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OPTIC: Opportunistic graph Processing on Multi-
Tenant Clusters

OPTIiC is the first multi-tenant system for graph processing

OPTIC bridges the gap between graph processing layer and cluster
scheduler layer

Key techniques
— New algorithm for graph computation progress estimation
— Smart prefetching of resources

We implemented our system on top of Apache Giraph + YARN stack

We obtain 20-82% improvement in job completion time for realistic
workloads under realistic network conditions



Graphs are Ubiquitous

Biological

* Food Web

* Protein Interaction Network
* Metabolic Network

Man-made

e Online Social Network (OSN)
 Web Graph

 The Internet
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Protein Interaction Network

Graphs are Massive Scale: Facebook Graph: |V|=1.1B, |E|=150B (May 2013)

The Internet Topology
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See http://www.cybergeography.org/atlas/topology.html for more Internet topologies.

The Internet Graph



Distributed Graph Processing

Apache Giraph Dato PowerGraph Powerlyra

@fr GraphX Google

Google Pregel

Graph Lab

Carnegie Mellon

Databricks GraphX



Anatomy of a Graph Processing Job
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* Preprocessing time included
in total job turnaround time

* (Can be significant
[LFGraph@Trios 2013]

Termination
(1) write results to disk
(2) teardown
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Graph Processing on Multi-tenant Clusters

4 )

Graph Processing Engines do not take advantage of multi-tenancy in
cluster scheduler

GAP

Cluster Schedulers un-aware of graph nature of jobs
* Only assume map-reduce or similar abstractions




OPTIC: Opportunistic Graph Processing on Multi-
Tenant Clusters

Key Idea: Opportunistic Overlapping of
(1) Graph Preprocessing Phase of Waiting Jobs with
(2) Graph Computation Phase of Current Jobs

System Assumptions

* Synchronous graph processing (workers sync periodically)
Over-subscribed cluster (always a waiting job)

No pre-emption

All input graphs stored in Distributed File System (e.g., HDFS)
Disk locality matters



Key ldea, Simplified: Opportunistic Overlapping

90% completeI

Start preprocessing phase of next waiting job
at cluster resources running maximum progress job (MPJ)

LIl (]

Cluster Scheduler

Benefits:

* MPJ most likely to free up cluster resources first

 When the next waiting job is scheduled,
preprocessing phase is already underway

1# Prefetching Resources

Challenges

2# Estimating Progress




Challenge # 1: How to Prefetch

Desired Feature: Minimal Interference on Current Running Jobs

ﬁ ogress.- Aware Memory ﬂogress-Aware Disk \
Prefetching

i D
e Prefetch graph of waiting Prefetching (PADP) .
. : : * Prefetch graph of waiting
job directly into memory of e .
job into disk of MPJ
MPJ server(s) server(s)
* MPJ server memory being

used to store and compute |+ Local disk fetch avoids network contention

on MPJ graph * DARE@IEEE Cluster data (Amazon 20 server virtual cluster)
* Interferes with MPJ, e Amazon EC2 disk bandwidth mean 141.5 MB/s
potentially increase MP)J * Amazon EC2 network bandwidth mean 73.2 MB/s
k run-time - * Cheaper to fetch from local disk than from network

MPJ=Max Progress Job




Architecture: OPTIiC with PADP

Progress
Estimation Engine

4 )
Graph Processing Engine
OPTIC Scheduler 100000
-
Central Job Queue
4 )
Cluster Scheduler
\_ J
r ™
Replica
Distributed File System Placement Engine
. y,
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OPTiC-PADP Scheduling Algorithm

( munnine sob

)

ﬁ’TiC scheduler \

* For next waiting job in queue
o Fetch progress information
of running jobs

o Determine server(s) S

1. Creating additional replicas in disk increases the (non-zero) storage performance cost
2. Butthere is a lot of available space on disks, which are mostly under-utilized
3. So the actual dollar cost of the system is close to zero

-

Cluster Scheduler
* Scheduled next waiting job
when MPJ finishes

\_

~

J

N S

(Next Waiting Job )
* Scheduledon $
e Fetch graph from local disk
instead of remote disk in DFS

\_ J




Challenge # 2:
Estimating Progress of Graph Computation

1. Profiling:

— Profile the run-time of various graph algorithms on different cluster
configurations for different graph sizes

— Huge overhead, job details dependent (-)

2. Use Cluster Scheduler Progress Estimator:
— For example Giraph programs are mapped to map-reduce programs

— Use cluster map-reduce progress estimator to estimate graph
computation progress

— Cluster dependent (-)




Profile-free, Cluster-agnostic Progress Estimation

Use Graph Processing Layer Metrics:

— Track the evolution of active vertex count (AVC)

* Avertex is active as long as there are some incoming messages from previous
iteration

— At termination AVC =0
— Profile-independent, Cluster-agnostic (+)



Active Vertex Count Percentage (AVYCP)

Active Vertex Count Percentage (AVCP)
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Progress Comparator Algorithm

MPJ = Max Progress Job

Non-decreasing Decreasing
job1 [
AVCP 0% 70% 100% 0%
CASE 1: Jobs in different phases
bz
AVCP 0% 100% 50% 0%

Job2 in 2"d Decreasing Phase: MPJ
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Progress Comparator Algorithm (2)

Nor|-decreasil
Jobl

70%

AVCP 0%

Job2 -

MPJ = Max Progress Job

Decreasing

100% 0%

CASE 2: Both jobs in Non-dec phase

AVCP 0% 20

L

M

100% 0%

The intervals introduce some randomness for jobs with AVCP
close to each other (e.g., if Job 2 was at 60% (M) instead)

Job1 closer to 100% in first phase: MPJ

CASE 3: Both jobs in Dec phase (similar) o



Evaluation Setup

Testbed

— 9 Quad-core servers with 64GB memory, 200GB disks, running Ubuntu
14.04

Test Algorithms: Single source shortest path (SSSP), K-core
decomposition (KC), Page-rank (PR)

Graphs: Uniform Randomly Generated Synthetic graphs
Performance Metric: Job completion time

Compared Scheduling Algorithms:

— Baseline (B): default YARN FIFO policy (RF=3)

— PADP (P): OPTIiC PADP policy (RF=3 + opportunistically created replica (at-
most 1))
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Job size distribution from Facebook Trace (Vertex count proportional to map count)

Most jobs in cluster are small

Poisson arrival process with mean 7s, Network delay LN(3ms)
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Yahoo! Production Trace Workload

Map-reduce job trace
from Yahoo! Production
cluster of several
hundreds of servers

Trace has 300 jobs with
job size and job arrival
times

Bursty arrival process

Heterogeneous jobs:
mixture of SSSP, KC, PR
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Scale and Graph Commonality Experiment
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e Graph commonality (degree of graph sharing among jobs) increases left to right

* Average graph size also increases from left to right
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Related Work

* Cluster Schedulers (Map-reduce abstraction, multi-tenant)
— YARN, Fair Scheduler
— Mesos, Dominant Resource Fairness
— Multi-tenancy with fairness for sharing cluster resources
— OPTIC scheduler aware of graph computation progress
* Graph Processing (Single-tenant)
— Pregel, first message passing system based on BSP
— GraphlLab proposes shared memory computation
— PowerGraph optimizes for power-law graphs
— LFGraph improves performance with cheap partitioning and publish-subscribe message flow
— OPTIC improves performance for multi-tenant graph processing
* Progress Estimation
— Many systems for estimating progress of map-reduce jobs, e.g., KAMD
— SQL Progress Estimators, e.g., DNE (Driver Node Estimator), TGN (Total Get Next)
— OPTIC progress estimator based on graph processing level metrics



Summary of OPTiC

* OPTIiC is the first multi-tenant graph processing system

* Key techniques
— Prefetching: we overlap graph pre-processing phase of waiting jobs with
computation phase of running jobs

— Progress Estimation: we propose a new algorithm for estimating progress of
graph processing jobs using a graph level metric independent of the underlying
cluster and job details

 We obtain 20-82% improvement in job completion time for realistic
workloads under realistic network conditions

— Cost of increased replication of input graph in DFS (3 to 3 + opportunistically created
replica (at-most 1))
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