The 30th IEEE Conference on Software Engineering Education and Training

Rochester Institute of Technology
Bachelor of Science in Software Engineering
CSEE&T Hall of Fame Nomination

James R Vallino
Department of Sofiware Engineering
Rochester Institute of Technology
Rochester, NY, USA
J.Vallino@se.rit.edu

Abstract— In the fall of 1996, the Rochester Institute of
Technology launched the first wundergraduate software
engineering program in the United States. The culmination of
five years of planning, development, and review, the program
was designed from the outset to prepare graduates for
professional positions in commercial and industrial software
development. From an initial class of 15, the ABET-accredited
program has grown steadily over the intervening years until
today the student body numbers over 580 undergraduates.

Keywords—software engineering education,
engineering, undergraduate software engineering

RIT software

1. INTRODUCTION

In the fall of 1996, the Rochester Institute of Technology
(RIT) launched the first undergraduate software engineering
program in the United States [1-3]. In May 2001, the program
was the first to award BS in Software Engineering degrees. To
date, the program has nearly 870 graduates. The culmination of
five years of planning, development, and review, the program
was designed to prepare graduates for professional positions in
commercial and industrial software development. The
program, in a separate Department of Software Engineering,
has the independence and flexibility necessary to ensure its
integrity over time.

The program's focus on educating professional, practicing
software engineers is best illustrated by the required year of co-
operative education. At the end of the five year program, the
students have both solid academic preparation and significant
practical experience. Our graduates are in high demand, as they
are prepared to define, design, develop and deliver quality
software systems.

II. CURRICULUM

A. Inspiration

The inspiration for starting the program came when one of
the program's founders, Mike Lutz, was on a two-year
industrial leave from RIT. During this leave he led software
development teams and was responsible for interviewing,
hiring, and mentoring recent college graduates. He noticed that,
by and large, these graduates had solid preparation in basic
computing theory and technology, but they lacked the

2377-570X/17 $31.00 © 2017 IEEE
DOI 10.1109/CSEET.2017.11

background necessary to be effective when working on large,
complex, industrial quality systems. That realization resulted in
the RIT software engineering program with a curriculum
addressing the knowledge and abilities many graduates of
traditional computing programs lacked. The curriculum was
designed from a blank sheet of paper instead of making tweaks
to an existing program [4]. We refer to this as our Manifesto
for Software Engineering Education [5].

B. Four Curricular Themes

The curriculum has four defining themes which have
remained constant throughout the program's evolution over its
twenty-one years. These themes are software design, software
process, teamwork, and communication. The first two have an
equal weighting in terms of course content between "design"
courses and "process" courses. The latter two themes, often
considered soft skills, cross-cut through every course in the
curriculum. This is in contrast to most engineering and
computer science programs where any discussion of process,
teamwork, and communication is relegated to one or two
capstone design courses during the senior year. In our program,
the two-term software engineering senior project is where our
students demonstrate the full range of their skills. The course
delivers no new content. Student teams are fully prepared to
use skills in these four theme areas to deliver working software
systems to their industrial and non-profit project sponsors.

C. Software Design

Our students' primary exposure to programming per se is in
the introductory computer science sequence. While we do
discuss programming techniques in software engineering
courses, we focus on it as just one aspect of product delivery.
This gives us room to emphasize more significant issues of
modeling and design [6] drawing the students to focus on the
higher level component relationships. Our design courses
discuss the engineering aspects of designing software for web-
based systems, real-time and embedded systems, cloud-based
systems, enterprise information systems, and secure systems.

D. Software Process

When we were creating the curriculum, the notion of
teaching professionalism as encapsulated in a disciplined

process was prominent in our thinking. Process is not, as some
claim, the be-all-and-end-all of software engineering, but it
does provide the frame within which software development
takes place. In our curriculum, process is as important a pillar
as software design. This does not mean, however, that we
impose one dogmatic approach to process - indeed, we ensure
that students are familiar with many process approaches, from
strictly planned to the more adaptive agile approaches. Our
process courses include: Software Process and Project
Management, Software Process and Product Quality, Software
Testing, and Trends in Software Development Processes.

E. Teamwork

Working on teams to solve problems is a hallmark of our
software engineering program. Indeed, with two exceptions
(the Personal Software Engineering and the Mathematical
Models of Software courses), all of the software engineering
courses incorporate team projects as a graded component. For
that portion of the grade based on team activities (40 — 50%),
teams receive grades as a whole. However, we also assess each
team member in terms of his or her contributions to the team,
adjusting each individual’s grade based on instructor
observations, version control logs, and peer evaluations.
Through the course of their program, the typical SE students
will work on over twenty different teams.

F. Communication

There is a clear need for multi-modality communication
within engineering disciplines. In addition to a required
Professional Communication course, our students see this
continually throughout their program. Multiple times within
each course, students will make presentations about their work
progress either individually or as part of a team. They also
prepare documents in the form of requirements, design, risk
management, or test plans in every class.

III. ACCREDITATION SUCCESS

Program faculty participated in discussions for formulating
and interpreting initial criteria for ABET EAC accreditation of
software engineering programs [7,8]. The program has gone
through four successful rounds of accreditation review. It has
the distinction of having the earliest graduates from an
accredited program starting with the 2001 class. In the last two
reviews, the Program Evaluator recommended that the Self-
Study report be displayed at the spring ABET Symposium as
an exemplar for excellence in assessment process and
preparation of the self-study.

IV. EMPLOYMENT SUCCESS

In most years, software engineering students report the
highest average hourly co-op and median full-time wages
compared to all other undergraduate majors at RIT. Our
placement rate is over 90% at graduation. Co-op employment
evaluations provide other anecdotal evidence of our students’
value to their employers. An engineering manager in an
aerospace company commented that our students have a strong
focus on capturing requirements and system modeling. An
engineering vice-president noted that our graduates match up

favorable against some software engineers with five years of
experience.

V. CONCLUSION

Twenty-one years ago when we created the first
undergraduate software engineering program in the US, we
gambled that if we built it, they would come, which includes an
attraction for both students and employers alike. Our track
record of continual program growth and over 90% placement
of graduates demonstrates that the gamble paid off. We believe
that our program, with its engineering design, software process,
teamwork, and communication themes, provides students who
seek a career in software development with a set of skills better
tailored to what is needed to excel not only as an entry-level
software engineer but also for growth throughout their career.
Subsequent undergraduate software engineering programs have
used our curriculum as their "design pattern”. Based on the RIT
program's distinguishing characteristics, success, and influence
on software engineering education, we believe that it is worthy
of being elected to membership in the CSEE&T Hall of Fame.

ACKNOWLEDGMENT

We want to acknowledge the nearly 870 undergraduate
students who have gone through our program. They worked
hard to obtain the skills that our curriculum taught them. We
particularly appreciate the students who stuck with us in the
earlier years when we were figuring out software engineering
as an undergraduate discipline, and those who went through the
turmoil of a quarter to semester calendar conversion.

REFERENCES

[1] M. J. Lutz and J. F. Naveda, "The road less traveled: a baccalaureate
degree in software engineering," In Proceedings of Conference on
Software Engineering Education and Training. (1997).

[2] Naveda, F. and Lutz, M. "Crafting a baccalaureate program in software
engineering," In Proceedings of Twenty Eighth SIGCSE Technical
Symposium on Computer Science Education. San Jose, CA, (1997).

[3] F. Naveda, M. J. Lutz, J. R. Vallino, T. J. Reichlmayr, and S. A. Ludi,
"The Road We’ve Traveled: 12 Years of Undergraduate Software
Engineering at the Rochester Institute of Technology," Proceedings of
International Conference on Information Technology: Next Generations,
Las Vegas, NV, April 2009.

[4] RIT Software Engineering
http://www.se.rit.edu/undergraduate

[5] M. J. Lutz, J. F. Naveda, and J. R. Vallino, "Undergraduate software
engineering," Commun. ACM, vol 57, pp. 52-58, August 2014.

Undergraduate Program,

[6] J. Vallino, "If you’re not modeling, you’re just programming: modeling
throughout an undergraduate software engineering program,” In
Proceedings of the 2006 International Conference on Models in
Software Engineering, 291-300, October, 2006.

[77 M. J. Lutz, "Accreditation Criteria for Programs in Software
Engineering." David Lorge Parnas Symposium, 2001 International
Conference on Software Engineering. Toronto, CA. May, 2001.

[8] J. McDonald, M. Sebern and J. Vallino, "Software Engineering Program
Accreditation in the United States." In Software Engineering: Effective
Teaching and Learning Approaches and Practices, H. Ellis, S.
Demurjian, and J. F. Naveda, (eds), Information Science Reference,
2008.

