
Model Driven Software Engineering in Education:
A Multi-Case Study on Perception of Tools and UML

Grischa Liebel

Chalmers | University of Gothenburg

Gothenburg, Sweden

Email: grischa@chalmers.se

Omar Badreddin

Computer Science Department

University of Texas, El Paso, USA

Email: obbadreddin@utep.edu

Rogardt Heldal

Western Norway University of Applied Sciences

Bergen, Norway

Email: rogardt.heldal@hib.no

Abstract—While several benefits of using models in software
engineering have been observed in practice, the adoption of
modeling remains low. Multiple challenges of using models,
especially related to tools, have been reported both for industrial
use and for education. However, there is a lack of systematic,
empirical investigations of the challenges in modeling educa-
tion and their relation to industrial challenges. Therefore, we
conducted a multiple-case study with two cases, in the U.S
and Sweden, focusing on students’ perceptions towards tooling
and UML in education. Our data collected from 369 student
evaluation surveys, enriched with qualitative data, shows that
the students’ perception of modeling tools depends not only
on the complexity of tools, but rather on multiple contextual
factors, including tool characteristics, scope of course and project
contents, nature of the required models, and the tools’ role
in generating executable artifacts. We conclude that there is a
need for tailoring modeling tools for education beyond focusing
on simplification and usability. Furthermore, due to the broad
diversity within the modeling domain, there is a need for adapting
the use of tools to the specific curriculum and course learning
objectives.

Keywords-UML, Model-Driven Architecture, Model-Driven
Engineering, Pedagogy.

I. INTRODUCTION

Software modeling is recommended in several computer

science and software engineering curricula [1]. Furthermore,

it has been shown that creating up front design improves the

overall quality of the software under development, and can

facilitate automatic generation of various system artifacts [2].

However, while modeling and model-driven practices such

as MDA [3] or MBE (see [4]) are widely adopted in some

domains like embedded systems [5], other communities such

as the open source and agile communities remain almost

exclusively code-centric [6]. Other studies indicate that the use

of models is low in software engineering and mainly limited

to sketches for communication and coordination [7].

Several challenges to the adoption of modeling in practice

are reported by empirical studies, e.g., that modeling is not

perceived useful enough [8] or that it is only useful for very

complex systems [7]. Additionally, it has been reported that the

adoption of model based engineering of software is hampered,

at least in part, by inadequate academic preparation of young

software engineers [9]. This is supported by evidence that

students graduate from software engineering and computer

science programs perceiving UML and model driven method-

ologies as ineffective [10].

Interestingly, industrial use of models and modeling ed-

ucation seem to be facing one common challenge, namely

tooling. Many of the reported challenges for industry adop-

tion are related to the tools used for modeling, including

inadequate usability [11], [5], interoperability [12], [5], [13],

and complexity [12], [14]. Similarly, there exists anecdotal

and empirical evidence that tooling plays a decisive role in

modeling education [15], [16], [17], [18].

Due to the challenges arising from using industrial modeling

tools in the classroom, several educators have argued for

simplified tools in education, e.g., [19], [20], [21], [15]. Others

have argued that industrial-grade modeling tools can be used

given the right support and should in fact be used in order to

address the lack of adoption in industry [17]. However, while

there is substantial anecdotal evidence, empirical evidence on

the influence of modeling tools and tool support on the stu-

dents’ perception of modeling is lacking. Therefore, existing

conclusions on the need of educational tools are likely to be

influenced, at least to some extent, by personal preconceptions,

i.e., they may suffer from confirmation or self-serving bias.

To address the lack of empirical evidence, we present in this

paper a multiple-case study with two cases focusing on tools

and their support in modeling education. We aim to answer

the following research questions.

RQ1: How do students perceive modeling tools?

RQ2: How does the course context and the use of modeling

tools influence the students’ perception of modeling?

RQ3: Compared to industrial use, what characteristics do

modeling tools need when used in education?

We collected quantitative and qualitative data from undergrad-

uate students in two courses over two years in the U.S. and

in Sweden. To minimize confirmation bias and to ensure a

balanced interpretation of the collected data, the authors of this

paper come from two different camps; proponents of simplified

modeling tools in education and opponents thereof.

The paper is organized as follows. We present a background

and related works in the next two sections. We present our

multiple-case study design in Section III. The data collected

from the multiple-case study is presented in Section IV. We

present a discussion of the results in Section V. In Section

The 30th IEEE Conference on Software Engineering Education and Training

2377-570X/17 $31.00 © 2017 IEEE

DOI 10.1109/CSEET.2017.29

124

The 30th IEEE Conference on Software Engineering Education and Training

2377-570X/17 $31.00 © 2017 IEEE

DOI 10.1109/CSEET.2017.29

124

VI, we discuss threats to validity. We conclude the paper in

Section VII.

II. RELATED WORK

A. State of Modeling in Software Engineering Education

Computer Science and Software Engineering curricula focus

on programming and coding as the main problem-solving tool,

even though several curriculum recommendations promotes

the use of modeling [1]. Today, the majority of the curric-

ula introduce modeling and design concepts only lightly in

early courses. Model Driven Architecture (MDA) concepts are

typically introduced as advanced selective topics later in the

curriculum. In a previous work, Badreddin et al. conducted a

longitudinal study of seven Computer Science and Software

Engineering programs at four Universities [10]. The study

focused on students’ perception of modeling and MDA as they

progressed in their education from early bachelor years and to

their terminal educational degrees. Among other findings, the

study identified a consistent downward trend in perception of

MDA effectiveness in software development. Students gradu-

ate with increasing conviction that MDA is not an effective

software development methodology. This is potentially due to

the fact that overhead of model creation is not justified in the

case of small course-sized problems.

B. Educators’ Experiences

Experiences with the use of modeling tools of different

complexity and maturity, for different purposes, are a common

topic in education research.

Industry-grade tools are often described as unsuited for

education in the area of modeling. For example, Lethbridge

et al. [15] describe industry-grade tools as “unwieldy”. Sim-

ilarly, Akayama et al. [16] report from their experience that

students use language features they do not understand when

using industry-grade modeling tools. Paige et al. [18] describe

industry-grade tools as too cumbersome. While all of the above

publications are based on extensive teaching experience, they

lack empirical data that substantiate their statements.

Cabot and Kolovos [22] present their experiences1 along

with student evaluation data on two failed attempts to intro-

duce MDE to students. The authors emphasize the importance

of a first positive exposure to MDE, but also refer to several

shortcomings in tooling, such as a lack of documentation.

Liebel et al. [17] report based on evaluation data from two

years of a modeling course at the Bachelor level that industry-

grade tools can be used successfully in the classroom, given

sufficient and dedicated tool support.

How the use of tools compares to not using any tools at all

in modeling education is studied by Hammouda et al. [23],

who compare the use of modeling tools and pen and paper

modeling in education. The authors do not observe a clear

advantage for any of the two approaches.

Hence, while it is often claimed that industry-grade tools

are unsuited for education, there is lack of empirical evidence

1While the authors call it an “experiment”, they do not perform a controlled
experiment in the classical sense.

TABLE I
OVERVIEW OF EDUCATION-FOCUSED TOOLS

Tool Key Advantage

QuickUML [25] Limited features to ensure students use only features
they understand.

minimUML [26] Support for undo/redo to encourage explorative
learning.

Violet [27] Lightweight for early learners.
UMLet [21] Simple interface to facilitate fast UML models cre-

ation.
Dia [28] Simple drawing tool, easy to learn.
ArgoUML [20] Full featured to support system development.
StudentUML
[19]

Limited support for a small subset of UML.

Ideogramic UML
[29]

Support for interactive learning by transforming ges-
tures into formal UML models.

Umple [15] Textual modeling for seamless integration into OO
code.

MDELite [30] Teaching UML from a relational data base perspec-
tive.

UMLFactory UMLFactory referenced at www.UMLfactory.com is
no longer available.

yUML [31] Cloud based for sharing and collaboration.
TxtUML [32] Textual executable modeling.
WebUML [33] Web based for sharing of models.

beyond experience reports that substantiates or refutes this

claim.

C. Overview of Education-Focused Tools

The question of tool choice in education has been raised

just after the emergence of UML and its standardization.

One of the early concerns that have been raised at that

time was the adequacy of existing computing platforms for

running commercial modeling tools that had high memory

requirements [24]. Typical concerns are the complexity of

modeling tools, the steep learning curve, and the complexity

of the UML standard itself.

These concerns seem to have been a common motivation

for the majority of specialized UML tools in existence today,

despite the fact that industry is seemingly facing similar

challenges, and despite the lack of empirical evidence that

show any disadvantages of industrial modeling tools.

In Table I, we give an overview over a number of education-

focused UML modeling tools and their key advantages. We

chose these tools based on their exposure in the academic

modeling and MDE community, e.g., through existing publi-

cations.

III. METHOD

Our method is a multiple-case study with four units of

analysis. Case studies are appropriate where the object of study

is difficult to separate from its real-life context [34]. In the

case of university education, there are many factors that are

very difficult to control, if not impossible. For example, lecture

quality, students’ knowledge and preparation, social influence,

variations within students’ populations over different course

offerings, and variations in project assignments and assess-

ments.

Tool Key Advantage

QuickUML [25] Limited features to ensure students use only features
they understand.

minimUML [26] Support for undo/redo to encourage explorative
learning.

Violet [27] Lightweight for early learners.
UMLet [21] Simple interface to facilitate fast UML models cre-

ation.
Dia [28] Simple drawing tool, easy to learn.
ArgoUML [20] Full featured to support system development.
StudentUML
[19]

Limited support for a small subset of UML.

Ideogramic UML
[29]

Support for interactive learning by transforming ges-
tures into formal UML models.

Umple [15] Textual modeling for seamless integration into OO
code.

MDELite [30] Teaching UML from a relational data base perspec-
tive.

UMLFactory UMLFactory referenced at www.UMLfactory.com is
no longer available.

yUML [31] Cloud based for sharing and collaboration.
TxtUML [32] Textual executable modeling.
WebUML [33] Web based for sharing of models.

125125

Fig. 1. Case study design

We conducted a multiple-case study with two cases and

four units of analysis according to the classification in [35].

The cases are two third-year courses on software modeling

and design, one conducted in the USA and one in Sweden.

The four units of analysis (UoA) are the different years in

which the course was run. In the US case, the course was

run once with Umple [15] as a modeling tool and once

with Papyrus [36]. In the Sweden case, two course runs with

Papyrus were studied, once with dedicated tool support and

once without. Both cases contained a group project with a

final presentation. However, group sizes varied from three

to four students in the US case, and up to eight students

in the Sweden case. The course lasted 15 weeks in the US

case and 8 weeks in the Sweden case. Otherwise, conditions

were similar over the different units of analysis. For both

cases, quantitative data and qualitative data were collected.

Quantitative data are collected by means of anonymous and

voluntary questionnaires conducted towards the end of the

course. Qualitative data is collected by means of one-on-

one follow-up questions, and from the end of term course

evaluations.

A. Case Context

In both cases, we applied constructive alignment [37]. That

is, our students apply more than 80% of the material covered

during lectures in their projects2. Also, the students create

both behavioral and structural models. The final deliverables

must include a running system. This course design ensures

that the students receive some level of automated feedback on

their models, e.g., using code generation or executable models,

that helps them to understand implications of designs they

have created. When choosing a project topic, we did consider

realistic topics from industry, as suggested by [18]. However,

2Other content being guest lectures or motivation material not directly
related to the project.

we ultimately decided against an industrial project topic due

to time constraints and to lower complexity. We instead

prescribed a topic with minimum requirements. Students are

then required to extend the topic by conducting requirements

elicitation, analysis and design.

B. Data Collection

We collected quantitative3 and qualitative data through a

paper-based questionnaire at the end of the course, in order to

ensure that students’ responses are based on their experiences

with modeling and the assigned tool. Participation was both

voluntary and anonymous. In total, we collected 38 evaluation

surveys in UoA 1, 39 in UoA 2, 151 in UoA 3 and 141 in UoA

4. The following two subsections describe the quantitative and

qualitative data collected.

1) Quantitative Data: Anonymous questionnaires were dis-

tributed to students towards the end of the course. In all four

UoAs, students were asked to rate their agreement to the

following core questions.

Q1. <Tool> can be useful for modeling a large and complex

system.

Q2. The use of <Tool> affected our project positively.

Q3. It was easy to learn <Tool>.

Q4. UML can be useful for modeling a large and complex

system.

Q5. I observed benefits of creating models of our system prior

to writing the code.

Q6. The advantages of modeling outweigh the creation effort

of the models.

Each question had 5-scale Likert choices: Strongly Agree,

Agree, Neutral, Disagree, Strongly Disagree, and Don’t know.

Missing and Don’t know answers are excluded from the graphs

in the following.

2) Qualitative Data: Qualitative data was collected from

open-ended questions and additional comments space provided

in the questionnaires and, in the US case, from one-on-one

discussions and interviews with students related to UML or

the tool. Students voluntarily opted for the post-questionnaire

interviews, by either writing their email addresses, or by

showing up at pre-set scheduled time during the last two weeks

of the semester. Additional qualitative data was collected from

end of term course evaluations. We coded the qualitative data

loosely following a grounded-theory approach [38].

IV. RESULTS

In this section, we present the quantitative data results for

both cases. The results are presented as follows. For each case,

data for both its units of analysis are presented together. Data

is presented under two classification; tool related data and

UML related data. Qualitative data are used for interpreting

the results in Section V.

3The quantitative raw data is published at http://grischaliebel.de/data/
research/LBH-MBE-edu.zip

126126

Fig. 2. Tool’s usefulness for creating large systems (Case I)

A. Case I: The US Case

In this case, students were instructed to use a modeling tool

to implement their project (Umple [15] in UoA 1 and Papyrus

[36] in UoA 2). They could choose from a list of pre-defined

topics, e.g., a university registration system or a canal lock

system. Students were instructed to create structural models

(class diagrams) and behavioral models (state machines), and

provide implementations of actions using Java. The project

high-level requirements were presented in week two of the

courses. Students presented their project design and imple-

mentation in week fourteen of the course, and submitted a

final project report in week fifteen.

Students were presented with a demonstration of the tool

by the course instructor, and were provided with optional two

hands-on lab sessions given by the course teaching assistant.

1) Tool Data: We asked the students to rate their agreement

to three statements regarding the use of the tool (Umple in

UoA 1 and Papyrus in UoA 2), as discussed in Section III-B.

The results are depicted in Fig. 2, Fig. 3, and Fig. 4.

In UoA 1, the students’ views regarding the usefulness of

the tool are somewhat balanced, with 40% of the students

agreeing that Umple is useful for the development of large and

complex systems and 46% disagreeing. In UoA 2, the view

is significantly worse. Here, only 3.4% agree that Papyrus is

effective for large and complex systems and 86% disagree.

There is a clear endorsement for Umple in UoA 1 regarding

its impact on the project, with 65% agreeing that the tool

affected their project positively and about 20% disagreeing.

In UoA 2, the picture is similar to the previous question.

Only 10% agree that Papyrus had a positive effect, while 81%

disagree.

In UoA 1, 65% agree and 19% disagree that Umple is easy

to learn. The view in UoA 2 is again more negative, with 39%

agreeing and 48% disagreeing that Papyrus is easy to learn.

2) UML Data: We asked the students to rate their agree-

ment to three statements regarding the UML, as discussion

Section III-B. The results are depicted in Fig. 5, Fig. 6, and

Fig. 7.

About 60% of students agree in UoA 1 that UML is useful

for large and complex systems, while only 18% disagree. In

UoA 2, this picture changes considerably to only 21% agreeing

and 68% disagreeing.

Fig. 3. Tool influence (Case I)

Fig. 4. Easiness to learn tool (Case I)

Fig. 5. UML’s usefulness for creating large systems (Case I)

Similarly, the view on benefits of creating models prior to

writing code is almost mirrored in UoA 1 and UoA 2. While

78% agree that creating models before coding is effective and

22% disagree in UoA 1, only 30% agree and 59% disagree in

UoA 2.

Compared to the previous two questions, the students’ view

does not change significantly between UoA 1 and UoA 2

regarding the modeling trade-off. In UoA 1, 21% agree that

the advantages of modeling outweigh the creation effort, and

about 64% disagree. In UoA 2, the picture is only slightly

more negative with 13% agreeing and 70% disagreeing.

Overall, one observes that in UoA 1 the students clearly see

the benefit of UML, but are somewhat sceptical regarding the

effort involved. In UoA 2, this picture is changed completely

towards a rather negative view of UML and modeling.

127127

Fig. 6. Benefits of modeling (Case I)

Fig. 7. Modeling tradeoff (Case I)

B. Case II: The Sweden Case

In this case, students used Papyrus to realize an 8-week

project. During this project, students created in project groups

several structural and behavioral UML models on different

abstraction levels, e.g., domain models for the purpose of

communication, class diagrams for design, or state machine

diagrams to illustrate use cases. From the class diagrams, the

students generated code using the Eclipse Modeling Frame-

work [39] code generation capabilities and implemented a

number of central use cases. All students are required to model

and implement a hotel booking system, but only very vague

requirements were stated initially, which the groups then had

to refine and enrich with further features and/or requirements.

Student groups had to attend weekly compulsory supervision

sessions with an assigned supervisor.

Papyrus was introduced in two dedicated lectures, which

were also recorded so that students could later re-watch the

presentations. In UoA 3, one dedicated teacher knowledgeable

in Papyrus and the course material provided dedicated support

via email. In UoA 4, this additional support was not available

due to a different allocation of teaching hours.

The results of the survey are presented in the following,

separately for the three questions targeting Papyrus and those

targeting UML.

1) Tool Data: We asked the students to rate their agreement

to three statements regarding the use of Papyrus, namely the

tool’s effectiveness for development of large and complex

systems (Fig. 8), the tool’s usefulness in this specific project

(Fig. 9), and how easy it was to learn the tool (Fig. 10).

Fig. 8. Tool’s usefulness for creating large systems (Case II)

Fig. 9. Tool influence (Case II)

The students’ view of the usefulness of Papyrus to develop

large and complex systems is different in the two UoAs. In

UoA 3, about 15% strongly agree and 22% agree that Papyrus

is useful for this purpose. In UoA 4, a similar proportion of

students generally agree to the statement, but the percentage of

students strongly agreeing is lower than in UoA 4 (only 6.4%

strongly agree and 32.6% agree). Similarly, the percentage of

students strongly disagreeing to the statement has increased

by 2% to now 12.8%.

In UoA 3, there is no agreement among the students as to

how useful Papyrus was for the project (31% (strongly) agree

that it was useful, 25% (strongly) disagree). A much clearer

picture can be seen for the statements in UoA 4, with 49%

(strongly) disagreeing and only 17% (strongly) agreeing.

While not as strong as for the previous question, the picture

for how easy it was to learn Papyrus is similar. In UoA 3, the

students’ evaluation is balanced with 29% (strongly) agreeing

that it was easy and 33% (strongly) disagreeing. In UoA 4,

this view has changed to the negative with only 11% (strongly)

agreeing and 44% (strongly) disagreeing.

2) UML Data: The students’ picture of UML is consider-

ably more positive than their picture of Papyrus. We asked the

students to rate their agreement to three statements regarding

the UML, namely UML’s usefulness for development of large

and complex systems (Fig. 11), the benefit of creating models

prior to coding (Fig. 12), and the tradeoff between modeling

benefit and effort (Fig. 13).

In UoA 3, 86% of students agree that UML is useful

for large and complex systems and only 1% of the students

128128

Fig. 10. Easiness to learn tool (Case II)

Fig. 11. UML’s usefulness for creating large systems (Case II)

Fig. 12. Benefits of modeling (Case II)

disagree. In UoA 4, the agreement increases to 89% of the

students (strongly) agreeing that UML is useful for modeling

a large and complex system.

Similar figures can be observed with respect to the benefits

of creating models. In UoA 3, 87% agree that creating models

before writing code was beneficial and not a single student

disagrees. The same proportion of students agrees to the

statement in UoA 4, but 3.5% disagree.

While still extremely positive, the views on the tradeoff

between effort and benefit of modeling are slightly lower. In

UoA 3, 69% agree that the advantages of modeling outweigh

the creation effort, with only 4% disagreeing. Similarly, in

UoA 4 66% (strongly) agree, but 11.3% disagree.

Overall, the evaluations of the UML statements can be seen

as a rather strong endorsement of UML, especially given the

balanced or negative evaluations of Papyrus. In particular, it is

extremely interesting to observe that the evaluation of UML

Fig. 13. Modeling tradeoff (Case II)

remains largely unchanged compared to UoA 3, despite the

strong decline in the Papyrus evaluations.

V. OBSERVATIONS AND ANALYSIS

In this section, we provide observations and analysis of the

entire data sets collected from both cases, including all four

units of analysis. The observations and analysis are based on

both quantitative and qualitative data sets. We then summarize

this discussion in terms of our three research questions.

A. Model Based Engineering versus Model Driven Engineer-
ing

Both MBE and MDA involve creation and manipulation of

models that abstract the system under development. However,

in MDA, the focus is on system development and code

generation. As such, models must have precise semantics

to aid in code generation (as well as other artifacts such

as test cases). In Case I where the focus was primarily on

system development, two factors came into play; 1) tool choice

and 2) overhead incurred to create and manage models. Our

findings suggest that to support teaching of MDA effectively,

the tool must support only a subset of UML with unambiguous

semantics, and one that contributes directly to generating

executable artifacts (code and tests). This could explain why

Umple’s overall perception was higher than Papyrus. In this

context, students perceive UML as key in its support for

code generation. Consequently, UML perception is greatly

influenced by perception of effectiveness of the generated

artifacts.

In Case II, the students’ tasks involved, in addition to code

generation, also modeling of requirements, analysis and design

on a less formal level. As such, code generation becomes

a secondary goal. This is where students tend to perceive

UML more favourably. In fact, students’ perception of the tool

and UML are both positive when more informal modeling is

involved. This finding is also consistent with a recent analysis

of software engineering programs that demonstrates positive

perception of UML when used for informal requirement

gathering and analysis [10]. Hence, one possible conclusion re-

sulting from this observation is that to improve students’ view

of modeling, a mix of informal and formal modeling should

be included. Furthermore, as already discussed by Börstler

et al. [1] in 2012, what is taught in modeling courses still

129129

differs greatly. As a result of this, researchers and educators

should take great care in explaining their course context when

publishing or discussing software modeling. As common terms

in the area such as MDE or MBE can be ambiguous, a possible

way to discuss course content could be the initial taxonomy

of what is taught by Kuzniarz and Börstler [40].

B. Project Domain

In Case I, the project domain was familiar to students, to

promote the focus on the system design and implementation.

The problem domain and requirements were given, or assumed

by the students. In Case II, only a vague problem description

was given to the students, who then were required to define

the domain and the requirements themselves. As such, there

was initially a focus on exploration and understanding of the

problem domain. This seems to have a positive impact on

the students’ perception of UML in general. As can be seen

in the quantitative data, the UML perception of the students

is very high in both UoA 3 and UoA 4. Additionally, the

qualitative data supports this observation. For example, several

students reported that UML is useful in defining requirements

and achieving a common understanding of the problem within

the project group.

This observation ties into the discussion on whether or not

realistic problems should be used in student modeling projects.

While Paige et al. [18] argue that realistic project topics are

important to motivate students, we here (and earlier in [17])

take the standpoint that this imposes unnecessary complexity

on students. However, the above observation suggests that the

topic should encourage students to explore and gain further

insights through the use of models. Hence, the topic needs to

contain some uncertainty and complexity.

Finally, the suitability of the modeling tool(s) for the given

project domain and scope might clearly have an influence

on the students’ perception. Clearly, a general-purpose UML

modeling tool such as Papyrus is more suited in a project

that includes the entire development chain including project

scoping, requirements analysis, design, and code generation

and implementation. In contrast, Umple might have been more

suitable for a narrow project scope as in Case I, where the

focus is on code generation and design models. Hence, it could

be that the suitability of the tools in Case I for the given project

has a larger impact on the students’ perception than the tool

quality, e.g., with respect to usability, itself.

C. Delivering a Working System and Support for Round-Trip
Engineering

To develop a complete system, collaboratively, implies that

models and code must be interchanged frequently. In UoA

2, the code generation facilities used by the students did

not support effective re-generation and the students had to

implement their own workarounds to avoid overwriting of their

code in the face of changes in the design. Students would

store code artifacts in separate files, and merge after iterative

forward engineering (generating skeleton code from models).

This seems to have significantly hampered the students’ per-

ception of UML and the tooling. In contrast, Umple, as used

in UoA 1, tends to merge both model and code in a single

artifact, significantly easing the need for forward and reverse

engineering. This could explain the large differences in UML

perception between UoA 1 and UoA 2.

In Case II, the students used the code generation facilities

of EMF. While these are less than ideal for generating code

from UML models, there is support for re-generation and

protected regions in the code. Therefore, there is no need

for workarounds to protect existing, hand-written code. This

could explain why the students’ view of Papyrus is much

more positive compared to UoA 2. Additionally, we can tell

from comments in the surveys that in Case II, several students

appreciated the added value from re-generation after they had

understood and mastered the process. This shows that while

the tool does not need to be easy from the beginning, it has

to provide the students with (perceived) added value by the

end of their project. Otherwise, students may perceive it as

cumbersome, and an obstacle in their way of being more

effective.

D. Expert and Dedicated Tool Support

Dedicated tool support seems to have a substantial impact

on students’ overall perception. This can be observed in

the comparison of UoA3 and UoA4. In UoA 3, there was

dedicated support for Papyrus and code generation in Papyrus,

including videos that students could watch repeatedly. The

tool evaluation is consequently balanced, which could be seen

favourably given the complexity of the tool and of code

generation. More importantly, the change from UoA 3 to UoA

4 is statistically significant (p < 0.01 for all questions, Mann-

Whitney U test [41]) in all three tool questions. Additionally,

the dedicated support was emphasized in the qualitative eval-

uation data by a large amount of students in UoA 3. Given

that the only change between the UoAs is the amount of tool

support, this is a rather interesting result. It is essential to

point out here that the tool support was in Case II given by

a teacher within the course, not by the tool vendor or the

community. As we dicsuss already in [17], we regard this as

essential in order to give the students the right support for the

given project. In fact, it could explain Cabot and Kolovos’ [22]

negative experience with tool support, as they seem to have

relied mainly on the tool vendors in their study on teaching

MDE.

Interestingly, the UML evaluation is consistent in the two

UoAs and seemingly unaffected by the support. Given this

result, it could be reasoned that the tool support is not

detrimental, as the perception of UML -which is the part the

learning outcome relates to- remains unchanged. However, if

the support is insufficient, students might never reach the point

of mastery where the tool provides added value, as discussed

in the previous section. Additionally, we believe that a negative

view of the tool might seriously hamper the students’ learning,

as discussed in the following section.

130130

E. Students’ Perception, Feedback, and Learning Outcomes

In two out of four UoAs, the tool evaluations can be viewed

as being negative, in one UoA the tool evaluation is balanced

and only in UoA 1 the tool evaluation is truly positive. This

observation together with Hammouda et al.’s findings that

there is no significant difference between using a tool and

using just pen and paper for modeling [23] raises the question

whether tools should at all be used in modeling education.

As two of the co-authors of this paper already discussed in

[17], we believe that code generation is an important aspect

of teaching modeling. The reason for this is that students

receive automated feedback on their models, which helps them

relate to their model using an artifact they are already familiar

with, namely source code. This kind of feedback positively

affects the learning outcomes, which could not be satisfactory

achieved using a pen and paper.

The interesting question is then why the students perceive

the tools negatively, especially for code generation purposes,

even though we know from observations and from education

literature that feedback supports learning. One explanation is

that the tool exposes a lack of knowledge, or deficiencies in

the model under development. If the students make mistakes

in their models that they later use for code generation, the

tool exposes this directly and immediately. In contrast, for

imprecise models, there is much less feedback. Possibly, this

leads to a feeling of knowledge’ [42], a feeling that they

understood the model, while they actually did not. Feeling of

knowledge is often linked to situations where we think we can

answer a question because it looks familiar or contains several

familiar terms [42]. In the case of modeling, it might be that

the students are familiar enough with the diagram types, e.g.,

through lectures, that they believe their solution is good. If this

explanation is in fact valid, this would be a strong argument

to use tools that provide automated feedback in modeling

education, even if it results in negative perceptions.

Another possible explanation is the kind of feedback pro-

vided by modeling tools. In the case of Papyrus, the feedback

students receive is often in the form of errors during design or

code generation. However, we can observe that our students

dislike this kind of feedback, an observation supported by

Weaver [43] for written feedback. Similarly, several studies

show that negative feedback in programming environments,

e.g., compiler errors, heavily affect self-motivation and other

important factors in students’ learning, e.g., [44], [45], [46].

At the same time, motivation has been shown to have a

significant effect on programming learning [47]. Hence, if

the modeling tools affect motivation in a negative way due

to the nature of feedback provided, this could have profound

effects on learning. Therefore, it is valuable to investigate the

use of more encouraging feedback customized particularly for

modeling education, similar to approaches used in program-

ming education, e.g., in [48]. While this can take the form of

specialized modeling tools, it could also be related to the form

of exercises performed by the students, e.g., using the extreme

apprenticeship method proposed by Vihavainen et al. [49].

The nature of modeling feedback, or lack thereof, could

explain why the perception of Umple in UoA 1 was uniquely

positive (even when the UML data was not). Umple’s feedback

is based on errors found in the generated Java code. As

students are familiar with Java errors and as Umple shows the

errors usually in relation to the originating modeling elements,

students are able to fix them with ease.

F. Summary

Summarizing the discussion, we can answer our three

research questions as follows.

As discussed in related work on modeling education, mod-

eling tools are often perceived as cumbersome by students

(RQ1). However, our data shows that this perception is highly

related to several factors. First, the tool support given in the

course and how closely this support relates to the students’

projects is of importance, as clearly seen in Case II. Secondly,

it plays an important role whether or not the models created by

students have to be formal, e.g., to allow for code generation.

If formal models are required, this can lower the students’

perceptions substantially. This suggests that when teaching

modeling, there should be a balance between informal and

formal models, without a focus solely on code generation.

Finally, we observe that if formal models are used for code

generation or other models transformations, the effectiveness

of the resulting artifacts is important. If students clearly see

that the process of transforming models into code supports

their work even if this requires getting used to the process

of doing so, it will positively affect their perception of the

tools. If they instead feel like it is only an obstacle, they will

perceive the tools as cumbersome and ultimately as a burden.

With respect to the students’ perception of modeling, we

observe that the course context the use of modeling tools

plays a key role (RQ2). The use of informal models in Case

II positively affected the students’ perception of modeling,

even to the extent that the perception of the modeling tool

was secondary. In contrast, a strong focus on code generation

in Case II seemingly affect the students’ view of modeling

negatively. Therefore, we need to distinguish in more detail

what we mean by modeling education and to investigate in

greater depth how we can support students and convey the

material better in the different approaches.

Finally, there is a large overlap between modeling tool

perception in industry and in education (RQ3). For example,

usability is named in many studies that investigate modeling

tools in industry, e.g., in [11], [5], as well as in modeling

education, e.g., in [15], [16], [17], [18]. Similarly, it is a re-

occuring topic in our own data. However, we also observe

several differences in the perceptions of modeling tools. While

characteristics such as interoperability [5], [12], [50], handling

large models [13], or organisational aspects [51] play key roles

in industry, this is not the case in education. For example,

interoperability or handling large models play a minor role as

students rarely work on projects complex enough to include

multiple tools or modeling languages. In contrast, other tool

characteristics are relevant. For example, we observed in our

131131

study the need for positive feedback to motivate students.

Similarly, code generation and model transformation facilities

might not need to be as powerful as for industrial use, but

rather quick and effective for small-scale projects.

VI. VALIDITY THREATS

In the following, we discuss the threats to validity in our

case study and countermeasures we took to reduce them.

We follow the categorization by Runeson et al. into External
Validity, Internal Validity, Construct Validity and Reliability
[34].

A. External Validity

By design, case studies have a very limited external validity,

stemming from a lack of control and from the fact that a

topic is studied within its context. Therefore, we cannot claim

that our findings extend beyond the studied cases. Instead,

we try to describe the case context as detailed as possible, in

order to allow readers to understand our environment and to

decide whether or not the findings might generalize to their

own education context.

B. Internal Validity

The students in our two cases come from a variety of

different cultural backgrounds. This could influence the way

they answer evaluation questionnaires. For example, the low

hierarchy in Scandinavian society could mean that these

students are more likely to voice concerns or annoyances in

anonymous questionnaires. Similarly, students from another

background might be overly positive or negative with their

assessment. We believe that the collection of qualitative data

in addition to quantitative data helps us to lower this threat, as

we could use the feedback to evaluate our research questions

using concrete suggestions in contrast to a score only.

C. Construct Validity

To avoid bias, we used identical questionnaires within each

case. Additionally, the questionnaires across the two cases are

close to identical, with only minor differences in phrasing.

For example, in the US case the students were asked how

useful the respective tool was for the project, while in the

Swedish case the students were asked how the tool affected

their project. While this might affect the outcome, we believe

that other factors, such as the background and the teachers,

will likely have a much stronger impact on the outcome. Still,

this threat cannot be ruled out entirely.

D. Reliability

As discussed in the internal and construct validity sections,

the results are most likely to some extent dependent on the

student samples (and their backgrounds) and the teachers

giving the course. While we cannot influence the students’

characteristics, we try to make the course content as transpar-

ent as possible in order to enable replication and reproduction

of our study. In particular, the introduction lectures to Papyrus

in the Swedish case are available as screen casts online4.

Similarly, the questions we asked the students are discussed

in Section III-B and thus transparent.

VII. CONCLUSION

In this paper, we characterize some of the challenges and

opportunities in modeling education using a case study method

with two cases, one course on MDA in the US and one course

on MBE in Sweden. We focused on students’ perceptions of

tools and modeling in general, supported by both qualitative

and qualitative data.
We observe that students’ perception of modeling effec-

tiveness is influenced by multiple factors. One key finding in

this work that students’ perception tends to be more negative

when the tool provides negative feedback, such as compiler

errors in the generated code. Therefore, modeling tools tailored

for education should consider to include positive feedback

mechanisms, such as proposing improvements. While it might

also be possible to not provide any feedback, this could

lead to a ’feeling of knowledge’ instead of actual modeling

knowledge. A second finding is that the students perception

of modeling seems to be more positive when informal models

for early and ambiguous tasks such as requirements analysis

or elicitation are part of the course content. If the projects

are mainly focusing on generating executable system artifacts,

models must be precise and have unambiguous semantics in

order to support generation. As such, underlying tools require

details and precise models, and can usually expose immediate

deficiencies in the models. While this often frustrates students

and can significantly hamper their perception of the tool, it

could significantly improve learning outcomes. As such, con-

structive education-tailored feedback becomes instrumental.

REFERENCES

[1] J. Börstler, L. Kuzniarz, C. Alphonce, W. B. Sanders, and M. Smialek,
“Teaching software modeling in computing curricula,” in Proceedings
of the Final Reports on Innovation and Technology in Computer Science
Education 2012 Working Groups, 2012, pp. 39–50.

[2] W. J. Dzidek, E. Arisholm, and L. C. Briand, “A realistic empirical
evaluation of the costs and benefits of uml in software maintenance,”
IEEE Transactions on Software Engineering, vol. 34, no. 3, pp. 407–432,
May 2008.

[3] R. Soley et al., “Model driven architecture,” OMG white paper, vol.
308, no. 308, p. 5, 2000.

[4] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software
Engineering in Practice. Morgan & Claypool Publishers, 2012.

[5] G. Liebel, N. Marko, M. Tichy, A. Leitner, and J. Hansson, “Model-
based engineering in the embedded systems domain: an industrial survey
on the state-of-practice,” Software & Systems Modeling, pp. 1–23, 2016.

[6] O. Badreddin, T. C. Lethbridge, and M. Elassar, “Modeling practices
in open source software,” in Open Source Software: Quality Verifica-
tion: 9th IFIP WG 2.13 International Conference, OSS 2013, Koper-
Capodistria, Slovenia, June 25-28, 2013. Proceedings, E. Petrinja,
G. Succi, N. El Ioini, and A. Sillitti, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 127–139.

[7] T. Gorschek, E. Tempero, and L. Angelis, “On the use of software design
models in software development practice: An empirical investigation,”
Journal of Systems and Software, vol. 95, pp. 176–193, 2014.

[8] M. Torchiano, F. Tomassetti, F. Ricca, A. Tiso, and G. Reggio, “Prelimi-
nary Findings from a Survey on the MD* State of the Practice,” in Proc.
of 2011 International Symposium on Empirical Software Engineering
and Measurement (ESEM), Sept 2011, pp. 372–375.

4https://www.youtube.com/channel/UCefaOkE8GpvBQjPGUndL7zQ

132132

[9] E. Stiller and C. LeBlanc, “Effective software engineering pedagogy,”
J. Comput. Sci. Coll., vol. 17, no. 6, pp. 124–134, May 2002.

[10] O. B. Badreddin, A. Sturm, A. Hamou-Lhadj, T. Lethbridge, W. Dixon,
and R. Simmons, “The effects of education on students’ perception of
modeling in software engineering.” in HuFaMo@ MoDELS, 2015, pp.
39–46.

[11] P. Mohagheghi, W. Gilani, A. Stefanescu, M. Fernandez, B. Nordmoen,
and M. Fritzsche, “Where does model-driven engineering help? ex-
periences from three industrial cases,” Software & Systems Modeling,
vol. 12, no. 3, pp. 619 – 639, July 2013.

[12] S. Kirstan and J. Zimmermann, “Evaluating costs and benefits of
model-based development of embedded software systems in the car
industry–results of a qualitative case study,” in Proc. of Workshop ”From
code centric to model centric: Evaluating the effectiveness of MDD
(C2M:EEMDD)”, 2010.

[13] P. Baker, S. Loh, and F. Weil, “Model-Driven Engineering in a Large
Industrial Context – Motorola Case Study,” in Proc. of ACM/IEEE 8th
International Conference On Model Driven Engineering Languages And
Systems. Springer Berlin Heidelberg, 2005.

[14] A. Forward, O. Badreddin, and T. C. Lethbridge, “Perceptions of
software modeling: a survey of software practitioners,” in 5th workshop
from code centric to model centric: evaluating the effectiveness of MDD
(C2M: EEMDD), 2010.

[15] T. Lethbridge, G. Mussbacher, A. Forward, and O. Badreddin, “Teaching
UML using umple: Applying model-oriented programming in the class-
room,” in Proc. of 24th IEEE-CS Conference on Software Engineering
Education and Training (CSEE T), May 2011, pp. 421–428.

[16] S. Akayama, B. Demuth, T. C. Lethbridge, M. Scholz, P. Stevens,
and D. R. Stikkolorum, “Tool use in software modelling education,”
in ACM/IEEE 16th Int. Conf. on Model Driven Engineering Languages
and Systems – Educators Symposium, vol. 1134. CEUR-WS.org, 2013.

[17] G. Liebel, R. Heldal, and J. P. Steghfer, “Impact of the use of industrial
modelling tools on modelling education,” in 2016 IEEE 29th Inter-
national Conference on Software Engineering Education and Training
(CSEET), 2016, pp. 18–27.

[18] R. F. Paige, F. A. Polack, D. S. Kolovos, L. M. Rose, N. Matragkas,
and J. R. Williams, “Bad modelling teaching practices,” in ACM/IEEE
17th Int. Conf. on Model Driven Engineering Languages and Systems
– Educators Symposium, 2014.

[19] E. Ramollari and D. Dranidis, “Studentuml: An educational tool sup-
porting object-oriented analysis and design,” Proc. of 11th Panhellenic
Conference on Informatics, pp. 363–373, 2007.

[20] “ArgoUML,” last accessed March 2017. [Online]. Available: http:
//argouml.tigris.org

[21] “UMLet, a Free UML tool for fast UML Diagrams,” last accessed
March 2017. [Online]. Available: http://www.umlet.com

[22] J. Cabot and D. S. Kolovos, “Human factors in the adoption of
model-driven engineering: An educator’s perspective,” in Advances in
Conceptual Modeling: ER 2016 Workshops, AHA, MoBiD, MORE-BI,
MReBA, QMMQ, SCME, and WM2SP, Gifu, Japan, November 14–17,
2016, Proceedings, S. Link and J. C. Trujillo, Eds., 2016, pp. 207–217.

[23] I. Hammouda, H. Burden, R. Heldal, and M. R. V. Chaudron, “Case
tools versus pencil and paper,” in ACM/IEEE 17th Int. Conf. on Model
Driven Engineering Languages and Systems – Educators Symposium,
2014.

[24] P. Stevens, “Updating the software engineering curriculum at edinburgh
university,” in Proc. Software Engineering Education Symposium SEES,
vol. 98, pp. 188–193.

[25] E. Crahen, C. Alphonce, and P. Ventura, “Quickuml: A beginner’s uml
tool,” in Companion of 17th Annual ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications.
ACM, 2002, pp. 62–63.

[26] S. A. Turner, M. A. Pérez-Quiñones, and S. H. Edwards, “minimuml:
A minimalist approach to uml diagramming for early computer science
education,” J. Educ. Resour. Comput., vol. 5, no. 4, Dec. 2005.

[27] “Violet,” last accessed March 2017. [Online]. Available: http:
//alexdp.free.fr/violetumleditor

[28] “Dia Diagram Editor,” last accessed March 2017. [Online]. Available:
http://dia-installer.de/shapes/UML/index.html.en

[29] K. M. Hansen and A. V. Ratzer, “Tool support for collaborative teaching
and learning of object-oriented modeling,” SIGCSE Bull., vol. 34, no. 3,
pp. 146–150, Jun. 2002.

[30] D. Batory and M. Azanza, “Teaching model-driven engineering from

a relational database perspective,” Software & Systems Modeling, pp.
1–25, 2015.

[31] T. Harris, “YUML,” last accessed March 2017. [Online]. Available:
http://yuml.me

[32] G. Dévai, G. F. Kovács, and Á. An, “Textual, executable, translatable
uml.” in OCL@ MoDELS, 2014, pp. 3–12.

[33] D. R. Stikkolorum, T. Ho-Quang, and M. R. V. Chaudron, “Revealing
students’ uml class diagram modelling strategies with webuml and
logviz,” in 2015 41st Euromicro Conference on Software Engineering
and Advanced Applications, 2015, pp. 275–279.

[34] P. Runeson, M. Höst, A. Rainer, and B. Regnell, Case Study Research
in Software Engineering. Wiley Blackwell, 2012.

[35] R. K. Yin, Case study: design and methods, 4th ed., ser. Applied social
research methods series. Sage, 2009.

[36] S. Gérard, C. Dumoulin, P. Tessier, and B. Selic, 19 Papyrus: A UML2
Tool for Domain-Specific Language Modeling, 2010, pp. 361–368.

[37] J. Biggs, “Enhancing teaching through constructive alignment,” Higher
Education, vol. 32, no. 3, pp. 347–364, 1996.

[38] O. Badreddin, “Thematic review and analysis of grounded theory
application in software engineering,” Advances in Software Engineering,
vol. 2013, p. 4, 2013.

[39] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: eclipse
modeling framework. Pearson Education, 2008.

[40] L. Kuzniarz and J. ürgen Börstler, “Teaching modeling: An initial
classification of related issues,” in Proceedings of the 7th Educators
Symposium @ MODELS 2011, vol. 52, 2011, pp. 1–10.

[41] H. B. Mann and D. R. Whitney, “On a test of whether one of two
random variables is stochastically larger than the other,” The Annals of
Mathematical Statistics, vol. 18, no. 1, pp. 50–60, 1947.

[42] L. M. Reder and F. E. Ritter, “What determines initial feeling of
knowing? familiarity with question terms, not with the answer.” Journal
of Experimental Psychology: Learning, memory, and cognition, vol. 18,
no. 3, p. 435, 1992.

[43] M. R. Weaver, “Do students value feedback? student perceptions of
tutors written responses,” Assessment & Evaluation in Higher Education,
vol. 31, no. 3, pp. 379–394, 2006.

[44] P. Kinnunen and B. Simon, “Experiencing programming assignments
in cs1: the emotional toll,” in Proceedings of the Sixth international
workshop on Computing education research, 2010, pp. 77–86.

[45] A. J. Ko, B. A. Myers, and H. H. Aung, “Six learning barriers in end-
user programming systems,” in Visual Languages and Human Centric
Computing, 2004 IEEE Symposium on, 2004, pp. 199–206.

[46] A. J. Ko, “Attitudes and self-efficacy in young adults’ computing
autobiographies,” in Visual Languages and Human-Centric Computing,
2009. VL/HCC 2009. IEEE Symposium on. IEEE, 2009, pp. 67–74.

[47] S. Bergin and R. Reilly, “The influence of motivation and comfort-level
on learning to program,” in Proceedings of the PPIG, vol. 17, 2005, pp.
293–304.

[48] M. J. Lee and A. J. Ko, “Personifying programming tool feedback
improves novice programmers’ learning,” in Proceedings of the seventh
international workshop on Computing education research, 2011, pp.
109–116.

[49] A. Vihavainen, M. Paksula, and M. Luukkainen, “Extreme apprentice-
ship method in teaching programming for beginners,” in Proceedings
of the 42nd ACM technical symposium on Computer science education,
2011, pp. 93–98.

[50] P. Mohagheghi and V. Dehlen, “Where Is the Proof? – A Review
of Experiences from Applying MDE in Industry,” in Proc. of 4th
European Conference on Model Driven Architecture - Foundations and
Applications (ECMDA-FA). Springer Berlin Heidelberg, 2008.

[51] J. Whittle, J. Hutchinson, M. Rouncefield, H. Burden, and R. Heldal,
“Industrial adoption of model-driven engineering: Are the tools really
the problem?” in Proc. of ACM/IEEE 16th International Conference on
Model Driven Engineering Languages and Systems. Springer Berlin
Heidelberg, 2013.

133133

