to 100% in first phase: MPJ

CASE 3: Both jobs in Dec phase (similar) o

Evaluation Setup

Testbed

— 9 Quad-core servers with 64GB memory, 200GB disks, running Ubuntu
14.04

Test Algorithms: Single source shortest path (SSSP), K-core
decomposition (KC), Page-rank (PR)

Graphs: Uniform Randomly Generated Synthetic graphs
Performance Metric: Job completion time

Compared Scheduling Algorithms:

— Baseline (B): default YARN FIFO policy (RF=3)

— PADP (P): OPTIiC PADP policy (RF=3 + opportunistically created replica (at-
most 1))

0.8

0.6

0.4

0.2

Facebook Production Trace Workload

500 1000 1500 2000
Job size (Number of Mappers)

2500

1

0.8

0.6

0.4

0.2

I ~- |
4 -

/ '
[I

(95th perp‘entile TAT improves by 54%

, baseline = ---

Median TAT.!"mproves by 73% 7

» padp ====—--

50 100 150

Job run-time (seconds)

Job size distribution from Facebook Trace (Vertex count proportional to map count)

Most jobs in cluster are small

Poisson arrival process with mean 7s, Network delay LN(3ms)

200

18

Yahoo! Production Trace Workload

Map-reduce job trace
from Yahoo! Production
cluster of several
hundreds of servers

Trace has 300 jobs with
job size and job arrival
times

Bursty arrival process

Heterogeneous jobs:
mixture of SSSP, KC, PR

0.8

0.6

I BASE - - - -
- PADP —--—--

/' Median TAT improves by 78%

500 1000 1500 2000 2500 3000 3500 4000

Job run-time (s)

rd
,} 95th peEEentiIe TAT improves by 70%

Scale and Graph Commonality Experiment

400 | 5
BT I il Baseline (B)
ul
£ 300 -
: 5 PADP (P)
w250 i
£
= |
2 200 P -
e
1y — -]
z 150 B B
2
o100 | T .
'Q:

1 =>
50 - e e e " il
0] I? | P| | I? | I:I)
2 0 S S
o By By o Yo, Y Y,

6 By, a5 a a %
oY %é; %@ G%J %@ %, -:5% 2,
Commonality (%)
e Graph commonality (degree of graph sharing among jobs) increases left to right

* Average graph size also increases from left to right

20

Related Work

* Cluster Schedulers (Map-reduce abstraction, multi-tenant)
— YARN, Fair Scheduler
— Mesos, Dominant Resource Fairness
— Multi-tenancy with fairness for sharing cluster resources
— OPTIC scheduler aware of graph computation progress
* Graph Processing (Single-tenant)
— Pregel, first message passing system based on BSP
— GraphlLab proposes shared memory computation
— PowerGraph optimizes for power-law graphs
— LFGraph improves performance with cheap partitioning and publish-subscribe message flow
— OPTIC improves performance for multi-tenant graph processing
* Progress Estimation
— Many systems for estimating progress of map-reduce jobs, e.g., KAMD
— SQL Progress Estimators, e.g., DNE (Driver Node Estimator), TGN (Total Get Next)
— OPTIC progress estimator based on graph processing level metrics

Summary of OPTiC

* OPTIiC is the first multi-tenant graph processing system

* Key techniques
— Prefetching: we overlap graph pre-processing phase of waiting jobs with
computation phase of running jobs

— Progress Estimation: we propose a new algorithm for estimating progress of
graph processing jobs using a graph level metric independent of the underlying
cluster and job details

 We obtain 20-82% improvement in job completion time for realistic
workloads under realistic network conditions

— Cost of increased replication of input graph in DFS (3 to 3 + opportunistically created
replica (at-most 1))

22

