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AWS Lambda

• Serverless computing platform
• No resource provisioning needed, hence simplifies cloud 

applications deployment
• Stateless functions interacting with other cloud services
• Billed by runtime duration and memory use, enables 

scalable distributed applications at low cost
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Challenges

• Difficult to debug, analyze, reason about

• Tooling for serverless applications is nascent with only 
simple logging services available
o CloudWatch
o X-Ray
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Tools and limitations

• CloudWatch
Runtime duration, memory usage, customized information
No causality information
Difficult to distinguish concurrent invocations

• X-Ray
Presents dependency trees as service graph
Doesn’t track implicit relationship
Doesn’t track dependency across regions
Statistical sampling leads to record loss
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X-Ray service graph
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• Tracking causal order across all services and regions
• Automatically instrument Lambda functions and AWS 

SDK
• Compute performance statistics and construct service 

graph offline
• No record loss

Alternative: GammaRay
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GammaRay components

• Lambda Deployment tool
o Injects GammaRay instrumentation to capture and report events
o Packs source codes, needed libraries, and runtime support as a zip file

• Runtime support
o Replace the function entry point with a function wrapper
o Assume control when Lambda handler or AWS SDK is invoked
o Assign an unique ID to root event and pass it to all downstream events
o Capture events and send them to shared DynamoDB table synchronously

• Event processing engine
o Construct a service graph using DynamoDB stream offline
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How it works
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Instrumentation injection

• Dynamic
o “Monkey patches” AWS SDK calls made by the function to invoke the 

GammaRay runtime before and after the call
o https://github.com/racker/fleece

• Static
o Replacing SDK to be imported with modified version
o Increase memory footprint

• Hybrid
o Lighter version of dynamic patching
o Only SDK calls that can trigger other events are captured
o Relies on X-Ray for performance data gathering
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GammaRay service graph
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Evaluation

• Applications
o Map-Reduce
o ImgProc

• Micro-benchmarks
o Empty function
o DynamoDB read/write
o S3 read/write
o SNS posting

• Compared to X-Ray with Python SDK logging turned on*

17*Fleece: https://github.com/racker/fleece



Application: Map-Reduce

• Dynamic & static: 840 records
• Hybrid: 125 records
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Application: Map-Reduce

Baseline performance (X-Ray)
• Total runtime duration: 114 seconds
• Total memory use: 1231 MB 19



Application: ImgProc

• Dynamic & static: 18 records 
• Hybrid: 5 records
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Application: ImgProc

Baseline performance (X-Ray)
• Total runtime duration: 3.1 seconds
• Total memory use: 114 MB
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Micro-benchmarks
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Overhea
d (ms)

Startup DDB
Read

DDB 
Write

S3 
Read

S3 
Write

SNS Avg

X-Ray 6.0 47.3 47.4 52.0 87.1 64.2 59.6
G-Ray-H 418.9 1.5 29.5 2.7 19.3 33.8 17.3

• Average of 200 runs, each run contains 100 operations
• Row X-Ray shows the overheads over clean application deployment
• Row G-Ray-H shows the overhead of Hybrid GammaRay over X-Ray
• Obtaining DynamoDB handler takes 126ms in average



Summary

• A tool for debugging and reasoning about AWS Lambda 
application

• Captured causality across regions and services
• No instrumentation needed for developers
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Future works

• Optimizing wrapper startup overhead
• Porting to other clouds
• Asynchronous event reporting
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Thank you!

• https://github.com/MAYHEM-Lab/UCSBFaaS-Wrappers
• http://www.cs.ucsb.edu/~ckrintz/racelab.html
• weitsung@cs.ucsb.edu
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