
 Challenge Based Learning applied to Mobile
Software Development Teaching

Fabio Vinicius Binder
PPGIa

PUCPR
Curitiba, Brazil

fabio.binder@pucpr.br

Mark Nichols
Challenge Institute

USA
mark@challengeinstitute.org

Sheila Reinehr
PPGIa

PUCPR
Curitiba, Brazil

sheila.reinehr@pucpr.br

Andreia Malucelli
PPGIa

PUCPR
Curitiba, Brazil

malu@ppgia.pucpr.br

Abstract—The growth of the mobile device market has
generated a demand for specific applications and the consequent
need for labor training to develop them. Such demand has as a
direct consequence, a growing need for training of application
developers. This work presents the use of the active learning
methodology Challenge Based Learning (CBL) for the teaching
of software development for mobile devices. The use of CBL for
little more than a year in four classes of a free course with 110
students is presented. Some difficulties appeared and were solved
with proposed actions. The results are obtained from objective
and subjective evaluations and analyzed through thematic
networks. Among the positive results CBL helps in
understanding the problems to be solved and in its solution and
has motivated students more than other methods. CBL showed to
be an interesting active learning methodology for teaching
Mobile Software Development and promising to be applied in
other areas.

Keywords— Challenge Based Learning, Programming
Teaching, Active Learning, Software Development, Mobile Devices

I. INTRODUCTION

The mobile device market is growing at an accelerated rate,
creating a strong demand for personal and business
applications [8]. Mobile development is a relatively new
process, typically having a lower lifecycle than desktop/laptop
or web-based software. Its distribution is usually done by pre-
installing it in some device or by downloading it from an
online store [5].

Due to the growth in smartphone sales [16], applications
are becoming an important part of the portfolio of enterprise
and mission critical systems [8]. This demand has a direct
consequence: the growing need for solid training of mobile
application developers (Apps), which offers not only basic
programming education, but also software development and
production for publishing.

 Several traditional teaching methodologies are
currently being used to teach software development, however,
some features of the Challenge Based Learning (CBL),
described in this paper, indicate that it is more suitable for this
type of training. Thus, in order to minimize the difficulties

encountered in this type of environment and with traditional
teaching and learning methods, and contribute to the solid
training of developers, this research presents the application of
the active learning methodology CBL, for the teaching of
software development for mobile devices.

The motivation to use non-traditional methodologies comes
from the observation and experimentation of student behavior
in traditional classes. There is a relationship between the type
of stimulus received and the engagement of students during a
lesson. This is evidenced by classroom experience where
students usually prefer to engage in practical activities than
listen [13]. Non-traditional teaching methodologies have been
used for several years in programming courses with mixed
results, mainly the Problem Based Learning (PBL) [7], the
Flipped Classroom (FC) [13] or both simultaneously [4].

The project had the following premises: (i) the activities
should be oriented by teachers of the area of computation, with
skills and competences for the development of applications of
this nature and developed by students of technical,
undergraduate, specialization, master's and doctorate courses;
(ii) students should develop innovative applications; and (iii)
all applications developed should be the intellectual property of
the students themselves.

The environment in which the project was inserted is
considered complex due to the large number of people and risk
factors such as: (i) use of an unknown teaching method by
teachers and without any literature regarding its application in
teaching software development; (ii) more than 100 students
involved; (iii) heterogeneity of students in technical courses,
undergraduate, specialization, master's and doctorate; 10
teachers, of which 5 were full-time instructors; just over 30
external project proponents; management of 4 support teams in
the areas of usability, interface, illustration, 3D modeling,
animation, sound, soundtracks, innovation and
entrepreneurship, which provided resources and services; 800
hours of course; development of innovative apps with
professional appeal, that is, applications ready to be published.

No similar cases involving numbers of this magnitude were
found in the literature, but there were studies with similar
objectives involving smaller scope and fewer resources. One of
these studies [14], which had positive results, offered a course

The 30th IEEE Conference on Software Engineering Education and Training

2377-570X/17 $31.00 © 2017 IEEE

DOI 10.1109/CSEET.2017.19

57

The 30th IEEE Conference on Software Engineering Education and Training

2377-570X/17 $31.00 © 2017 IEEE

DOI 10.1109/CSEET.2017.19

57

for the development of apps, but it was only six weeks of
course, there was the prerequisite programming knowledge in
the Java language, a traditional teaching method was applied
(lectures and practical classes), there was no support of other
areas and the project to be developed was the same to all
teams.

This paper is organized as follows: Section 2 introduces the
CBL method. In Section 3 the research method, which is based
on the action research, is presented. Section 4 details the action
research. Section 5 presents the results and discussion and
Section 6 concludes the paper.

II. CBL METHOD

CBL's active learning method emerged as a byproduct of a
large-scale collaborative initiative that began in 2008, called
the Apple Classroom of Tomorrow - Today, whose main goal
was to identify the key principles for designing educational
environments in the 21st century [1]. It can be defined as a
motivational, collaborative and multidisciplinary approach that
encourages the use of common technologies for knowledge
acquisition and real-world problem solving.

A. CBL Overview
The guiding principles of the method are [10]: an

environment for investigative reflection on teaching and
learning; flexible framework with multiple entry points; non-
proprietary scalable model; focus on global challenges with
local solutions; authentic connection between academic
disciplines and real-world experience; a framework for
developing 21st century skills; a process that places the student
as responsible for his / her learning; it requires students to
develop and deploy solutions in a real-world environment.

Fig. 1. CBL Phases [9].

The CBL method has a set of phases: Engage, Investigate
and Act (Fig. 1), whose main objective is to aid students to
solve a global critical problem through local actions. Some
activities may be carried out during all phases: evaluation,

documentation and reflection actions. Within the phases there
are steps that may be executed sequentially, but it is possible to
start the process in any of the first four steps. The steps are [9]:
Big idea, Essential Question, Challenges, Guiding Questions,
Guiding Activities and Resources, Analysis, Solution
Development, Implementation and Evaluation. These phases
may be constantly described, monitored and analyzed based on
three optional aspects: Informative Assessment,
Documentation and Publishing, Reflection and Dialogue.

B. CBL Research
CBL has recently been used with relative success to teach

various topics: composition of materials for aircraft
manufacturing [17], english as a mother tongue [18],
biochemistry [21], programming [19] and nursing [20].

The flexible and open character of the CBL generates a
need for integration with other methods and techniques. This
integration can be done in any of its phases and, even though it
is not mandatory, is encouraged by the creators of the method
[9]. Successful results were reported in the integration with
Design Thinking [18] to facilitate the generation of ideas
during the first phases and with SCRUM [19] to provide a form
of project management during the Stage of the solution.

In addition to formal methods, punctual changes are
possible, such as rearranging its initial phases and targeting the
study format [21]. In the present study a number of specific
changes were made, such as extensive research of similar
works, specific subject workshops, reinforcement classes,
among others.

C. CBL x Other Active Learning Methods
One of the main differences between the CBL and other

active methodologies is the objective of the study: it focuses on
the acquisition of certain skills by developing a solution to a
real problem identified and proposed by the student. The
contents that must be studied arise from the needs of the
proposed challenge: content that will not be useful for the
challenge will not be studied.

In other methodologies, the teacher usually proposes the
content (FC) [6] or problems associated with a specific content
(Problem Based Learning - PBL and Project Based Learning -
PjBL) [12] followed by practical activities that involve such
content, that is, while in CBL the practical activity (challenge)
defines the content that must be studied, in other
methodologies the topics of study are defined first and the
practical activities are related to this content. Considering that
in courses that use CBL, students and teachers design the
challenges and ideally the learning experience, it is common
that different students study different topics to solve their
challenges.

Table I presents a comparison between the characteristics
of the CBL and other methods (PBL, PjBL and FC). The
criterion for choosing the features of the table was based on
those most relevant to the teaching of software development
according to the observations made by the researcher in the
case of CBL and in the analysis of the studies of active

5858

methodologies applied in programming courses for the other
methods.

TABLE I. COMPARISON BETWEEN CBL X OTHER ACTIVE METHODS

Features/Methods CBL PBL PjBL FC
Previous Study x
Predefined content x x x
Predefined Challenge x x x
Self paced learning x x x x
Collaborative Learning x x x x
Autonomy x x x x
Critical Thinking x x x x
Problem Solving x x x x
Student Feedback x x x x
Evaluation Review x x x x
Challenges defined by students and
teachers

x

Specific Environment x
Solution implementation x
Frequent self reflection x

Of all the features identified, seven of them are common to
all methods and represent a reaction to what is usually
criticized in traditional teaching methods: autonomy,
collaboration, critical thinking, problem solving, student’s pace
of learning, feedback and revision.

It is interesting to note that, with the exception of the item
related to student’s pace of learning, the others are some of the
characteristics necessary for the work of a software developer.
It is possible to observe that the teaching methods are aligned
with several skills that software developers must have in order
to accomplish their tasks, however, some aspects are unique of
the CBL. With regard to software development teaching none
of these characteristics would be essential for student training,
but all have advantages in terms of student motivation and
experience.

The fact that the student can choose its subject and
challenge is an additional motivation factor, as it encourages
the freedom and, especially personal projects that many
students have when starting a course.

The specific environment is composed of flexible
classroom, laboratories with islands of teamwork, spaces for
individual reflection and projection of computer screens on
high-quality televisions. It is a differentiated, pleasant, high
quality and highly motivating environment.

Frequent self-reflection enables the software developer to
find better ways to solve certain problems. The analysis of
finished projects is a common practice in some development
niches, notably in the production of digital games, as can be
easily identified by reading the major magazines in the area
and the presentation sessions of major game conferences such
as Game Developers Conference (GDA) in the USA.

In addition, the need to implement and publish the
developed solution forces the student to worry about aspects

related to the production of professional software that are not
usually taken into consideration in common courses. Among
these aspects, it is possible to mention: software quality,
usability and interface and maintenance after the publication of
the software.

This need of solution implementation is presented by CBL
in a free and abstract way, without detailing for specific
situations. In a programming course, this deployment is quite
challenging, involving several aspects that beginners may have
difficulty assimilating.

III. RESEARCH METHOD

The scenario of the research was a project of technological
innovation that aimed at the production of applications for
mobile devices within a university environment. Fig. 2 presents
the approach defined for its organization, composed of three
phases, described below.

Fig. 2. Research Phases

A. Students Selection
 At this stage tests and interviews were applied. The initial
premise was that students should have good basic
programming skills and/or logical reasoning. So the test was
divided into programming and logical reasoning sections. The
content was balanced to prevent more advanced students from
having any advantage, eliminating possible talents not yet so
experienced. The test was composed by logical problems and
programming questions. To eliminate guessing there was no
objective questions, like multiple choice or true/false. Partial
grades were awarded in order to better evaluate candidates thus
avoiding the elimination of potential good students. The total
number of candidates registered in this stage was 398 and the
top 150 were selected according to the overall grade obtained
in the test.

 The interview aimed to know a little more about the profile
of the student and was held in person with all 150 students. We
selected 110 students for the first class. The students were from
several different levels of courses, including technical
education, graduation, specialization, masters and doctorate.

5959

Most of these students were from courses with some
programming education and only three students (2.7%) were
from courses not related in any way to computer programming.

B. Teachers’ Preparation
 The goal was to train teachers in CBL. The preparation was
composed of two parts: in-depth study of the method and
discussion of its application for the teaching of software
development. Teachers conducted a previous CBL study [9]
then they took a two-day course. It should be noted that CBL
has never been used in a continuous and relevant way in
teaching software development.

 The second phase was composed of discussions among
teachers to identify best practices for applying the CBL.
Although it was possible to use the CBL without any kind of
lecture given by teachers, it was decided to continue with
lectures for two reasons: the importance of the teacher's role in
promoting interest in students, even when active learning
methods are used [22], and the need of differentiated forms of
teaching for the student to attain complex levels of thought and
commitment [23].

C. Project Execution
 At the beginning of the implementation, some challenges
were identified, related to the complexity of the environment as
students' difficulties with active methodologies, notably the
CBL; lack of specific technical skills such as development for
mobile devices; design and execution of complex graphical
interfaces; use of sound resources, illustration, animation and
3D modeling; difficulty of students to identify unpublished
applications and relevant problems; absence of prior
experience with software development processes.

 These challenges were used to define a plan for the
execution of the action-research [3] as shown in Fig. 3. The
action research, described in the next section, started when
students had already been selected, teachers had already been
trained and initial difficulties had already been mapped.

Fig. 3. Action-Research lifecycle, according to [3].

IV. ACTION RESEARCH

The Action Planning resulted in a need to change the
project execution activity, which had originally been proposed
as being composed by CBL course, Main Challenge and
Publication (Fig. 2 – Phase 3). The change was motivated by
students' difficulties to move directly from the course to the
Main Challenge. It was observed the difficulty of the students
in developing programs that demanded nontrivial solutions.

The resulting change (Fig. 4) was the division of the Project
Execution activity into Initial Challenge, Mini Challenges,
Main Challenge, and a transversal Support task. The
publication of the developed product was incorporated into the
Main Challenge activity, because it was not a separate activity.
The Support task represents all the activities necessary for the
production of software that do not involve programming:
interface and usability, 2D and 3D art, animation, sound and
mentoring for the creation of startups.

Fig. 4. Post-Adjustment Phases

During the Implementation phase of the action research it
was observed that several improvements were necessary for the
teaching of software development. Some of them were made
during the Project Execution activity itself, such as the
integration of a software process model with the CBL. In this
step, CBL was applied in three different ways, and evaluations
were made to improve the method in the next application.

• Initial Challenge: CBL's first application consisted of
a quick lesson on features of relevant and successful
Apps and an explanation of the CBL, followed by the
Initial Challenge. This challenge was included because
it offers significant choices to the students about what
and how to study, this being one of the ways to
increase engagement and interest in the classroom
[15]. It consisted in defining an idea of an application
and creating it’s concept, generating a presentation
video of how the application would work if it was
already developed. The students met in groups of three
or four participants and had three hours to complete the
challenge. At the end of the activity each team
presented their work to all students. Some of the works

6060

presented by the groups were: how to find a free
parking spaces, identify nearby hospitals according to
the needs of the user, an augmented reality game, etc.
The students then recorded a two-minute self-
reflection audio which consisted of completing the
following phrases: I learned ...; I wish I had learned ...;
I still need to learn ...

• Mini Challenges: students should develop a relevant
and ready-to-publish App in two weeks. The students
chose their teams composed of two (2) to four (4)
students, which resulted in 39 teams. At the end of the
two weeks 12 projects out of 39 were finalized. Out of
these 12 projects only two (2) were published in the
Mobile Application Store and used by the target
audience: a puzzle game and an app to help the
environmental police to reach difficult to find
locations. Individual reflections showed three main
problems: short time, inexperience in the development
of a complete product (for students who did not have
previous experience) and inadequacy of CBL for
software development (for students who already had
experience). This result was the basis for the creation
of workshops (classes of up to 15 hours for specific
topics) and integration of the CBL with a software
development process. The workshops covered areas
that the students couldn’t learn by themselves due
mainly to time constraints or lack of the specific basic
knowledge of that area: version control, project
management, game design, backend software
development, web services programming and notions
of augmented reality.

• Main Challenge: Due to the need to publish an App at
the end of the course, it was decided that students
should actively participate in a software development
process. Since many students were newcomers to the
programming area and had never developed software
professionally, a hybrid method was chosen that
integrate traditional features and techniques like
waterfall and agile, sometimes called "AgileFall". The
objectives of this approach were to get students to
establish a feasible project scope for the time and
resources available; give students visibility of the
progress and possible delays of their projects; detect
delays and student performance problems as quickly as
possible; provide a view of the progress of course
projects from the management point of view,
facilitating course decision making and course
corrections in the current and subsequent years. This
method was used in the main challenge in all 60
proposed projects. At the end of the course 54 projects
were finalized and presented, of which 41 were
approved for publication. The students delivered the
documentation, fonts and Apps installed on their own
devices, in addition to a final reflection video with a
free theme. Some examples of finished apps were: a
game to help deaf children to read, a fitness helper, a
Go player using machine learning, a speed reader that
identified the most relevant phrases of a text, a hotel
reservation app target to people in a hurry, a

framework to turn smartphones into game controls, an
educational tour into space exploration and a
neuronavigtor.

V. RESULTS AND DISCUSSION

Due to the practical nature of the course and also to the
evidence that the use of active methodologies affect more
directly the students' behavior and attitudes than their
performance in standardized tests [11], it was decided not to
make a traditional assessment. Thus, the evaluation was carried
out through questionnaires applied to students and semi-
structured interviews with the teachers involved in the project
and other teachers who were applying the CBL in similar
environments.

A. Students’ Evaluation
Of the 110 students originally selected, 84 finished the

course and 78 of them answered the questionnaire. The class
consisted of 57.7% of novice students, those with less than one
(1) year programming experience and 15.4% veterans with
more than three (3) years of programming experience. Table II
provides a summary of the survey. Positive answers vary
between the questions but were usually strongly agree, agree,
totally agree or partially agree.

TABLE II. SURVEY SUMMARY

Questions Positive Answers

How many times did you use the method? (>3) 71,8%
Has the method helped you understand the
challenge? 74,4%

Has the method helped you to work out a
solution? 70,5%

Has the method helped you find an innovative
solution? 48,7%

Degree of motivation of the method? 70,5%
Do you want to use the method in other
situations? 76,9%

Has the guiding questions, activities, and
resources helped you develop your Apps? 82,1%

Students were required to use CBL only three times during
the course. On its own initiative, 71.8% of the students used it
more often (four or more times), indicating that there was an
interest on the part of the majority in applying the method. This
result presents the motivational factor, where 70.5% of the
students felt motivated to solve the problem using CBL,
answering that they strongly agree or agree with the question
“Has the method helped you to work out a solution?”.

In its initial phases, the CBL has as one of the objectives to
aid in the understanding of the problem or challenge. Most
students (74.4%) chose the options “strongly agree” or “agree“,
indicating that the method helped them in this regard. In
addition, 39.7% of students chose the partially or totally Agree
options to represent the degree to which the method helped
them solve the problem.

6161

The effectiveness of the method in constructing a
solution was considered positive (partially or totally agree) for
70.5% of the students, and 82.1% considered that the guiding
questions, activities and resources helped in the development
of the App. This result was expected, since most students had
no prior experience in software development and naturally
would have difficulty developing an App without any sort of
systematized help.

Still regarding the development of a solution, 48.7% of the
students considered that the method helped (partially or totally
agree) to find an innovative solution. This result is in line
with the opinion of the evaluators' bank, which ranked half of
the projects presented as innovative and with great market
potential or relevance.

Students’ acceptance of the method can be considered
positive, because 76.9% answered “certainly“ or “probably”
that they may use it in other situations and 87.2% believe that it
can contribute to the teaching of content other than
programming and development of software.

Fig. 5. Effectiveness of CBL on Improving Programming Skills.

Other positive results relate to the improvement in
programming skills (Fig. 5) and to the motivational factor of
using the method. 58.3% of students with programming
experience (more than 3 years) considered that the method
contributed to the improvement of programming skills while
only 8.3% responded negatively. Taking into account only
novice students (less than a year of programming experience),
35.6% agreed Partially or Totally with the question and 22.2%
disagreed Partially or Totally.

In the space for free comments, 26.9% of the students
wrote some kind of consideration about the CBL. What stood
out the most was the need to integrate it into a method of
software development and the fact that CBL helps in
understanding the problems to be solved and in its solution.

B. Teachers’ Evaluation
Interviews were conducted with 23 teachers from eight

Brazilian universities where similar iOS courses using CBL
were taking place. The interviews were recorded, transcribed,
reviewed and analyzed quantitatively and qualitatively.

The qualitative analysis was done using thematic networks
[2] with the aim of systematizing and identifying common
elements. The profile of teachers was based on the time of

experience with software development, teaching software
development and teaching in general; use of traditional
teaching methods; and knowledge of software development
methods. Teachers were chosen who had worked with CBL for
at least six months and had applied it at least twice in
programming courses.

The teachers involved had extensive experience in software
development (mean age of 14 years, standard deviation of 7.7,
median 15) and a reasonable teaching experience, both
programming, with a mean of 7.1 years (standard deviation 6
and median 5), and in general education, with a mean of 9
years (standard deviation 6.3 and median 8). The traditional
teaching techniques (previous to the use of CBL) used in the
classroom by these teachers were lectures and practices with
100% positive answers and guided tutorial with 50% positive
responses. Guided tutorial was defined as an activity in which a
programming problem is proposed and the teacher solves it
together with the students, programming it directly in the
appropriate tool and showing the entire development and
thinking process.

The professional knowledge of software development
methods was thus divided into 56.5% of teachers with some
experience in traditional methods, 47.8% in iterative and
incremental methods, and 73.9% in agile methods. This
question allowed multiple answers.

The results of the analysis corroborated the general opinion
of students, because 95.6% of teachers agreed in whole or in
part to the statement: "The CBL has motivated students more
than other methods that you know." Those who agreed partially
stated that there was a greater motivation, but did not know
whether this motivation was due to the CBL or the novelty
aspect of using a different teaching methodology. Possibly or
certainly, these options were chosen by 95.6% of the teachers
when asked if they will use the CBL for other programming
classes, while 91.3% intend to use the method to teach other
contents not related to programming.

The use of CBL for teaching software development was
addressed in the question "Is the quality of software developed
by students using CBL better than the quality of software
developed using other methods that you have experience?". In
this question we explained to the teachers that the term quality
refers to all of the following characteristics: software ready for
publication, relevancy, no critical errors and no usability
problems. Unlike the other issues, the result was not
significantly positive. 65.2% of the teachers totally or partially
agreed, and the others chose the "not agree or disagree" option.
The justification of the teachers was that they had not worked
enough with other methods to support a positive opinion.

The interview consisted mainly of multiple choice
questions, however, interviewees could make additional
comments whenever they wished. The subjective part of the
interview is composed by these comments plus the open
questions that dealt with the changes were made in each stage
of the CBL and also the general opinion about the CBL. The
analysis of thematic networks generated the main theme
"Proposed Changes", composed of five sub-themes: positive
features, negative features; inconclusive features; suggestions
of other methods and improvement suggestions. The

6262

relationships between these themes are presented in the Fig. 6
Thematic Network of positive, negative and inconclusive
features. and Fig. 7 Thematic Network of Improvement
Suggestions and Other Methods.

Fig. 6. Thematic Network of positive, negative and inconclusive features.

As can be observed in Fig. 6, the application of CBL had
several positive aspects, being the most cited: intention to
continue using the method in other teaching situations;
improving students' motivation to study and carry out proposed
activities; encouraging student autonomy; and improving
students' understanding of the problems to be solved. An
interesting finding of the teachers was that the flexibility of
studying proposed by the method (not having a pre-defined
syllabus) promoted the development of some skills in students,
such as autonomy.

For the execution of the project, students have the freedom
to choose the challenge, starting point of the method, and to
use different forms of learning (courses, books, monitoring,
internet searches) to acquire the necessary knowledge to solve
the problem. There is also a need to worry about other factors
that go beyond coding, such as usability, economic feasibility,
etc. Another positive point was the incentive to communicate,
because the method is eminently collaborative. Students seek
out experienced teachers and students to assist in problem
solving throughout the project's development. According to
one of the interviewees, these aspects contributed to the
reduction of both course evasion and failing.

Although the method was considered by all respondents to
be successful, some negative points were identified, the most
cited being the inadequacy of the method for certain student
profiles. It was perceived by the teachers that talked about
profile inadequacy that the students' inadequate profile has in
common three characteristics: lack of commitment, lack of
theoretical and technical base, as well as resistance to
autonomy. This same perception was identified by the
researcher in the reflections of the students and in the
observation of their behavior during the execution of the
proposed activities.

Another problem concerns the teaching environment. The
CBL requires an environment with certain essential
characteristics for proper application, like a good Internet
connection, individual and collaborative spaces and flexibility
to change tables and chairs. The lack of this environment
makes it difficult to use. It was also pointed out the difficulty
of understanding the method on the part of the students and the
lack of familiarity of the teachers with the application of the
method.

The CBL adequacy aspect for software development was
inconclusive in the interviews, since negative, positive and
neutral opinions appeared. The method was not specifically
created for teaching software development and was considered
as a general purpose educational framework, so it was
somewhat unexpected that 13% of respondents reported that
the method is in itself adequate for teaching software
development. Based on the analysis of the profile of the
interviewees, it was possible to identify that 33% of the
teachers who opined in this way, considered the CBL to be
suitable for development only in the requirements survey stage,
which is perfectly natural since the goal of one of its phases is
precisely to improve the understanding of the problem. The
remaining 66% were not from the computing area or similar,
thus having a different view on software development.

Fig. 7 presents another dimension captured in the
interviews and concerns suggestions for improvements and
other similar methods. Although the number of citations of
these improvements was relatively small (13%) and its impact
on CBL is restricted mainly to one-off changes, this shows that
opportunities and needs for changes have been identified.

Fig. 7. Thematic Network of Improvement Suggestions and Other Methods.

The main suggestions can be grouped into two categories:
timely, for those where the change occurred only in one phase
of the CBL and global, for changes that span more than one
phase. The most cited points were the use of guiding questions
to define the essential question, thus offering a predefined
course for the student; and start the application of the method
in the challenge phase, usually when the student already has
the idea of what will do, thus eliminating the first two phases,
big idea and essential question.

The global ones were suggested in order to enrich the CBL
in the solution stage. In the suggestions of other methods with
some similarity, the teachers cited Project Based Learning and
Problem Based Learning. The reason was that the CBL appears
to be an evolution of such methods, presenting some
expressive innovations, such as freedom of choice by the
student, flexibility of the study and integration into the teaching
environment.

VI. CONCLUSION

This paper presented the application of CBL for the
teaching of software development for mobile devices. It is
interesting to highlight that according to one of the
interviewees, some aspects of CBL contributed to the reduction
of both course evasion and failing, what is a relevant aspect of
teaching.

6363

The main problems observed during the application of CBL
were difficulties in monitoring the CBL method and in the
construction of applications due to the lack of previous
experience with software development, and the need to choose
students with a differentiated profile. The actions taken to solve
the problems were the inclusion of presentations of current
problems in several distinct areas and of external projects, both
by researchers and entrepreneurs with the goal of aiding
students to choose the final challenge; the inclusion of regular
lectures and reinforcement for cases where the individual study
was not enough; and changes in the selection process to select
students with a profile appropriate to the requirements of the
CBL (active participation, engagement, resourcefulness) and
the program (part time, app publishing).

The main findings of this research regarding the use of
CBL in software development are: overall the CBL framework
is effective for teaching and learning mobile app development,
and is worthy of continued research; faculty need more training
and ongoing support implementing CBL; CBL can evolve
beyond a teaching framework provided that it is merged with a
software development process; CBL needs to be better
integrated with a software development framework to be used
in the context presented in this research; that students arriving
with less background need more scaffolding; further research is
needed to identify the characteristics of successful participants;
and the framework needs to be continually updated and
contextualized to meet the needs of the students and faculty,
including the addition of other methods.

In future classes it will be necessary to combine other
methods to identify relevant problems. The implementation of
the solution is not formally defined in CBL by design, and it is
mandatory to include some method of software development,
especially for students who do not have previous experience.

REFERENCES
[1] Apple. (2008). Apple Classrooms of Tomorrow—Today Learning in the

21st Century.
[2] Attridge-Stirling, J. (2001). Thematic networks: an analytic tool for

qualitative research. Qualitative Research, 1(3), 385–405.
https://doi.org/10.1177/1468794107085301

[3] Coughlan, P., & Coghlan, D. (2002). Action research for operations
management. International Journal of Operations & Production
Management, 22(2), 220–240.
https://doi.org/10.1108/01443570210417515

[4] de Oliveira Fassbinder, A. G., Botelho, T. G., Martins, R. J., & Barbosa,
E. F. (2015). Applying flipped classroom and problem-based learning in
a CS1 course. In 2015 IEEE Frontiers in Education Conference (FIE)
(pp. 1–7). IEEE. https://doi.org/10.1109/FIE.2015.7344223

[5] Flora, H. K., & Chande, S. V. (2013). A Review and Analysis on Mobile
Application Development Processes using Agile Methodologies.
International Journal of Research in Computer Scienc, 3(4), 8–18.
https://doi.org/10.7815/ijorcs.34.2013.068

[6] Gilboy, M. B., Heinerichs, S., & Pazzaglia, G. (2015). Enhancing
student engagement using the flipped classroom. Journal of Nutrition
Education and Behavior, 47(1), 109–114.
https://doi.org/10.1016/j.jneb.2014.08.008

[7] Kinnunen, P., & Malmi, L. (2005). Problems in Problem-Based
Learning–Experiences, Analysis and Lessons Learned on an
Introductory Programming Course. Informatics in Education-An
International Journal, 4(2), 193–214. Retrieved from
http://www.ceeol.com/aspx/issuedetails.aspx?issueid=31a3afb2-d1d0-
4c59-9692-0b5fb5be23a1&articleId=49c3dfc7-475b-4e17-b39b-
6ca554648471

[8] Lewis, G. A., Nagappan, N., Gray, J., Rosenblum, D., Muccini, H., &
Shihab, E. (2013). Report of the 2013 ICSE 1st international workshop
on engineering mobile-enabled systems (MOBS 2013). ACM SIGSOFT
Software Engineering Notes, 38(5), 55.
https://doi.org/10.1145/2507288.2507327

[9] Nichols, M., Cator, K., Torres, M. & Henderson, D. (2016). Challenge
Based Learning User Guide. Redwood City, CA. Digital Promise.

[10] Nichols, M. H., & Cator, K. (2008). Challenge Based Learning White
Paper. Apple Inc.

[11] Prince, M. (2004). Does Active Learning Work ? A Review of the
Research. Journal of Engineering Education, 93(3), 223–231.
https://doi.org/10.1002/j.2168-9830.2004.tb00809.x

[12] Robinson, J. K. (2013). Project-based learning: Improving student
engagement and performance in the laboratory. Analytical and
Bioanalytical Chemistry, 405(1), 7–13. https://doi.org/10.1007/s00216-
012-6473-x

[13] Rosiene, C. P., & Rosiene, J. A. (2015). Flipping a Programming
Course: the Good, the Bad, and the Ugly. In Frontiers in Education
Conference (Fie), 2015 (pp. 803–805).

[14] Scharff, C., & Verma, R. (2010). Scrum to support mobile application
development projects in a just-in-time learning context. In Proceedings
of the 2010 ICSE Workshop on Cooperative and Human Aspects of
Software Engineering - CHASE ’10 (pp. 25–31). New York, New York,
USA: ACM Press. https://doi.org/10.1145/1833310.1833315

[15] Schraw, G., Flowerday, T., & Lehman, S. (2001) Increasing situational
interest in the classroom. In: Educational Psychology Review, 2001, p.
211-224.

[16] Smartphone sales worldwide 2007-2015. (n.d.). Retrieved February 2,
2017, from https://www.statista.com/statistics/263437/global-
smartphone-sales-to-end-users-since-2007/

[17] O’Mahony, T. K., Vye, N. J., Bransford, J. D., Sanders, E. A., Stevens,
R., Stephens, R. D., … Soleiman, M. K. (2012). A Comparison of
Lecture-Based and Challenge-Based Learning in a Workplace Setting:
Course Designs, Patterns of Interactivity, and Learning Outcomes.
Journal of the Learning Sciences, 21(1), 182–206.
https://doi.org/10.1080/10508406.2011.611775

[18] Marin, C., Hargis, J., & Cavanaugh, C. (2013). iPad learning ecosystem:
Developing challenge-based learning using design thinking. Turkish
Online Journal of Distance Education, 14(2), 22–34

[19] Santos, A. R., Fernandes, P., Sales, A., & Nichols, M. (2013).
Combining Challenge-Based Learning and Scrum Framework for
Mobile Application Development. ACM Conference on Innovation and
Technology in Computer Science Education, 189–194.
https://doi.org/10.1145/2729094.2742602

[20] Cheng, W. L. S. (2016). Application of Challenge-Based Learning in
nursing education. Nurse Education Today.
https://doi.org/10.1016/j.nedt.2016.05.026

[21] Gabriel, S. E. (2014). A modified challenge-based learning approach in
a capstone course to improve student satisfaction and engagement.
Journal of Microbiology & Biology Education, 15(2), 316–8.
https://doi.org/10.1128/jmbe.v15i2.742

[22] Rotgans, J. I., & Schmidt, H. G. (2011). The role of teachers in
facilitating situational interest in an active-learning classroom. Teaching
and Teacher Education, 27(1), 37–42.
https://doi.org/10.1016/j.tate.2010.06.025

[23] Berbel, N. A. N. (2011). As metodologias ativas e a promoção da
autonomia de estudantes. Semina: Ciências Sociais E Humanas, 32(1),
25–40. https://doi.org/10.5433/1679-0383.2011v32n1p25

6464

