
DevOpsEnvy: An Education Support System for
DevOps

Guoping Rong
Software Institute

Nanjing University

Nanjing,Jiangsu,P.R.China

Email: ronggp@nju.edu.cn

Shenghui Gu
Software Institute

Nanjing University

Nanjing,Jiangsu,P.R.China

Email: SamuelGarciaSTK@gmail.com

Dong Shao
Software Institute

Nanjing University

Nanjing,Jiangsu,P.R.China

Email: dongshao@nju.edu.cn

He Zhang
Software Institute

Nanjing University

Nanjing,Jiangsu,P.R.China

Email: hezhang@nju.edu.cn

Abstract—As an emerging approach to support fast delivery of
software features with reliable quality, DevOps attracts more and
more practitioners and shows the potential to become one of the
mainstream approach for software development and operation.
Many universities begin to offer DevOps related courses to the
students majored in software engineering and computer science.
However, as a critical part of a DevOps course, the project
practicing using DevOps might cast big challenges for teachers,
compared to traditional project practicing. For example, the more
frequent than ever delivery in DevOps practicing will inevitably
increase the workload vastly for teachers to conduct effective
evaluation. In this paper, we introduce a web based system
(DevOpsEnvy) to support the management and monitoring of
student teams practicing DevOps. By integrating several popular
open source tools, this system provides students with features
such as group management, project status monitoring and
student performance data analysis, etc. Meanwhile, DevOpsEnvy
system also provides teachers with sufficient evidence to perform
evaluation. Our preliminary trial in Nanjing University revealed
several advantages of DevOpsEnvy system.

Keywords—DevOps, Education Support System, Project Man-
agement, Software Engineering

I. INTRODUCTION

DevOps is emerging as a philosophy shift towards evolving

software at a continuous pace and connecting each phase of

the software lifecycle seamlessly. It aims at bridging the gap

between the development team and the operation team as

well as ensuring software quality. When talking about DevOps

culture, automation plays an essential role in it since a high

degree of automation is the cornerstone of quality deliveries

with short cycle time [1] and automation also acts as a key to

obtain rapid feedback [2].

In practice, various tools actually reflect automation to some

degree. Furthermore, the pipeline which consists of various

DevOps tools is the symbol of DevOps in particular. Cur-

rently, DevOps is crossing into more and more organizations

under the leading of numerous well-known corporations like

Facebook, Yahoo, Netflix, and Flickr [3]–[6]. Thanks to this,

a lot of continuous delivery or deployment pipelines have

been proposed by enterprises one after another, e.g., IBM,

AWS and Microsoft [7]–[9]. The pipelines and tools facilitate

the continuous software delivery, accelerate the resolution of

problems, moreover, satisfy the customers under the pressure

of ever-changing requirements.

Due to many advantages of DevOps, there is a demand

for bringing DevOps into classroom for the purpose of mak-

ing students understand practical DevOps and aware of its

promising characteristics, hence better prepare them to modern

software industry. Although there are several courses available

on the Internet [10], [11], the topics are normally about how

to use existing DevOps tools rather than helping students

experience the DevOps methodology comprehensively. Several

approaches have been proposed for teaching DevOps, unfor-

tunately, these approaches usually remain at the theoretical

stage and moreover, there are few specific software systems

supporting the education and training of DevOps [12], [13].

There are many challenges hindering the progress of De-

vOps education to some extent. Two categories of these

challenges have been identified, i.e. the skills acquisition and

the technical environment [14]. Students need to be skillful and

the environment has to be provisioned along with the proper

functionality for evaluation to students’ performance when it

comes to teaching DevOps. Additionally, it is also not easy

for students to work in teams without tool support. Therefore,

it raises a strong demand to design a tool for providing a

DevOps environment and an automatic evaluation approach

as well from the perspective of teachers.

In this paper, we propose an education support system

named DevOpsEnvy which utilizes several DevOps tools in

order to help students perform DevOps practices easily and

effectively. Students can collaborate with each other and

manage there practicing projects conveniently via our system.

Furthermore, our system could help teachers evaluate the work

performance of student teams automatically, which dramati-

The 30th IEEE Conference on Software Engineering Education and Training

2377-570X/17 $31.00 © 2017 IEEE

DOI 10.1109/CSEET.2017.17

37

The 30th IEEE Conference on Software Engineering Education and Training

2377-570X/17 $31.00 © 2017 IEEE

DOI 10.1109/CSEET.2017.17

37

cally reduces the workload of teachers.

The remainder of this paper is structured as follows. Section

II reviews the related work in brief. Section III elaborates the

design and the features of DevOpsEnvy system. In section

IV, we developed an application demo and illustrated the

application of DevOpsEnvy system. Section V discusses the

potential issues when our system is adopted in other educa-

tional scenarios. The conclusions are drawn in Section VI with

three possible improvements to DevOpsEnvy system as future

work.

II. RELATED WORK

A. Tools in Software Engineering Education

Project practicing plays a vital role in software engineering

education, which has been recognized by many researchers

and practitioners. The main purpose of project practicing is to

help students apply theory to practices via a realistic (or near

realistic) software project context. Generally, project practicing

can be divided into two categories, i.e. the technology-specific

project practicing [15], [16] and the process-specific project

practicing [17]–[20], respectively. There are several tools sup-

porting the evaluation of project practicing in both categories.

Raza et al. proposed a novel tool ProcessPAIR to support

conducting the performance analysis of software developers

[21]. Their tool can automatically identifies and ranks potential

performance problems and root causes of individual devel-

opers according to a performance model calibrated from the

performance data of many developers. Besides ProcessPAIR,

there are also other tools existing for the sake of process

education, for example, personal software process (PSP) [22],

[23] and team software process (TSP) [24].

B. DevOps Tools

With the culture of DevOps deepened into practitioners,

various types of DevOps tools have been springing up recently.

As for continuous integration (aka, CI), there are several

tools such as Jenkins, TeamCity and Travis CI1, etc. Tools

like Ansible, Chef and Puppet are specific for configuration

management. When talking about container, Docker is one of

the most popular systems. Besides, Git, Subversion and Team
Foundation Server (TFS)2 are used as version control systems.

All of these types of tools can be categorized into DevOps

tools in some sense.

Nevertheless, the increasing popularity of DevOps has led to

an explosion of new tools focusing on automation, monitoring,

testing, etc. XebiaLabs3, a famous organization aiming to

explore new frontiers in IT and then creating solutions for

customers, proposes a periodic table of DevOps tools, in which

totally 120 related tools with 15 types are involved. In this

table, there are 12 CI tools, such as Jenkins, Bamboo, Travis

1http://tinyurl.com/y8og8jlv
2http://tinyurl.com/y9xcc59g
3http://tinyurl.com/p3emhuz

CI, TeamCity and so on; 14 tools for deployment are listed,

e.g., Juju4 and CodeDeploy5.
The explosion of DevOps tools makes it a big challenge

for students, teachers even professionals in industry to choose

suitable tool chain for their work. For example, they have to

understand the differences among several tools which belong

to the same type, e.g., Jenkins and TeamCity. Even though

they have selected a set of tools, they still need to spend time

learning how to coordinate these tools to finish a specific task.

In an educational circumstance, it is really time consuming

for both teachers and students. For this reason, we intend to

integrate several DevOps tools into one system and offer the

management functions in an effective and efficient manner.

C. Challenges in DevOps Education
DevOps is becoming a trend among software practitioners

and it may be the dominating approach for software devel-

opment and operation in the future. Nevertheless, most of

the traditional software engineering courses only emphasize

on the early and middle phases of the software lifecycle (i.e.

requirements, design, programming, testing and tooling) while

the production stage (i.e. deployment, maintenance) are often

ignored or just treated in theory. In short, they teach “Dev”

rather than “Ops” [14].
Therefore, more and more teachers want to devote them-

selves to bring DevOps into the classroom but there remains a

number of challenges in the teachers’ perspective. Christensen

identified five challenges: a) teachers’ experience; b) hybrid

skills; c) emphasize skills; d) realistic environment and d)

assessment and marking [14]. Furthermore, Christensen clas-

sified those challenges into two categories, skills acquisition

and technical environment, except the teachers’ experience.

To be specific, skills acquisition means DevOps courses place

a greater demand on students’ skill rather than knowledge.

Technical environment implies that a powerful platform is

needed and an approach for proper and effective evaluation

on students’ performance is necessary.
With the purpose to address the aforementioned difficulties,

several researchers proposed specific approaches for educa-

tional purpose. In the following paragraphs, we describe their

work in brief.
Ohtsuki et al. proposed an education system ALECSS utiliz-

ing several DevOps tools in order to improve software quality

and to provide quick feedback for both students and teachers

[25]. ALECSS uses Git as its version control system and

Jenkins for continuous integration. It utilizes Ant to build the

source code. As for testing, it integrates Findbugs, Checkstyle
and JUnit for static code analysis, coding style check and unit

test respectively. The main feature of this system is to generate

a report automatically for both teachers and students in order to

perform evaluation. In addition, they performed a preliminary

evaluation of ALECSS by comparing the warnings generated

by tools with the student review reports. Nevertheless, ALECSS
only deals with the challenge of assessment via bug checking.

4http://tinyurl.com/ngs5ec7
5http://tinyurl.com/lw3sopl

3838

Eddy et al. introduced CDEP (Continuous Delivery Educa-

tional Pipeline) to solve the problems faced by teachers when

teaching continuous integration and continuous delivery in

software engineering courses [26]. Similar to ALECSS, CDEP
integrates Jenkins, Git, Docker and MySQL to implement the

pipeline. The main goal of CDEP is to provide a portable,

reusable, visual and quick to setup teaching tool. If the teachers

are not familiar with the plethora of complex tools, CDEP
would give them the ability to focus more on the material and

not the complexities of provisioning the entire pipeline. As

a matter of fact, CDEP only solves the problem of realistic

environment via a pipeline.

However, there still exists the necessity to have a system

which is able to deal with both categories of challenges (i.e.

skills acquisition and technical environment) at the same time.

When it comes to DevOps education tools, there ought to be

a full-scale, easy-to-use and standardized tool or system in

order to provide a out-of-the-box DevOps environment and an

automatic evaluation approach.

III. SYSTEM DESIGN

A. Overview

As a web-based system, DevOpsEnvy integrates several

prevalent open source tools, based on which, several features

are designed and implemented to support educational purpose.

Students are able to practice DevOps by developing software

projects based on DevOpsEnvy system. Basically, students

only need to focus on the development of software artifacts

rather than configuration of the development environment. De-
vOpsEnvy system consists a concise set of tools. Meanwhile,

several key parameters (e.g., the pipeline execution stages,

test parameters, etc.) can be modified via scripts edited by

students. In the meantime, teachers are able to monitor the

status of each student project as well as the performance

of each student. At the end of a normal semester, these

status data are automatically collected for teachers to evaluate

the whole practicing process and provide basis for grading

students as well. DevOpsEnvy system can reduce the workload

for teachers to perform manual evaluation, which is especially

useful in a DevOps course.

Various tools are integrated into DevOpsEnvy. We use Git
as the version control system and GitHub as the web-based

repository for Git. Jenkins6 provides the ability of continuous

deployment for our system. Another imperative DevOps tool

is SonarQube7, which makes continuous inspection possible.

Maven and Gradle are mainly used to build the source code

and generate the artifacts so as to deploy into containers.

Docker8 is provisioned in advance for students to conduct

continuous deployment.

In the following sections, we elaborate the workflow of

DevOps practice as well as the architecture and features of

DevOpsEnvy.

6http://tinyurl.com/zy22rk7
7http://tinyurl.com/y7lsunpp
8http://tinyurl.com/o4vvrlw

B. Workflow of DevOps Practice

DevOpsEnvy is a teaching support system which collects

and analyzes the status data, and then provides feedback for

both students and teachers. The status data are collected from

the process of developing software projects. Nevertheless,

different teams may apply different workflows and the DevOps

tools they used may vary. Hence, a workflow for DevOps

practicing needs to be predefined in our system. Otherwise,

teachers will find it difficult to monitor and evaluate the

performance of student teams consistently. As a prerequisite

for DevOpsEnvy, the workflow we defined is a loop pipeline

for the purpose of helping developers to improve the code

quality continuously. The steps of the workflow are outlined

in the following and the entire workflow is illustrated in Fig. 1.

Step 1: Students develop source code in their integrated

development environment or text editor according to their

preferences.

Step 2: After coding, students commit their changes via

Git, and then push them into GitHub.

Other version control systems, also known as source code

management tools, can be applied to manage the changes of

source code as substitutions for Git, for example, Subversion

and TFS Version Control [12]. Our system does not specify

the version control system and students can use whatever

they prefer as long as Jenkins supports them. The reason

to choose Git and GitHub is that Git is an open source

system as well as one of the most popular version control

tools. Moreover, GitHub offers free repositories on the clouds,

therefore, students do not need to setup the repositories locally.

Meanwhile, GitHub allows separated developers to collaborate

on the same project seamlessly and easily.

Step 3: Once the source code is updated, Jenkins automati-

cally starts the pipeline by the specific trigger or timer defined

by students.

Jenkins is the leading open source automation server, aiming

at supporting the automatic build and deployment of the

software artifacts, which makes continuous integration or

continuous deployment possible [1], [27], [28]. Since Jenkins
2.0, code pipeline is supported and it is a powerful feature

which allows developers to do define many tasks, so we select

Jenkins as the continuous deployment server. The behavior

of Jenkins pipeline is controlled by Jenkinsfile which is a

groovy script. Students can modify the script if they want more

stages when execute the pipeline. Usually, the pipeline script

defines four stages: a) Pull the project source code into Jenkins
workspace from GitHub; b) Perform tests via SonarQube; c)

Build the source code and generate the corresponding artifacts

via specific build tools; d) Deploy the artifacts packaged into

Docker containers.

Step 4: SonarQube performs a series of tests and outputs

the analysis results.

SonarQube is an open source code quality management

platform. It provides the capability to not only show health of

an application but also to highlight issues newly introduced.

The greatest strength of using SonarQube is that it integrates

3939

Fig. 1. Workflow of DevOps Practice

several wide used testing tools such as Findbugs9, Checkstyle10

and JUnit into one system in the form of plugins. Not

merely presenting the results from each plugin, SonarQube
reprocesses these results via unique algorithms and measures

them quantitatively in the end. Not only static tests but also

dynamic tests can be conducted through SonarQube. That is

why we utilize SonarQube to facilitate testing.

In our system, SonarQube mainly performs three kinds of

tests (i.e. static test, unit test and coverage test) in sequence.

• Static Test: SonarQube utilizes several static test tools to

analyze the source code and discover the code smells,

bugs and vulnerabilities. In addition, there are other lan-

guages supported apart from Java in SonarQube. Teachers

can choose various kinds of plugins needed in their

courses from the SonarQube plugin library.

• Unit Test: Students ought to write the test code and

SonarQube will execute the test cases, finally, generates

a report containing the results of tests.

• Coverage Test: Plugins such as JaCoCo11 and Cober-
tura12 are able to generate the code coverage reports

which can assess whether the test cases are sufficient.

All of the test reports are synthesized and our system selects

the necessary data which help the improvement of the code

quality and the evaluation of the projects.

Step 5: After testing, Jenkins builds the source code and

generates artifacts via specific build tools.

The build tool is determined by the project. Either Ant,

Maven or Gradle is available for building. The build status

9http://tinyurl.com/346lac
10http://tinyurl.com/8k4w
11http://tinyurl.com/brhqy32
12http://tinyurl.com/lhpstsk

can be obtained from Jenkins and it will be shown in our

system.

Step 6: If the artifact is generated successfully, Jenkins
will put it into a docker container and run the container

automatically. If the project is a web-based system, then the

URL of the project is available in our system.

Compared with virtual machine, container has a better

performance when it comes to continuous deployment and

Docker is one of the most famous open source container

engine [29], [30]. The commands can be defined in Jenkinsfile
for the purpose of deploying artifacts into containers.

Step 7: Students ought to modify their code based on the

feedback from DevOpsEnvy and start a new cycle from step

one.

The workflow is designed to help students experience the

advantages of DevOps development when it comes to the rapid

and unpredictable changes of requirements raised by teachers.

When using traditional development mode, developers may

not deliver the products on time under the pressure of ever-

changing demands. In addition, bugs may not be fixed and

then accumulated, ending up with an awful software product.

Compared with the traditional development, DevOps develop-

ment is able to make up for the drawbacks, giving the ability

of continuous deployment and ensuring the code quality.

Based on the workflow, we developed DevOpsEnvy system

to obtain status data in some important process, e.g., both

the build phase and test phase. Our system not only provides

a DevOps environment for process-specific project practicing

but also the process data for monitoring and evaluation.

C. Architecture

DevOpsEnvy is a web-based system and adopts a three-tier

architecture. Fig. 2 shows the details of the architecture.

4040

Fig. 2. Architecture of DevOpsEnvy System

User Interface Layer is the entrance of DevOpsEnvy. The

operations from end users should be handled in this layer.

The middle of three layers is business logic layer which

deals with the raw data and transmit them to user interface

layer for presentation. This layer contains the logic and

algorithms of our system. For example, the logic for parsing

the raw data obtained from Jenkins and the algorithm for

calculating the build frequency. The functions can be classified

into five features: user management, team management, project

management, status data analysis and artifact management.

The details of these features will be elaborated in section III-D.

As for data access layer, the main task is to obtain infor-

mation data from both local and remote tools and severs. The

raw data from web are primarily captured from Jenkins and

SonarQube. Fortunately, SonarQube offers a full set of web

APIs for developers to use. However, the APIs of Jenkins are

not full-scale and consolidated and then we have to design

and implement corresponding modules. On the other hand,

the raw data stored locally are the information generated by

our DevOpsEnvy system.

D. Feature Of DevOpsEnvy

DevOpsEnvy provides imperative environment for practicing

DevOps according to the workflow defined in section III-B.

Students do not need to select and configure various DevOps

tools since each necessary DevOps tool is configured by

DevOpsEnvy in advance. DevOpsEnvy itself is enough to

perform necessary operations when it comes to practicing

DevOps by students. Furthermore, the evaluation of projects

and student teams as well is much more easier and feasible via

DevOpsEnvy. The following paragraphs describe the features

in detail.

1) User Management: Manage the user information and

synchronize it with other DevOps tools.

It is impractical for students to manage their user informa-

tion in each integrated DevOps tools. For instance, without an

integrating system, students have to register in several different

systems such as Jenkins and SonarQube separately, which

obviously block the data flow from one tool to another. In

addition, from the teachers’ perspective, various tools selected

by different student teams may also increase the difficulty in

performance evaluation to student teams.

Using DevOpsEnvy, students only need to register their

information in Jenkins and other tools such as SonarQube

could share the same user information. DevOpsEnvy also use

these information to manage users.

2) Team Management: Manage team members for better

collaboration.

As we know, job contained in one project is the minimum

unit in Jenkins and nearly all operations are job oriented.

Although Jenkins has features such as user management, jobs

are not automatically associated with users. In this sense,

there is no team management in Jenkins, which brings certain

troubles when developers want to work in a team. They may

require a permission management function that the source code

is only available among team members. Besides, they may

want to know how they contribute to the team but there is no

suitable metric in Jenkins. In educational environment, team

management and performance evaluation are necessary.

DevOpsEnvy provides the team management function so as

to enhance the Jenkins tool to meet specific requirements in

educational environment. Multiple team members are permit-

ted to be included in one team by one student. Meanwhile,

all the students are able to quit any team they have already

joined in as they wish. For security purpose, students cannot

access the detailed information of projects which they do not

participate in.

3) Project Management: Manage the DevOps projects by

creation, modification and removal of project information

within one step.

Initializing and provisioning a project in Jenkins may be

not easy for some students. Failures in this step perhaps dis-

courages the students’ enthusiasm to using the tool. Moreover,

there are a lot of types of jobs and students may use improper

types, which increases the workload of checking. In addition,

modifying and removing projects can be cumbersome because

each DevOps system needs to be operated manually at the

same time without an integrated system such as DevOpsEnvy.

In order to simplify the process to initialize a new project,

our DevOpsEnvy system integrate the project creation and

provision process in one system. With the aid of DevOpsEnvy,

students can easily create a practicing project with minimal

information such as project name. Once this information is

given, DevOpsEnvy will initialize the pipeline project in Jenk-
ins utilizing the job template file config.xml. The behavior of

the pipeline is defined in Jenkinsfile by students. For example,

the project source code will be tested by SonarQube after it

is pulled from GitHub, and then Jenkins will build an artifact

for Docker to deploy. Besides, the project configuration is also

predefined in SonarQube. The modification and removal of

project information are also handled by DevOpsEnvy.

4) Performance Data Analysis: Present the performance

status for teams and individuals in practicing projects.

Though there are numerous metrics provided by SonarQube,

not every one of these metrics is valuable for the purpose of

evaluating the project and student performance in this project

as well. As for Jenkins, it lacks necessary data to create

comprehensive report for users to monitor the progress and

status of DevOps projects.

4141

To address these issues, DevOpsEnvy provides the status

data analysis function for the purpose of generating useful

reports. This function is divided into two parts, i.e. team

analysis and individual analysis, respectively. The results of

team analysis reflect the status of the whole project, e.g., the

total number of violations (to coding standards, for example)

and the test results, which are valuable to help student teams to

understand and improve the quality of source code. Addition-

ally, the project evolution status data are analyzed especially

for Jenkins in order to help teachers to monitor the process

of projects and evaluate the performance of each team. For

instance, the build frequency in the last ten builds and the

successful rate in the last week. On the other hand, individual

analysis presents the filtered information based on user names,

for example, all the issues in a certain project introduced by

a certain team member. It is helpful for students to assign

their responsibilities for development and maintenance of the

DevOps project. Meanwhile, it may also encourage a self-

managed culture.

5) Artifact Management: Manage and check artifacts after

deployed.

DevOpsEnvy utilizes Docker for artifact deployment. This

is the final step of the total pipeline. According to the script

in Jenkinsfile, the packaged artifacts will be deployed into

a Docker container. However, when the practicing projects

are web-based systems, the entry URLs of projects will be

distinct. Manual checking may not be feasible, given the heavy

workload to looking up and checking all the URLs.

Hence, DevOpsEnvy shows the URLs of artifacts on one

page for easy access. When it comes to evaluating, De-
vOpsEnvy can test the accessibility of the artifacts for teachers.

E. Metrics Applied in DevOpsEnvy

Metrics represent the status of the practicing projects and the

developers in a quantitative manner. Students can be aware of

the aspects in which they need to improve the performance

while teachers can evaluate the projects through a set of

metrics. Both of them are able to take the advantage of the

feedback based on the metrics more or less. In the following,

we describe these useful metrics in detail.

• Build Frequency is a mean duration between two adja-

cent builds. It represents the performance of continuous

deployment conducted by each team.

• Build Success Rate is calculated according to the build

result at each time point. It reflects the health of projects.

• Build Condition records the detailed information of each

build including the build result, build time and duration.

• Complexity is calculated based on the number of paths

through the code. The complexity gets increased by one

whenever the control flow of a function splits. For in-

stance, if there is one “if” statement occurs in a function,

then the complexity of this function will be added by

one. This metric represents the degree of relationship in

a system. The larger complexity is, the more intricate the

code is and the worse the project might be.

• Lines Of Code represents the physical lines that contain

at least one character which is neither a whitespace or a

tabulation or part of a comment. This metric reflects the

workload of the project.

• Comments(%) represents the density of lines containing

either comment or commented-out code.

Comments(%) =
Comment lines ∗ 100

(Lines of code+ Comment lines)

The density of comments reflects the readability of the

source code.

• Duplicated Lines(%) represents the density of dupli-

cated lines.

Duplicated Lines(%) =
Duplicated lines ∗ 100

Lines

There might be some code smells if the density of

duplication is large.

• Technical Debt represents the effort to fix all main-

tainability issues. Developers might spend more time on

fixing issues if the duration of technical debt is longer.

• Severity Of Issues contains five levels, i.e. Blocker, Crit-
ical, Major, Minor and Info. The severity is descending

and each one informs the number of issues at this level.

• Type Of Sssues contains three levels, i.e. Code smell, Bug
and Vulnerability. Code smell refers to any symptom in

the source code of a program that possibly indicates a

deeper problem. A bug is when a system is not behaving

as it is designed to behave. A vulnerability is a way of

abusing the system whether that is due to a design fault

or an implementation fault.

• Quality Gate is the analysis status associated to the

project. If it is “Ok”, then your project has passed the

tests predefined by the teacher.

Not every metric is useful for each condition, so teachers

could choose and define suitable metrics to evaluate the

projects in a specific situation. For example, teachers could

only monitor the Build Frequency at the middle of the

practicing project to understand how the students develop

source code.

IV. APPLICATION DEMO

In order to demonstrate our system in a clear manner, we

follow the process from project creation to artifact deployment.

A. Preparation and Project Creation

In the first place, every student needs an account to use the

functions in DevOpsEnvy. The administrator of DevOpsEnvy
system (usually teachers or teaching assistants) could help to

set up accounts for all the students in a DevOps practicing

course. The user interface after login is shown as Fig. 3.

If student team wants to use GitHub to manage their

source code during the practicing process, they should create

projects in GitHub first and input the URL of the project

repository (in GitHub) in a page such as Fig. 4. And then

they should edit the pipeline script Jenkinsfile which defines

the execution stages in Jenkins as well as the configuration file

4242

Fig. 3. Project List

sonar-project.properties for SonarQube analysis. These files

are unique in different projects and they should be placed in

the root directory of the whole project. Next, they can initialize

projects via DevOpsEnvy system after they login. Fig. 4 shows

the user interface for creating a project.

Fig. 4. Project Creation

Name repetition is allowed for the project name while the

project key must be unique because the project key is an ID

in SonarQube and it is required when sending requests via

build-in APIs. The project repository is the URL of your

project repository recorded in advance. If the project was

built before and already has been deployed, then the project

artifact field can be filled in with the URL of the artifact.

In this procedure, DevOpsEnvy will create a project both

in Jenkins and SonarQube using the information given by

students. Meanwhile, the system initializes and provisions the

project in Jenkins automatically. In the end, these information

will be stored in DevOpsEnvy.

The created projects will be shown in the project list (shown

as Fig. 3). This list displays some essential information about a

specific project, e.g., project name and project members, and

the detailed information is also available when clicking the

project name.

B. Team Management

Joining in and quitting the project teams can be simply

conducted via the button in “Operation” column. The “Join”

button works when a student was not a team member for a

certain project and vice verse, the “Quit” button. Moreover,

one student can take part in several different project teams.

C. Testing

Till this step, the creation and initialization of practicing

projects are finished. After creating projects, students should

develop projects and try to satisfy the ever-changing require-

ments raised by their teachers. The project source code ought

to be updated frequently, for instance, one commit per day

and even more, three commits per day. Each time the source

code changes, the Jenkins pipeline is triggered by the hook

in GitHub. The source code will be analyzed in SonarQube
after pulled into the workspace locally. The analysis results

will be stored in SonarQube database and a set of metrics we

collected for improvement and evaluation will be displayed in

our DevOpsEnvy system. Fig. 5 shows some analysis results.

Fig. 5. Test Results

The metrics displayed on the interface are elaborated in

section III-E. The numbers with sign represent the changes

since the last analysis. The positive sign and the negative

sign mean the increasing and the decreasing of the numbers

respectively. In addition, there are two distinct types of color–

red and green in this analysis result page. Color red represents

the improvement while green means the deterioration. We

utilize doughnut chart to illustrate the percentage of each

level of issues. In order to make the results more distinct,

we also color the issue according to the severity, e.g., red

for “Blocker” issues, green for “Info” issues and blue for

the middle level. Furthermore, the number of changed issues

grouped by severity level is shown in the form of a bar chart

comparing with the sum number correspondingly.

4343

D. Building

The stage after testing is to build. Jenkins will package the

source code via a specific build tool (e.g., Maven) and generate

an artifact (e.g., WAR file). The build results are displayed in

DevOpsEnvy as well (Fig. 6). The last build status is given and

the recent Build Frequency is also displayed. Our system

calculates the ratio of the successful builds and groups the

condition of each build by the time interval. These results are

valuable especially for teachers to monitor and evaluate the

performance of each team.

Fig. 6. Build Results

Apart from the team results, DevOpsEnvy system also pro-

vides the performance status information for each developers.

As shown in Fig. 7, issues introduced by users are grouped by

severity and projects they take part in. Various types of color

and charts are used for an explicit presentation.

E. Deployment

Finally, if the artifact is generated without failure, Jenkins
will deploy it into a Docker container according to the com-

mands defined in Jenkinsfile automatically. The URL of the

artifact is shown in the basic information area located in the

right of the web page for easy access.

The aforementioned process is the first workflow when

practicing DevOps. Students do not need to seek for proper

DevOps tools henceforth and they can spare more time to

develop and improve their code continuously according to

the analysis results. At the end of the practicing, teachers

can evaluate the performance of project teams based on the

information in a relaxing way thanks to the relatively light

workload required by DevOpsEnvy.

F. Case in Nanjing University

We applied this system in Nanjing University. Fig. 3 shows

the actual projects that the students created during the prac-

tice session of our DevOps course. Owing to DevOpsEnvy
system, students did not bother to provision the development

environment in their own devices. Besides, it also reduced

Fig. 7. User Status

the problems that students encountered and saved the time of

teachers or teaching assistants to address these problems.

In this course, DevOpsEnvy system was proved to be helpful

in collecting process data. Fig. 5 and Fig. 6 shows the build

results and test results of one real project developed by a

student team. The process data were accessible when the

students performing development activities. At the end of the

course, these data were used to evaluate the performance of

the student teams. In general, DevOpsEnvy meets our purposes

that simplifying the development environment and make the

process data easily accessible. DevOpsEnvy system provided

them with an easy-to-use development environment to practice

DevOps, allowing students to build their code frequently and

ensuring the code quality.

V. DISCUSSION

The main contribution of this paper is that we propose a

web-based system to support the management and monitoring

of student teams practicing DevOps for educational purpose.

Students can use DevOpsEnvy to collaborate with others and

improve the code quality according to the analysis results.

Teachers could monitor the work status and evaluate the

performance of each student team via this system. As an

attempt at this preliminary stage, DevOpsEnvy system meets

our exception to carry out a DevOps course and practicing

DevOps. Nevertheless, we also identified several issues which

4444

need to be discussed here for the considerations when utilizing

this system in other educational scenarios.

A. Customizability

At this stage, DevOpsEnvy mainly integrates Jenkins, Sonar-
Qube and Docker along with version control systems and build

tools. We applied a hard-coded strategy to simplify develop-

ment complexity and provide the system for students as fast as

possible. This strategy inevitably impacts the customizability

of DevOpsEnvy system. In fact, when applying our system

into other educational scenarios, the different build-in tools

might not be suitable. It is better to let teachers customize

and define the DevOps tools to meet their specific purposes.

In our near future expectation, DevOpsEnvy could blossom

out into a plugin-based framework which allows teachers to

customize the DevOps tools to adapt the de facto condition in

a comfortable way.

B. Metrics Definition

Currently, DevOpsEnvy provides several metrics for both

teachers and students to evaluate the work status. However,

the set of metrics for evaluation is based on the data available

in existing tools, which has not been defined with a broad

consideration. With increased experience and understanding of

DevOps education, we might need more metrics from various

perspectives. In this sense, DevOpsEnvy need to be enhanced

to support defining more metrics. Besides, an automatic tool

integrating different algorithms could be developed to generate

the grades for students in diverse perspectives, for example,

productivity, quality and contribution, etc.

C. Automatic Evaluation Tool

Most of the functions in DevOpsEnvy are designed partic-

ularly for students to practice DevOps, such as team man-

agement and project management. Though the work status is

analyzed and provided by our system, the evaluation is still

a semi-automatic process rather than complete automation. In

our application demo, teachers need to access the information

for each student to evaluate the work performance respectively.

It indeed reduces the workload of evaluation in some degree

compared with manual checking entirely. Nevertheless, it is

still not a good approach when it comes to large numbers

of student teams. A support tool have to be proposed to

perform full-automatic evaluation. Teachers could customize

the evaluation criteria to cope with different situations and

then a comprehensive report could generated automatically.

VI. CONCLUSION

Due to the lack of supporting tools, the DevOps education

becomes much more difficult for teachers to conduct. This

paper proposes an education support system utilizing different

DevOps tools in order to aid both students and teacher when

it comes to DevOps practicing. The collaboration of students

is simplified while the workload of evaluation is reduced for

teachers. Our preliminary trial in Nanjing University received

very positive results. DevOpsEnvy not only help students focus

on the DevOps method instead of tools and technologies,

but also facilitate teachers to conduct performance evaluation

automatically, which reduced the teachers’ workload greatly.

In the future, we will perfect our system continuously so

as to adjust to a more intricate environment. First of all, a

standard for evaluation via metrics should be proposed and

then validated, hence support a full-automatic evaluation to

both projects and students. Second, we should also provide

features to support customization on both tools and metrics.

REFERENCES

[1] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, “DevOps,” IEEE
Software, vol. 33, no. 3, pp. 94–100, May 2016.

[2] M. Hüttermann, DevOps for Developers, ser. Expert’s Voice in Web
Development. New York: Apress, 11 September 2012.

[3] L. E. Lwakatare, P. Kuvaja, and M. Oivo, “Dimensions of DevOps,”
in Proceedings of the 16th International Conference on Agile Software
Development (XP ’15). Cham: Springer, 25 May 2015, pp. 212–217.

[4] F. Erich, C. Amrit, and M. Daneva, “A mapping study on cooperation
between information system development and operations,” in Proceed-
ings of the 15th International Conference on Product-Focused Software
Process Improvement (PROFES ’14). Cham: Springer International
Publishing, 10 December 2014, pp. 277–280.

[5] S. K. Bang, S. Chung, Y. Choh, and M. Dupuis, “A grounded theory
analysis of modern Web applications: Knowledge, skills, and abilities for
DevOps,” in Proceedings of the 2nd Annual Conference on Research in
Information Technology (RIIT ’13). New York, NY, USA: ACM Press,
10 October 2013, pp. 61–62.

[6] D. G. Feitelson, E. Frachtenberg, and K. L. Beck, “Development and
deployment at Facebook,” IEEE Internet Computing, vol. 17, no. 4, pp.
8–17, July 2013.

[7] IBM, “Delivery pipeline.” [Online]. Available:
https://console.ng.bluemix.net/catalog/services/delivery-pipeline

[8] AWS, “AWS codePipeline.” [Online]. Available:
https://aws.amazon.com/codepipeline/

[9] Microsoft Azure, “Visual Studio Team Services.” [Online]. Available:
https://azure.microsoft.com/en-us/services/visual-studio-team-services/

[10] DevOpsGuys, “Educate - UK DevOps training courses and
programmes.” [Online]. Available: https://www.devopsguys.com/devops-
educate/

[11] DevOps Institute, “Setting the standard in DevOps training.” [Online].
Available: http://devopsinstitute.com/

[12] M. Airaj, “Enable cloud DevOps approach for industry and higher
education,” Concurrency and Computation: Practice and Experience,
vol. 29, no. 5, 10 March 2017.

[13] S. Krusche and L. Alperowitz, “Introduction of continuous delivery in
multi-customer project courses,” in Companion Proceedings of the 36th
International Conference on Software Engineering (ICSE Companion
’14). New York, NY, USA: ACM, 31 May 2014, pp. 335–343.

[14] H. B. Christensen, “Teaching DevOps and cloud computing using a
cognitive apprenticeship and story-telling approach,” in Proceedings of
the 2016 ACM Conference on Innovation and Technology in Computer
Science Education (ITiCSE ’16). New York, NY, USA: ACM, 11 July
2016, pp. 174–179.

[15] J. C. Adams, “Chance-It: An object-oriented capstone project for CS-1,”
SIGCSE Bull., vol. 30, no. 1, pp. 10–14, March 1998.

[16] J. O. Hamblen, H. L. Owen, S. Yalamanchili, and B. Dao, “An
undergraduate computer engineering rapid systems prototyping design
laboratory,” IEEE Transactions on Education, vol. 42, no. 1, pp. 8–14,
February 1999.

[17] D. A. Umphress, T. D. Hendrix, and J. H. Cross, “Software process in
the classroom: The capstone project experience,” IEEE Software, vol. 19,
no. 5, pp. 78–81, September 2002.

[18] D. P. Groth and E. L. Robertson, “It’s all about process: Project-oriented
teaching of software engineering,” in Proceedings of the 14th Conference
on Software Engineering Education and Training (CSEET ’01). IEEE,
19 February 2001, pp. 7–17.

[19] B. R. von Konsky and M. Robey, “A case study: GQM and TSP in
a software engineering capstone project,” in Proceedings of the 18th
Conference on Software Engineering Education Training (CSEET ’05).
IEEE, 18 April 2005, pp. 215–222.

4545

[20] S. Jarzabek and P.-K. Eng, “Teaching an advanced design, team-oriented
software project course,” in Proceedings of the 18th Conference on
Software Engineering Education Training (CSEET ’05). IEEE, 18 April
2005, pp. 223–230.

[21] M. Raza, J. ao Pascoal Faria, and R. Salazar, “Helping software
engineering students analyzing their performance data: Tool support in
an educational environment,” in Proceedings of the 39th International
Conference on Software Engineering Companion (ICSE-C ’17). Pis-
cataway, NJ, USA: IEEE Press, 20 May 2017, pp. 241–243.

[22] W. S. Humphrey, PSPSM : A Self-Improvement Process for Software
Engineers. Addison-Wesley Professional, 2005.

[23] G. Rong, H. Zhang, S. Qi, and D. Shao, “Can software engineering stu-
dents program defect-free?: An educational approach,” in Proceedings of
the 38th International Conference on Software Engineering Companion
(ICSE ’16). New York, NY, USA: ACM, 14 May 2016, pp. 364–373.

[24] W. S. Humphrey, Introduction to the Team Software Process. Addison-
Wesley Professional, 2000.

[25] M. Ohtsuki, K. Ohta, and T. Kakeshita, “Software engineer education
support system ALECSS utilizing DevOps tools,” in Proceedings of
the 18th International Conference on Information Integration and Web-
based Applications and Services (iiWAS ’16). New York, NY, USA:
ACM, 28 November 2016, pp. 209–213.

[26] B. P. Eddy, N. Wilde, N. A. Cooper, B. Mishra, V. S. Gamboa,
K. N. Patel, and K. M. Shah, “CDEP: Continuous delivery educational
pipeline,” in Proceedings of the SouthEast Conference (ACM SE ’17).
New York, NY, USA: ACM, 13 April 2017, pp. 55–62.

[27] V. Armenise, “Continuous delivery with Jenkins: Jenkins solutions to
implement continuous delivery,” in 2015 IEEE/ACM 3rd International
Workshop on Release Engineering (RELENG ’15). IEEE, 19 May 2015,
pp. 24–27.

[28] M. de Bayser, L. G. Azevedo, and R. Cerqueira, “ResearchOps: The case
for DevOps in scientific applications,” in 2015 IFIP/IEEE International
Symposium on Integrated Network Management (IM ’15). IEEE, 11
May 2015, pp. 1398–1404.

[29] A. A. Mohallel, J. M. Bass, and A. Dehghantaha, “Experimenting
with Docker: Linux container and BaseOS attack surfaces,” in 2016
International Conference on Information Society (i-Society ’16). IEEE,
10 October 2016, pp. 17–21.

[30] M. A. R, J. K. Patel, S. Akhtar, V. K. Agrawal, and K. N. B. S. Murthy,
“Docker container security via heuristics-based multilateral security-
conceptual and pragmatic study,” in 2016 International Conference on
Circuit, Power and Computing Technologies (ICCPCT ’16). IEEE, 18
March 2016, pp. 1–14.

4646

