
Training Software Engineers using Open-Source
Software: The Professors’ Perspective

Gustavo Pinto
Federal University of Pará

Belém, PA, Brazil

gpinto@ufpa.br

Fernando Figueira Filho
Federal University of Rio

Grande do Norte

Natal, RN, Brazil

fernando@dimap.ufrn.br

Igor Steinmacher
1Northern Arizona University

Flagstaff, AZ, USA
2Federal University of Technology

Campo Mourao, PR, Brazil

igorfs@utfpr.edu.br

Marco A. Gerosa
Northern Arizona University

Flagstaff, AZ, USA

marco.gerosa@nau.edu

Abstract—Traditional Software Engineering (SE) courses of-
ten prioritize methodologies and concepts in small, controlled
environments: naive projects used as a proof of concept instead
of full-fledged real software systems. Although this strategy
has clear benefits, it does not place enough care in training
students to face complex, non-trivial legacy software projects. To
bridge this gap, novel SE courses are leveraging the rich variety
of open-source software (OSS) projects to illustrate how these
methodologies and concepts are applied to existing, non-trivial
software systems. To better understand the benefits, challenges,
and opportunities of this transition, in this paper, we interview
seven SE professors that changed their academic setting to aspire
students to comprehend, maintain, and evolve OSS systems as
part of their SE course. We found that there are different ways
to make use of OSS projects in SE courses in terms of project
choice, assessment, and learning goals. Moreover, we evidence
clear benefits of this approach, including improving students’
social and technical skills, and helping students enhancing their
resume. Also, we observed that this strategy comes with costs:
the activity demands effort and time from the professor and the
barrier for one getting involved with and, therefore, placing a
meaningful contribution, in an OSS community is often high.

Index Terms—Open-source software; Teaching Software Engi-
neering; Open-Source Contributions;

I. INTRODUCTION

The steady flow of new techniques, tools, and processes for

developing software systems along with the interdisciplinary

nature of software development, makes the Software Engineer-

ing (SE) discipline one of the most challenging to teach and

learn [1], [2]. On the one hand, there is the traditional SE

courses, which emphasize the methodologies and theoretical

concepts, but pay little attention on teaching students how

to deal with complex, existing software systems [3]. On the

other hand, there is the software industry, which is eager to

hire software developers that can cope with legacy code, but

has little time available for training unskilled yet promising

software developers.

In order to bridge this chasm, one approach that is gaining

more supporters lately is to bring to the classroom real, non-

trivial problems that the software industry face, and stimulate

students to deal with them [4]–[9]. Since it is not always

straightforward to bring proprietary projects to the classroom,

e.g., they often rely on restrictive software licenses, professors

are taking advantage of Open-Source Software (OSS). The

motivation for using OSS is three-fold:

1) There are a plethora of OSS choices, with different

domains, sizes, and complexity;

2) Well-known OSS projects often exhibit the maturity and

the breadth of scope necessary to use in real-world

problems;

3) Well-known OSS projects are maintained by an active

global community of software developers.

Therefore, exposing students to OSS might give them the

opportunity to face and, eventually, overcome social and

technical barriers that new contributors face while joining

software projects [10], [11].

This approach leads students and professors to significant

learning experiences. From the students’ perspective, this

approach is beneficial since working on OSS projects enables

them to learn real-world skills, attitudes, and experiences [4],

[12], which might increase their confidence, for instance, when

applying for industry jobs. From the professors’ perspective,

it helps them to achieve the goal of preparing the future

workforce of software developers, for instance, since it is

possible to bring to classes real world practices, problems,

and solutions. However, this approach can also hide some

drawbacks [13], [14]. For instance, students might face barriers

for (1) getting involved with OSS communities and/or (2)

finding and placing a meaningful contribution during the often

short term of a SE course. These facts might demotivate

students. Similarly, professors need to deal with things that

are often beyond of the scope of an ordinary class, such as

unfriendly OSS communities or an in-depth knowledge of

different OSS projects under study.

To understand the benefits and challenges of such practice,

in this paper, we interviewed seven SE professors that recently

changed their courses to foster OSS initiatives. Since this

research is still in its early stages, in this paper we focus on

three high-level research questions, regarding the choice of a

suitable OSS project to students work on, and the benefits and

limitations of this practice, as follows:

• RQ1. What makes a good OSS project for training SE

students?

The 30th IEEE Conference on Software Engineering Education and Training

2377-570X/17 $31.00 © 2017 IEEE

DOI 10.1109/CSEET.2017.27

117

The 30th IEEE Conference on Software Engineering Education and Training

2377-570X/17 $31.00 © 2017 IEEE

DOI 10.1109/CSEET.2017.27

117

• RQ2. From the professors’ perspective, what are the

benefits of exposing students to OSS development?

• RQ3. From the professors’ perspective, what are the

challenges associated with exposing students to OSS?

To provide answers to these questions, we followed a

qualitative research method. The insights obtained from this

research provide important lessons learned for professors,

students, and OSS communities that want to take advantage of

this process. The main findings of the paper are the following:

• We found that it is important to give enough freedom to

students choose an OSS project to work on, although re-

strictions such as project popularity and relevance should

also be taken into account.

• We observed that contributing to OSS projects improves

not only technical skills; successful students that over-

come the first contribution barrier also developed their

social skills.

• We noted that the time constrains of a course can not only

delay the contribution process but also make it difficult

to students engage with OSS projects.

The rest of the paper is organized as follows: Section II

discusses related studies and how this study differs from

them. Section III describes the methodology employed, and

Section IV provide the main findings of this research. Further,

Section V envisions some implications of this study, while

acknowledging some limitations. Finally, Section VI concludes

this work and sheds some light on future work.

II. RELATED WORK

Several recent efforts have involved students in OSS projects

within the classroom [4]–[6], [8], [9]. Smith et al. [5] focus

on selecting the most effective OSS systems to students work

with. The authors argued that, due to the short duration of

a typical SE course (4-5 months), SE professors should not

select large or complex OSS projects, because students would

have a hard time in placing a meaningful contribution during

the course.

Similarly, related work suggests that OSS projects should

not be too small or too naive since students would not take

advantage to use SE principles. Morgan and Jensen [4] detailed

the experience of teaching SE courses with the support of

OSS. The authors also observed that the size of the OSS

project (in that case, Ubuntu) turned out to be a significant

obstacle for students placing a contribution (e.g., unable to

find a simple yet interesting task to work on). Likewise, Buchta

and colleagues [6] reported other experiences of teaching the

evolution of OSS in SE courses. The authors reported a setup

cost (e.g., selecting OSS projects, setting up the version control

system) of about 60 hours before the course takes place. In

this study, however, the authors did not discuss the benefits,

implications, or challenges of using this methodology for

running a SE course. Moreover, Holmes and colleagues [15]

reported that in their Undergraduate Capstone Open-Source

Projects (UCOSP) program, OSS projects under study must

maintain an active issue tracker, use a version control system,

and perform code reviews. They also reported that each project

should have at least one mentor who will help students

throughout the course. In the study of Petrenko et al. [7], the

authors described their grading system: students are graded

based on their individual effort, which include only imple-

menting, debugging and testing changes, but also justifying

their architectural decisions. In the work of van Deursen et
al. [16], grading is based on team (e.g., presentations, code

analysis, etc) and individual deliverables (e.g., personal review,

participation in lectures, etc).

Although OSS has been a formal presence in SE education

during the last decade [17], [18], most of the work published

in this area were experience reports (e.g., [4]–[6], [15]).

Therefore, these reports do not capture the whole spectrum

of dynamics that may arise in these courses. Also, since

these studies ask different research questions, the findings

are not unified and are hardly compared. Still, the recent

introduction of social coding websites such as Github and

Bitbucket changed the way software engineers build software

(and, consequently, how professors use OSS in their courses).

Therefore, studies that focus on the traditional patch-based

model (e.g., [7]), might not be generalized to the pull-request

based era [19]. In fact, the perspective of professors that

employ these platforms are particularly relevant to our study.

The studies presented in this section are mainly experience

reports based on the own professors’ perspective, which is

rather limited. To the best of our knowledge, our work is

unique with the focus on bringing different professors (with

their settings, perspectives, etc.), to answer the same set of

research questions. We believe this approach has the potential

of providing a broad and deep understanding of this emerging

field.

III. METHODOLOGY

To provide answers to the research questions stated in

Section I, we conducted interviews with SE professors. The in-

terview procedure, as well as the qualitative coding approach,

are detailed in this section.

A. Interviews with Professors

We conducted semi-structured interviews with professors to

understand how assignments using OSS projects are used in

SE courses. We used a snowballing approach to recruit profes-

sors that apply such approach. We identified and interviewed

a total of 7 faculties. The interviews were conducted remotely

and lasted approximately 40 minutes. The interviews were

recorded with the participants’ consent and transcribed just

after their conclusion.The interviewed professors are based

in Brazil (4), US (1), The Netherlands (1), and Spain (1).

Among them, 5 are full-professors, and the remaining two

ones are associate professors. The professors had experiences

with OSS projects in different undergraduate and graduate

SE related courses, including Object-Oriented Programming,

Software Architecture, and OSS Development courses. One of

the interviewees had an experience with a masters program

on OSS. The size of the classes varies from 20 students

118118

to 100+ students. There are no off-campus students. As the

interviewees reported, the majority of their students may not

have contributed to OSS before.

The interview scripts were grounded on RQ1—3. The

interviews consisted of three parts. In the first part, we started

asking about the interviewee’s background in teaching SE and,

more particularly, teaching SE with OSS. Then, we moved to

specific questions, including questions about how professors

choose a project, how they create, evaluate, and grade a

contribution that students make to an OSS project. In this

group of questions, we also asked about the barriers for placing

a contribution, motivation, and interests in the course. Finally,

we asked questions about the problems the professors’ faced

with this kind of assignment, what problems students’ face,

and what are the main advantages and disadvantages.

B. Interview Analysis

Each interview transcript, along with the associated record-

ing, was analyzed by three authors. We then coded the

answers and organized them into categories. We followed the

guidelines on the open coding procedure [20]. To avoid bias,

the coding procedure was done independently, followed by

conflict resolution meetings.

IV. RESULTS

In this section we present the findings of this study, grouped

by our research questions. We highlight the main themes

that emerged along with quotes from the interviews. Among

similar opinions, we chose to quote only the one we considered

the most representative for each case. The professors are

identified as P1 — P7.

A. RQ1. What makes a good OSS project for training SE
students?

One of the first steps in project work is selecting one or

more OSS projects to work with. We asked our interview

participants about what makes a good OSS project to be

selected and the strategies they use for that. Typically, project

selection is somehow mediated by the instructor, who is able

to provide guidance in terms of what project is best for the

students. However, all of our interviewees declared that they

provide some degree of freedom for students to choose the

project they would like to work with: “there was a student
team that liked networks and they chose NS3, which is a
network simulator that has never occurred to me as a project
to be selected.” [P2]

Giving students enough freedom to choose when selecting

an OSS project was regarded as important by all of our

interviewees, although typically some criteria need to be met

before a decision is reached. For instance, P1 provides their

students with a couple of hundred active projects available on

GitHub. Once the students pick one project, both professor

and students “briefly go through some recent pull requests,
and then get an intuition whether this is sufficiently open and
say ‘yes you can use this’. [. . .] It should not be a dead project,
with very few contributors.” [P1]

Other criteria for selecting OSS projects were mentioned

by P3. He emphasizes the importance of a balance between

project popularity and relevance of a contribution: “I know
that is tempting to choose a popular project, but these tend
to be harder to make contributions or to get contributions
accepted. If you pick a small project, maybe the contributions
would have little relevance.” [P3]

During the selection, sometimes the instructor may act as a

proxy by contacting project maintainers directly. For example,

P5 does that before letting students select a project. In this

context, fast feedback from maintainers is crucial since most

courses would last only for a semester or a term: “I say [to
the maintainers] that I will contribute to this project with
student teams [...] the only thing I ask is that you provide
faster feedback than usual.” [P5]

Similarly, before letting students select a project to work

with, P4 looks for a mentor, i.e., some contact among the

project contributors who will help and provide some rec-
ommendations to students: “we look for a mentor in the
projects. So, we have some recommendations of projects and
that made life easier. [. . .] That’s why I wouldn’t say it is free
to choose because we have our contacts, so we present the
projects that are closer to the contacts. ”

B. RQ2. From the professors’ perspective, what are the ben-
efits of exposing students to OSS development?

Interviewees see this approach as a straightforward way to

engage students with real projects, “it is a real professional
environment, [. . .] that’s the main [benefit]” [P4]. According

to the professors, this is an important advantage of engaging

students in OSS projects, partially because of the level of
challenge imposed by such kind of project. Students need to

“understand what the others had done [. . .] how is the archi-
tecture. This enforces them to develop a much more mature set
of skills and reasoning” [P7]. Therefore, by working in such

environment, students are exposed to a landscape in which

they are required to develop their technical skills.

Regarding technical skills, we found that using OSS is

a good way to introduce technologies and tools that are

being used in practice at the moment. One of the professors

mentioned that “it is a good way to teach versioning control
systems” [P5]. In addition, it is a good opportunity to have

practical experience on different types of frameworks, APIs,

or tools. The interviewees also reported that it is a good

opportunity to learn and develop social skills. Although

some contributors are more active than others, OSS projects

are usually surrounded and maintained by a community of

developers [21]. In order to succeed, the students need to

interact with the community, which can occur in multiple ways

(e.g., asking questions or explaining their changes). This is

beneficial, according to the professors, because they “learn
how to be part of a team, learn how to be part of a distributed
project. They will improve their communication skills” [P6].

As mentioned earlier, one of the goals of SE courses is

to prepare the workforce for software projects. Therefore,

interviewed professors made it clear that using OSS is a way

119119

to train the students to real environment. This is highlighted

by P4: “[. . .] one of the good things is that you teach
your students how real world software is developed . . . If you
achieve that, then probably is somebody who is prepared to
work on a real software development project.”

Professors also perceived that exposing students to OSS

projects is an opportunity to motivate students, which was

summarized by P6 “It always feels good to contribute,” and

replicated by P1 “you can be proud of actually contribute
to something.” In this case, students can see it as a starting

point, and eventually engage in other OSS communities,

benefiting the OSS communities, which might take advantage

of additional contributors.

Because of the involvement with a real project, and the

open nature of such environments, interviewees reported that

it is also good for the resume. Students with little or no

experience can take advantage of such courses and start

creating a portfolio that can be used when applying for

industry jobs. P6 highlighted this: “When they go out and
interview with companies, they can say: ‘this is the projects I
have contributed to. I was part of the team’ . . . You can say:
‘look at this code and see what a good developer I am’.”
P5 additionally highlighted that at least one of his students

received an offer for the contributions done during the course.

We also found that this approach can benefit the students

by supporting the professors on changing or improving their

classes. P2 mentioned that “new generations cannot sit on a
chair for two hours and keep paying attention to a lecture.
They lost this ability”. He complemented, saying that “It is
important for the professor to have contact with the real world
. . . The class will be more interesting and useful if he has that
experience from outside the university.”

C. RQ3. From the professors’ perspective, what are the chal-
lenges associated with exposing students to OSS?

As mentioned in RQ1, choosing the right projects can be

a problem, as reported by P7:“The big challenge is finding
projects, or project candidates,” and already indicated in the

literature (e.g., [4], [5]). This issue was recurrently reported

by the interviewees. To alleviate this situation, P3 mentioned

that he cooperates with specific medium port projects that

can provide support to the students. With help from internal

developers, he identifies tasks that can be performed by the

students in one semester. In this case, all students from the

class contribute to the same project. Other professors guide

the students to choose projects that attend to specific require-

ment. For example, P1 said: “the project should be an active
project, [. . .] have multiple pull requests accepted/proposed
per week, [. . .] it should be a large project with several
external contributors.” In some cases, professors also provide a

non-exhaustive list of recommended projects. Usually, the list

provided is based on contacts made a priori with contributors,

as reported by P2: “I usually make contact with key people of
some projects making them aware that I will teach this course,
and asking if they can be student’s point of contact”.

Another challenge reported by the interviewees is the set

of barriers faced by the students during the contribution

process. P4 highlighted that “[OSS development] isn’t a fairy
tale”, since it is not always straightforward to have one contri-

bution accepted [10], [22]. The professors acknowledged that

the contribution barrier is even more challenging in the context

of a SE course. For example, P1 reported that “[Students’]
technical level could be the main problem. Also finding a
suitable thing to do is trick”, and P6 said that “[. . .] finding
a project, understanding the code, finding what work right in
the code, submitting and accepting it accepted, putting in the
main line of the project, those are the barriers.”

Many interviewees indicated that, depending on the project

and the assignment, time is an issue. OSS communities are

often overloaded, which has the potential of delaying the

contribution process. Professors, therefore, need to realize

“how to make students engage quickly” [P3]. Thus, guidance

from the instructors is crucial, since “you may not be able to
throw them in the deep end of the pool and say swim” [P6].

However, professors’ time availability is a also challenge,

since it is difficult to follow all students close enough and

help them overcoming both technical and social barriers. As

mentioned by P3 “I would have to follow the students closely
to try to help them. I noticed that it is necessary, however, I
had no availability to follow them as close as I wanted to”.

V. IMPLICATIONS & LIMITATIONS

A. Implications

This research has implications for different kinds of stake-

holders. First, SE faculties that teach traditional courses can

learn from the experience of their peers. Due to the several

advantages found in this new academic setting, such profes-

sors can become motivated to bring OSS projects inside the

classroom. Still, they can prepare themselves to deal with

drawbacks associated with this methodology, for instance,

getting in touch with the OSS community before students,

and evaluate whether they are friendly or not. Second, since

professors have a hard time choosing appropriate projects,

students could suggest what kind of projects they are more

willing to collaborate (e.g., a project they like most or a project

that use a programming language that they are more familiar

with). This, in turn, could increase their chances to succeed

with the task. Third, OSS communities can also benefit from

this study. Since now they know that students are working

on OSS projects as part of a SE course, they can help them

by creating issues that are simple enough to get started yet

interesting enough to motivate students. OSS communities can

also get in touch with professors highlighting projects that

are in need of additional contributors. Yet, several students

reported problems with getting involved with the community,

therefore such communities can leverage open communication

channels (e.g., IRC) to foster communication among users.

Finally, students can propose this kind of course to professors

that are not aware of their benefits.

120120

B. Limitations

In a study such as this, there are always many limitations

and threats to validity. First, we interviewed only seven pro-

fessors. This happens because some professors have a tight

schedule, and were not available for the interview. These

professors were found using convenience sampling, which has

the chance of limiting the generalizability of our subjects (e.g.,
∼60% of our interviews are Brazilian professors). Second, and

as a result of our first limitation, we did not achieve saturation.

That is, it is likely that more themes would emerge if more

interviews were conducted. Since this is a work in progress,

we plan to further expand the scope and the number of the

interviews. Third, the process of deriving themes from the

interviews is intrinsically qualitative, thus, human-prone. To

mitigate this limitation, the process was conducted in pairs,

using well-known qualitative research methods, followed by

conflict resolution meetings.

VI. CONCLUSIONS AND FUTURE WORK

In this study, we interviewed seven SE professors that opted

for introducing the process of contributing to an existing, non-

trivial OSS project as part of a SE course. We observed that

this process has clear benefits, such as (1) enhancing students’

technical skills, (2) enforcing students to learn social skills,

and, as a result, (3) improving students’ resume. Notwithstand-

ing, this process also hidden some challenges, for instance, (1)

choosing the right project to contribute, (2) getting involved

with an OSS community, and, as a consequence, (3) finding

appropriate tasks to solve during the short term of the course.

For future work, we plan to expand the scope of this study

in two ways: first, we plan to conduct additional interviews

as a way to refute or validate our additional findings; second,

since students are important stakeholders of the courses, we

also plan to get in touch with students that participated in such

classes and ask their perceptions about this shift.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their valuable

comments. This work is partially supported by CNPq

(406308/2016-0, 430642/2016-4) and PROPESP/UFPA.

REFERENCES

[1] Y. Sedelmaier and D. Landes, “A research agenda for identifying and de-
veloping required competencies in software engineering.” International
Journal of Engineering Pedagogy, vol. 3, no. 2, 2013.

[2] F. Fagerholm and M. Pagels, Examining the Structure of Lean
and Agile Values among Software Developers. Cham: Springer
International Publishing, 2014, pp. 218–233. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-06862-6 15

[3] O. Cawley, S. Weibelzahl, I. Richardson, and Y. Delaney, Incorporat-
ing a self-directed learning pedagogy in the Computing Classroom:
Problem-Based Learning as a means to improving Software Engineering
learning outcomes. IGI Global, 2014, pp. 348–371.

[4] B. Morgan and C. Jensen, “Lessons learned from teaching open source
software development,” in 10th International Conference on Open
Source Systems, OSS 2014, San José, Costa Rica, May 6-9, 2014., Berlin,
Heidelberg, 2014, pp. 133–142.

[5] T. M. Smith, R. McCartney, S. S. Gokhale, and L. C. Kaczmarczyk,
“Selecting open source software projects to teach software engineering,”
in 45th ACM Technical Symposium on Computer Science Education, ser.
SIGCSE ’14, 2014, pp. 397–402.

[6] J. Buchta, M. Petrenko, D. Poshyvanyk, and V. Rajlich, “Teaching
evolution of open-source projects in software engineering courses,” in
22nd IEEE International Conference on Software Maintenance, ser.
ICSM ’06, 2006, pp. 136–144.

[7] M. Petrenko, D. Poshyvanyk, V. Rajlich, and J. Buchta, “Teaching
software evolution in open source,” Computer, vol. 40, no. 11, pp. 25–
31, Nov. 2007.

[8] D. Coppit and J. M. Haddox-Schatz, “Large team projects in software
engineering courses,” in 36th SIGCSE Technical Symposium on Com-
puter Science Education, ser. SIGCSE ’05, 2005, pp. 137–141.

[9] A. Sarma, M. A. Gerosa, I. Steinmacher, and R. Leano, “Training
the Future Workforce Through Task Curation in an OSS Ecosystem,”
in 2016 24th ACM FSE, ser. FSE 2016. ACM, 2016, pp. 932–935.
[Online]. Available: http://doi.acm.org/10.1145/2950290.2983984

[10] I. Steinmacher, T. U. Conte, C. Treude, and M. A. Gerosa, “Overcoming
open source project entry barriers with a portal for newcomers,” in 38th
International Conference on Software Engineering, ser. ICSE ’16, 2016,
pp. 273–284.

[11] B. Dagenais, H. Ossher, R. K. E. Bellamy, M. P. Robillard, and J. P.
de Vries, “Moving into a new software project landscape,” in 32Nd
ACM/IEEE International Conference on Software Engineering - Volume
1, ser. ICSE ’10, 2010, pp. 275–284.

[12] D. M. Nascimento, K. Cox, T. Almeida, W. Sampaio, R. A. Bittencourt,
R. Souza, and C. Chavez, “Using open source projects in software
engineering education: A systematic mapping study,” in 2013 IEEE
Frontiers in Education Conference (FIE), Oct 2013, pp. 1837–1843.

[13] H. J. C. Ellis, M. Chua, G. W. Hislop, M. Purcell, and S. Dziallas,
“Towards a model of faculty development for foss in education,” in 2013
26th International Conference on Software Engineering Education and
Training (CSEE&T), May 2013, pp. 269–273.

[14] H. J. C. Ellis, G. W. Hislop, and M. Purcell, “Project selection for student
involvement in humanitarian FOSS,” in 26th International Conference
on Software Engineering Education and Training, CSEE&T 2013, San
Francisco, CA, USA, May 19-21, 2013, 2013, pp. 359–361.

[15] R. Holmes, M. Craig, K. Reid, and E. Stroulia, “Lessons learned
managing distributed software engineering courses,” in Companion Pro-
ceedings of the 36th International Conference on Software Engineering,
ser. ICSE Companion 2014, 2014, pp. 321–324.

[16] A. Van Deursen, M. Aniche, J. Aué, R. Slag, M. De Jong, A. Nederlof,
and E. Bouwers, “A collaborative approach to teaching software archi-
tecture,” in Proceedings of the 2017 ACM SIGCSE Technical Symposium
on Computer Science Education, ser. SIGCSE ’17, 2017, pp. 591–596.

[17] G. W. Hislop, H. J. Ellis, A. B. Tucker, and S. Dexter, “Using open
source software to engage students in computer science education,” in
40th ACM Technical Symposium on Computer Science Education, ser.
SIGCSE ’09, 2009, pp. 134–135.

[18] J. Bishop, C. Jensen, W. Scacchi, and A. Smith, “How to use open
source software in education,” in 47th ACM Technical Symposium on
Computing Science Education, ser. SIGCSE ’16, 2016, pp. 321–322.

[19] G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study of
the pull-based software development model,” in Proceedings of the 36th
International Conference on Software Engineering, ser. ICSE, 2014, pp.
345–355.

[20] R. Hoda, J. Noble, and S. Marshall, “Developing a grounded theory to
explain the practices of self-organizing agile teams,” Empirical Softw.
Engg., vol. 17, no. 6, pp. 609–639, Dec. 2012.

[21] G. Pinto, I. Steinmacher, and M. A. Gerosa, “More common than you
think: An in-depth study of casual contributors,” in IEEE 23rd Interna-
tional Conference on Software Analysis, Evolution, and Reengineering,
SANER 2016, 2016, pp. 112–123.

[22] L. F. Dias, I. Steinmacher, G. Pinto, D. A. da Costa, and M. Gerosa,
“How does the shift to github impact project collaboration?” in 32th
IEEE International Conference on Software Maintenance and Evolution

(ICSME), 2016.

121121

