
Armando Fox & David Pa!erson
University of California, Berkeley

CSEE&T 2013, San Francisco, CA

1

Context

•  UC Berkeley undergraduate Computer Science (not
 So"ware Engineering) degree program

•  Intro. So"ware Engineering upper-division course
–  “restricted elective” (n-out-of-k)

–  fulfills design component (open-ended team project)

–  15-week semester

•  As instructors, not always clear which standards
 document should provide guidance (SE 2004,
 ACM/IEEE CS 2013, SWEBOK)

2

The Problem
•  Berkeley’s SW Eng course had mixed reputation

–  Students: “we are learning about methodologies, but not
 applying them in relevant projects”

–  Instructors: students don’t practice what we teach them

–  Employers*: students can write code, but lack basic and
 important so"ware skills, especially:

1.  Dealing with legacy code**

2.  Working in team with nontechnical customer

3.  Automated testing

** Large companies: Google, Microso", Amazon Web Services, VMware, eBay ,
 Salesforce. Small companies: GitHub, Heroku, Pivotal Labs, SauceLabs

* Unanimously #1 among 6 large so"ware companies we asked 3

The Constraints

•  Typical ugrad: ≤12 hrs/week per course
–  15 week course = 3 weeks of fulltime work

•  Need high productivity tools so nontrivial apps can
 be completed in 1 semester

•  Future of exciting SW = “client + cloud” apps

•  Rails on cloud has best testing & code-grooming tools

4

This talk

•  How did retooling to Agile+SaaS affect the
 course & students?

•  If successful, can course be scaled up (teach
 more students) and scaled out (used flexibly at
 other institutions)?

•  Does course meet new So"ware Engineering
 curriculum guidelines? (cs2013.org)

5

This talk

•  How did retooling to Agile+SaaS affect the
 course & students?

•  If successful, can course be scaled up (teach
 more students) and scaled out (used flexibly at
 other institutions)?

•  Does course meet new So"ware Engineering
 curriculum guidelines? (cs2013.org)

6

Response: revised course

•  Teach fundamental SW Engineering skills
 using productive Rails SaaS framework

•  Learn by doing: methodologies tools

•  Uses & teaches Cloud Computing

•  Small-team, Agile dev
(ideal for classroom)

•  Real customers

•  Emphasizes testing 7

UC Berkeley upper-division "
Intro to Software Engineering "

saas-class.org

8

Week# and Topics (3 lecture-hours + 1 section-hour per week) 1-pizza team project
1. Intro to SaaS, Agile vs. “Plan & Document” centric approaches
2. Pair programming, Scrum, Ruby intro, TDD intro Form teams
3. BDD intro, user stories, lo-fi mockups, velocity, SaaS architecture Pick project/customer
4. Model-View-Controller, Rails intro, ActiveRecord design pattern Customer meeting 1
5. Unit & functional testing, mocks & stubs, fixtures, test coverage Customer meeting 2
6. DRYing out code, Associations, advanced Rails features, RESTful
service-oriented architecture

Review lo-fi mockups
with customer

7. Project management, design reviews, version control for small teams Iter. 1
8. Legacy code: exploring codebase, characterization tests, metrics,
code smells, refactoring
9. JavaScript intro, event-driven programming, JSON & AJAX Iter 2
10. SOLID OO design principles, design patterns
11. Continuous integration/deployment, performance & availability,
upgrades & feature flags, optimization, security/data integrity

Iter. 3

12-14. Optional extra topics, guest speakers Iter. 4

2-week Agile/XP Iteration

9

Talk to customer

Lo-fi UI mockup

User stories & scenarios

Behavior-driven
Design / user stories

RSpec

Test-first dev. (unit/funct.)

Measure Velocity

Deploy

Legacy Code

Design patterns

Methodologies
•  So"ware arch., design pat-terns,

coding practices

•  Test-first development, unit testing

•  Behavior-driven design, integration
testing

•  Agile, iteration-based project
management

•  Version management &
collaboration skills

•  SaaS technologies, deployment &
operations

•  Ruby & Rails

•  RSpec

•  Cucumber

•  Pivotal Tracker

•  Git & Github

•  Cloud computing:
EC2, Heroku 10

...become Tools

Example: Behavior-driven
 Design from Lo-fi Mockup

11

Reaching agreement with
 customer via User Stories

Feature: staff can add admit to meeting with open slot
 As an EECS staff member
 So that I can accommodate last-minute requests
 I want to manually tweak a faculty member's schedule

Scenario: add an admit to a meeting with an open slot
 Given "Velvel Kahan" is available at 10:20
 When I select "Velvel Kahan" from the menu for the 10:20

 meeting with "Armando Fox"
 And I press "Save Changes"
 Then I should be on the master meetings page
 And I should see "Velvel Kahan added to 10:20AM meeting."
 And "Armando Fox" should have a meeting with "Velvel

 Kahan" at 10:20

Scenario: remove admit from meeting

 ...etc. 12

From user stories "
to acceptance tests

•  Runs “natural language” user stories as integration
 tests

•  Each scenario describes one user story
– Given steps: setup preconditions

– When steps: take actions, using built-in browser
 simulator or Selenium

–  Then steps: assertions to check post-conditions

•  Step definitions match story steps to code

•  Quantify correctness and coverage

13

Measuring & Estimating
 Progress

•  Assign 1-3 points to each story in advance
1= straightforward stories (1-2 hours)

2 = medium stories (~1/2 day)

3 = complex (~1-1.5 days)

>3 = you don’t really know, so subdivide it

•  Teams assign value: vote & discuss discrepancies

•  Velocity = average number of points/iteration
– How many stories will team finish during this iteration?

– How long will it take to complete a set of features?

–  Students graded on improving ability to estimate 14

PivotalTracker.com

15

Methodologies Tools

•  Students can more easily follow our advice
 (methodologies)

•  Instructors can more easily grade

•  Per-iteration progress can be quantified

•  Students get feedback on how realistic their
 estimates are

•  All these tools are free, some are hosted

16

Results/Observations

•  Course popularity: 35 – 50 – 75 – 110 – 165 – 225 (F’13 est.)

•  Customer feedback (F’12)
–  92% customers “happy” or “thrilled”

–  48% customers tried to hire students to continue work

–  67% students intend to maintain app regardless

•  Students appear to engage in process!
–  Stories became more uniform in complexity & size in later

 iterations

–  Projects varied in code quantity but rarely quality

•  60% students believe we should do everything possible to
 enroll more students to course

17

Success stories with Bay Area
 nonprofits

18

This talk

•  How did retooling to Agile+SaaS affect the
 course & students?

•  If successful, can course be scaled up (teach
 more students) and scaled out (used flexibly at
 other institutions)?

•  Does course meet new So"ware Engineering
 curriculum guidelines? (cs2013.org)

19

What's a MOOC?

•  Video lectures

•  Self-check questions

•  Online quizzes and homework assignments that are
 machine graded

•  Discussion forums monitored by TAs

•  Synchronous deadlines

•  Berkeley has decided to make MOOCs
tuition-free and non-credit

20

Adapting for a MOOC
•  Nontrivial autograders for programming

 assignments (open source)

•  Adapting lectures to 7-10 min segment + peer
 learning/self assessment question
–  7-10 min segment + peer learning question

–  8-10 hrs/week ugrad to convert & format videos

•  No design project in MOOC!

•  Same HWs, quizzes, deadlines

•  Offered 3 times on Coursera, 3 times on EdX, plus
 new “part II” now on EdX 21

Autograding Strategies

22

Assignment type Grading strategy

Write code • RSpec (correctness)
•[soon] reek/flay (code style)
•[soon] CodeClimate.org (metrics)

Write test cases
(unit, functional,
or user stories)

• Mutation testing (Amman &
Offu!): app with inserted bugs
should cause some tests to fail

Enhance legacy
SaaS app (deploy
on Heroku)

• Remote (cloud-based) integration
test using Mechanize
• C0, happy path, sad paths coverage

Interactive short-
answer/multiple-
choice

• Our tools emit both printed &
online-format (XML) quizzes
• [soon] open-ended short-essay

Grading
strategy

Sub-
mission rubric

feed-
back

95 "
100

What role can MOOCs play
 in software education?

23

Myth :
Universities will use MOOCs to

 save money by firing faculty & TAs,
 sacrificing education quality.

24

Reality: MOOCs can instead save
 money by improving throughput
 and increasing education quality.

With
SPOC

Classroom + MOOC = SPOC"
(Small Private Online Course)

•  Accommodate increased demand (now admit
 juniors, vs. turning away graduating seniors)

•  Autograders improve TA leverage, fulfill student
 request for more practicestronger design projects

•  Course ratings up
despite larger size

•  ~800 instructors
passed MOOC; 8 now
using our SPOC & book

•  F’13: >200 students 25

45

75

115

165

5.8 5.7

6.3 6.4

6.1
5.8

4

4.5

5

5.5

6

6.5

0
20
40
60
80

100
120
140
160
180
200

Fall 09 Fall 10 Spr 12 Fall 12

Enrollment
Instructor Rating
Course Rating

Myth:
MOOCs distract faculty from
 focusing on improving their

on-campus teaching.

26

Reality: MOOCs can help to
 improve on-campus courses.

Scale can accelerate
 education innovation

•  Item response theory
 Predicts probability
 that a student of a
 given ability will
 answer a given
 question correctly

•  Do questions’ point values reflect difficulty?

•  Can I randomize quizzes using this info?

Better
discrimination

of student
ability

More 
difficult

4 questions from CS169
Quiz 1 on Coursera, 7/2012

* Frederic M. Lord, Statistical Theories of Mental Test Scores (1968) and Applications of Item Response
Theory to Practical Testing Problems (1980)

Large # of students reduces
standard error of question difficulty
& discrimination model by 3x-10x.

This talk

•  How did retooling to Agile+SaaS affect the
 course & students?

•  If successful, can course be scaled up (teach
 more students) and scaled out (used flexibly at
 other institutions)?

•  Does course meet new So"ware Engineering
 curriculum guidelines? (cs2013.org)

28

ACM/IEEE 2013 SW
 Engineering Curriculum

“In general, students learn best at the application level much
 of the material… by participating in a project. Such
 projects should require students to work on a team to
 develop a so"ware system through as much of its lifecycle
 as is possible. Much of so"ware engineering is devoted to
 effective communication among team members and
 stakeholders. …

 While organizing and running effective projects within the
 academic framework can be challenging, the best way to learn
 to apply so"ware engineering theory and knowledge is in the
 practical environment of a project.”

 from Iron Man draft 1.0, cs2013.org 29

Checklist: “Yes”plan &
 document, “No”agile*

30* R. Pressman, So"ware Engineering: A Practitioner’s Approach, 7th ed., McGraw-Hill, 2010

•  For class project, Agile seems appropriate unless
 building safety-critical system or using bad tools

Is new curriculum standard
 “Agile-friendly”?

•  “agile” appears only twice in 50K+ words document

•  Only 2 topics use Agile terminology

•  Zero learning outcomes described in Agile terms

If not, what should instructors do?

•  Follow outcomes, ignore advice to do projects?

•  Follow outcomes, ignore advice to do Agile project?

•  Ignore outcomes, follow advice to do Agile project?

31

ACM/IEEE “Iron Man” draft 1.0 of
 SDF & SE curriculum guidelines

•  Types of learning outcomes (116 outcomes total)
– Core-Tier 1: must cover 100% (13)

– Core-Tier 2: must cover 80% (50)

–  Electives (53)

•  Depth of coverage for each outcome
–  Familiarity: “what do you know about this?” (53)

– Usage: “what do you know how to do?” (58)

– Competence: “why would you do that?” (5)

32

Example outcomes

•  Identify common coding errors that lead to insecure
 programs (e.g., buffer overflows, memory leaks,
 malicious code) and apply strategies for avoiding
 such errors. [Usage] [Core-Tier 1]

•  Describe different categories of risk in so"ware
 systems. [Familiarity] [Core Tier 2]

•  Use a common, non-formal method to model and
 specify (in the form of a requirements specification
 document) the requirements for a medium-size
 so"ware system [Usage] [Elective]

33

Is CS 2013 “Agile-friendly”?

•  Some topics can be “mapped” to Agile equivalents
– User stories requirements elicitation

–  Stories + mockups + customer meeting notes/interviews
requirements documentation

– Cucumber scenarios integration/system testing

•  Some Plan & Document processes can be covered in
 project management
–  Planning & estimation; code reviews

•  Beta edition of textbook revised to expand “Plan &
 Document perspective” while focusing on Agile

34

Our results:"
100% CT1, 94% CT2

35

beta.saasbook.info/icse2013
$10 discount

•  Details in downloadable Instructors
 Manual at beta.saasbook.info

•  Exemplar online & handout at ICSE
 2013 (Strawberry Canyon LLC)

Summary

•  Agile-focused courses can fulfill CS 2013 curriculum
 guidelines for SE
– More Agile presence in curriculum would be nice

•  MOOCs & SPOCs augment book, increase instructor
 leverage, reuse good materials

•  Looking for additional beta testing
–  SPOC for use in your classroom

–  Inexpensive book/ebook that matches
SPOC & fulfills CS 2013 if used
according to our schema

36

beta.saasbook.info/icse2013
$10 discount

Thanks!"

Acknowledgments: David Patterson, staff of UC Berkeley CS 169,
 support staff for EdX CS 169.1x/169.2x

37

