
Tracking Causal Order in 
AWS Lambda Applications

Wei-Tsung Lin, Chandra Krintz, Rich Wolski, and Michael Zhang
Dept. of Computer Science, UC Santa Barbara

Xiaogang Cai, Tongjun Li, and Weijin Xu
Huawei Technologies Co. Inc.

IC2E 2018



AWS Lambda

• Serverless computing platform
• No resource provisioning needed, hence simplifies cloud 

applications deployment
• Stateless functions interacting with other cloud services
• Billed by runtime duration and memory use, enables 

scalable distributed applications at low cost

1



Challenges

• Difficult to debug, analyze, reason about

• Tooling for serverless applications is nascent with only 
simple logging services available
o CloudWatch
o X-Ray

2



Tools and limitations

• CloudWatch
Runtime duration, memory usage, customized information
No causality information
Difficult to distinguish concurrent invocations

• X-Ray
Presents dependency trees as service graph
Doesn’t track implicit relationship
Doesn’t track dependency across regions
Statistical sampling leads to record loss

3



X-Ray service graph

4



Tools and limitations

• CloudWatch
Runtime duration, memory usage, customized information
No causality information
Difficult to distinguish concurrent invocations

• X-Ray
Presents dependency trees as service graph
Doesn’t track implicit relationship
Doesn’t track dependency across regions
Statistical sampling leads to record loss

5



X-Ray service graph

6



Tools and limitations

• CloudWatch
Runtime duration, memory usage, customized information
No causality information
Difficult to distinguish concurrent invocations

• X-Ray
Presents dependency trees as service graph
Doesn’t track implicit relationship
Doesn’t track dependency across regions
Statistical sampling leads to record loss

7



X-Ray service graph

8



Tools and limitations

• CloudWatch
Runtime duration, memory usage, customized information
No causality information
Difficult to distinguish concurrent invocations

• X-Ray
Presents dependency trees as service graph
Doesn’t track implicit relationship
Doesn’t track dependency across regions
Statistical sampling leads to record loss

9



• Tracking causal order across all services and regions
• Automatically instrument Lambda functions and AWS 

SDK
• Compute performance statistics and construct service 

graph offline
• No record loss

Alternative: GammaRay

10



GammaRay components

• Lambda Deployment tool
o Injects GammaRay instrumentation to capture and report events
o Packs source codes, needed libraries, and runtime support as a zip file

• Runtime support
o Replace the function entry point with a function wrapper
o Assume control when Lambda handler or AWS SDK is invoked
o Assign an unique ID to root event and pass it to all downstream events
o Capture events and send them to shared DynamoDB table synchronously

• Event processing engine
o Construct a service graph using DynamoDB stream offline

11



GammaRay components

• Lambda Deployment tool
o Injects GammaRay instrumentation to capture and report events
o Packs source codes, needed libraries, and runtime support as a zip file

• Runtime support
o Replace the function entry point with a function wrapper
o Assume control when Lambda function or AWS SDK is invoked
o Assign an unique ID to root event and pass it to all downstream events
o Capture events and send them to shared DynamoDB table 

synchronously

• Event processing engine
o Construct a service graph using DynamoDB stream offline

12



How it works

13



Instrumentation injection

• Dynamic
o “Monkey patches” AWS SDK calls made by the function to invoke the 

GammaRay runtime before and after the call
o https://github.com/racker/fleece

• Static
o Replacing SDK to be imported with modified version
o Increase memory footprint

• Hybrid
o Lighter version of dynamic patching
o Only SDK calls that can trigger other events are captured
o Relies on X-Ray for performance data gathering

14



GammaRay components

• Lambda Deployment tool
o Injects GammaRay instrumentation to capture and report events
o Packs source codes, needed libraries, and runtime support as a zip file

• Runtime support
o Replace the function entry point with a function wrapper
o Assume control when Lambda handler or AWS SDK is invoked
o Assign an unique ID to root event and pass it to all downstream events
o Capture events and send them to shared DynamoDB table synchronously

• Event processing engine
o Construct a service graph using DynamoDB stream offline

15



GammaRay service graph

16



Evaluation

• Applications
o Map-Reduce
o ImgProc

• Micro-benchmarks
o Empty function
o DynamoDB read/write
o S3 read/write
o SNS posting

• Compared to X-Ray with Python SDK logging turned on*

17*Fleece: https://github.com/racker/fleece



Application: Map-Reduce

• Dynamic & static: 840 records
• Hybrid: 125 records

18



Application: Map-Reduce

Baseline performance (X-Ray)
• Total runtime duration: 114 seconds
• Total memory use: 1231 MB 19



Application: ImgProc

• Dynamic & static: 18 records 
• Hybrid: 5 records

20



Application: ImgProc

Baseline performance (X-Ray)
• Total runtime duration: 3.1 seconds
• Total memory use: 114 MB

21



Micro-benchmarks

22

Overhea
d (ms)

Startup DDB
Read

DDB 
Write

S3 
Read

S3 
Write

SNS Avg

X-Ray 6.0 47.3 47.4 52.0 87.1 64.2 59.6
G-Ray-H 418.9 1.5 29.5 2.7 19.3 33.8 17.3

• Average of 200 runs, each run contains 100 operations
• Row X-Ray shows the overheads over clean application deployment
• Row G-Ray-H shows the overhead of Hybrid GammaRay over X-Ray
• Obtaining DynamoDB handler takes 126ms in average



Summary

• A tool for debugging and reasoning about AWS Lambda 
application

• Captured causality across regions and services
• No instrumentation needed for developers

23



Future works

• Optimizing wrapper startup overhead
• Porting to other clouds
• Asynchronous event reporting

24



Acknowledgements

• National Science Foundation
• Huawei Technologies Co.

25



Thank you!

• https://github.com/MAYHEM-Lab/UCSBFaaS-Wrappers
• http://www.cs.ucsb.edu/~ckrintz/racelab.html
• weitsung@cs.ucsb.edu

26


