
Improving the Teaching of Software Design with
Automated Modelling of Syntactic Dependencies

Kevin Steppe, Sally Chin, Wong Wai Tuck
School of Information Systems

Singapore Management University
kevinsteppe@smu.edu.sg

sally.chin.2015, wtwong.2015 @sis.smu.edu.sg

Abstract— We present the use of a new IDE plugin for
introducing students to the analysis of software design. Without a
concrete method to evaluate their ideas, designing for
modifiability was a challenging topic for our students. Prior work
showed that students can quickly learn about dependency graphs
and use them to make design decisions. However, students
frequently made mistakes creating the graphs and identifying
ripple effects. We developed a tool that automatically generates
dependency graphs from code. The plugin allows users to select
seed modifications and then highlights dependent modules. The
tool removed the common mistakes from the process and enabled
us to teach design to students with less experience. In this paper,
we present our findings teaching workshops for second-year
undergraduates using the tool. The students were able to use the
tool to analyze and compare designs. Students indicated they are
likely to continue to use the technique.

Keywords— Software Engineering Education; Design;
Dependency Graph; Design Learning

I. INTRODUCTION
Modifiability is critical for any software system – to ease

initial development and future changes. Effective modularity
and minimization of ripple effects have long been recognized
as key aspects for a modifiable design [1,2,3,4]. Much research
work has been done in software design to promote modifiability
– polymorphism, patterns [5], aspects, messaging middleware,
web services, and more. However, modularity and comparing
designs are typically taught to software engineering students as
informal principles and heuristics. Such techniques require
considerable experience to apply well. When separating
concerns, which functions should be separated and which
encapsulated? Does an adaptor, which introduces more calls,
promote loose coupling? It can be difficult to select between
alternative designs, since there is no definite answer of whether
one design is better than another, and few techniques or means
exist for making such decisions. Students rarely have the
opportunity to evolve homework assignments and thus develop
limited experience and intuition regarding modifiability [14].

A study by Rupakheti and Chenoweth found that
undergraduate students prefer “canned homework and
tutorials” over open-ended problems [15]. In this context where
teaching software design and modifiability is concerned, it
would be preferable if the concepts taught were more concrete
and could be applied through direct rules instead of subjective
experience.

The Dependency Graph Method (DGM) was developed to
enable students to analyze software designs [25]. The DGM
was constructed to be consistent with commonly practiced
design patterns [5], to allow comparative analysis of different
designs, and be objective enough to be applied correctly by
novices. As our students frequently have trouble applying
subjective judgments about ‘uses’, encapsulation vs. separation
and other principles, an objective evaluation technique is
needed.

However, we found that students often made errors in
identifying dependencies and correctly identifying the
dependent set of a given module [25]. As mentioned in that
paper, those errors could be removed through tooling. Further,
tooling can improve code and design understanding. In a study
by Szabo, it was found that students’ approach to code
understanding can be significantly improved through the use of
tools [24]. Similarly, Cai and others have used tools to aid
students’ understanding of software design [11,12].

In this paper we present a tool to automate the creation of
dependency graphs and analyze the impact of this tool on
software design education. D−Grapher is a plugin for IntelliJ
that produces dependency graphs from code. The tool also
allows users to select modules of interest and highlights the
relevant dependencies. We used the tool to teach design
analysis to 60 undergraduate information systems students. We
conducted a one-day workshop including motivation, a
discussion of the Dependency Graph Method, training on
D−Grapher, followed by examples and exercises. We ended
the workshop with a short test covering the same topics as the
evaluation in [25] but with access to the D−Grapher tool. As
expected, the tool completely eliminated errors for tasks the
tool automates. For design decision tasks we also see an
improvement.

D−Grapher supports most Java programming structures.
Currently, annotations used at precompile time are not covered.
Java9 features have not been tested.

The rest of this paper is organized as follows: Section 2
discusses related work. Section 3 explains the dependency
graph method and the D−Grapher tool. Section 4 discusses the
method of the study and questions used for evaluation. Section
5 discusses the results and Section 6 concludes.

The 30th IEEE Conference on Software Engineering Education and Training

2377-570X/17 $31.00 © 2017 IEEE

DOI 10.1109/CSEET.2017.31

144

The 30th IEEE Conference on Software Engineering Education and Training

2377-570X/17 $31.00 © 2017 IEEE

DOI 10.1109/CSEET.2017.31

144

II. RELATED WORK
The DGM technique extends from several earlier techniques

in analyzing dependencies, including Parnas’s early concept of
‘uses’ structures [6], Jackson’s analysis of assumptions [7],
indirect coupling [8], and design structure matrices (DSM)
[3,9]. Of these, our dependency graph technique is most similar
to DSMs. This technique uses modules (classes or packages)
as the nodes of a graph. There are two categories of
dependencies: ‘semantic’ for data and functional dependencies
and ‘syntactic’ for code level references. Semantic
dependencies are considered to be transitive while syntactic
dependencies are not. Also different from DSMs is that
dependencies are explicitly directional. This structure allows
us to make objective and comparative evaluations of designs.

This is similar to change impact analysis, where the
estimated impact set (hereafter called the Dependent Set) is
derived from impact analysis [19]. Impact analysis has shown
to be useful if automated [20]. Impact analysis correlates with
the change effort [23] and hence a forward looking estimated
impact serves as a useful basis for design evaluation.

Existing impact analysis tools include evolutionary
coupling techniques [18] which results in incomplete
dependency generation [20] (such as EvoLens [17]), and call
graph dependency resolution (such as JRipples [19]). The latter
suffers from gross overestimation. For example in one
visualization tool, the evaluators of the tool remarked that the
tool often produced dependent sets that were so large that it was
disorienting [16]. Ratzinger et al. showed that these
visualization tools can help manual change impact analysis
[17]. We have adapted these solutions to produce a
visualization tool that improves on evolutionary coupling by
using call graph dependency, which has been shown by Tóth et
al. to be nearly as effective as static execute after (SEA) for
change impact analysis [21]. We use a non-transitive
propagation strategy, which better explains design patterns,
such as adapter and factory, than fully-transitive propagation
strategies, such as network analysis [22].

This study is also similar to the work on DSMs in education
[11,12]. We are also working to bring improved analysis of
design modularity and modifiability into software education.
The DSM papers focus on conformance of implementation to
an instructor specified design and uses tool support to assess
that conformance. The authors also examine the causes for non-
conformance and how much instructor support in reviewing the
tool’s output is needed for students to identify that non-
conformance. Our study uses tooling to relate implementation
to design level dependencies and focuses teaching on design
questions − which alternative design will best handle a given
change, and how can expected variations be protected.

III. DEPENDENCY GRAPH METHOD
Steppe introduced the dependency graph method as a means

of comparing two competing designs [25]. While the
dependency graph model can apply at any level of granularity,
for the purposes of the tool and this paper, we look at syntactic
dependencies at the class level. The dependency graph is a
concise graph language sufficient to explain a range of existing
best practices, compare different designs for a software system,

and provide guidance for improving those designs. The graph
model does not aim to provide new solutions to any particular
design problem. Rather, it provides a ‘language’ and statements
about structures expressed in that language thus allowing
analysis of a wide range of designs.

The graph model describes systems as a composition of
behaviors – functions within the system – the modules which
implement behaviors, data exchanged by those modules, and
interfaces to those modules. A module is defined as an atomic,
independently editable piece of system implementation. This is
a piece of system code – either procedural or declarative – which
is separate from other modules in its editable representation. We
typically define a class to be a module and use that definition in
D−Grapher.

The model has two kinds of dependencies to show relations
between the elements. Behaviors can depend on other
behaviors through ‘semantic’ dependencies. These represent
one functionality delegating responsibilities to other behaviors
– similar to Jackson’s assumptions [7] and Yang’s indirect
dependency [8]. The second category of dependencies is
syntactic dependencies. These arise from the syntax of the
implementation. These include a module implementing an
interface, having a reference to another module, or by reference
to a data type (in OO systems, a type is often a module).

Given the limits of the semantic dependencies, the
designer’s goal is to find a structure which works while
maximizing the modifiability of the system implementation. To
make implementations changeable independently, they must be
divided into independent modules. However, any structural
dependencies will inhibit this independence. In this sense, all
structural dependencies restrict modifiability. The work of the
designer is then to find a balance between decomposition and
dependencies, and to structure those dependencies to optimize
modifiability for modules likely to be changed. A more
thorough description of the model is provided in [25].

A. Formal Definitions
Let be the set of all modules (classes here) of a program.

We define seed behavioral changes as the set of changes, .
Each seed behavioral change represents a request to
change or add functionality of the program. We define a seed
set , which is the minimal set of classes whose
functionality must be changed/added in the change request

For each of these seed modules , let the
dependent module be a module that references in the
source code (i.e., has a directed non-transitive syntactic
dependency on). Examples include statements in that
make method calls or access the fields in , or extending
class . We use to denote the set of modules
dependent on seed module , where We define
the dependent set to be the set of all dependent modules of a
given a seed set from a behavioral change :

A ripple is a modification implemented on a module that is
not a seed module:

145145

The ripple set is

Software engineers wish to minimize effort in modification:

Minimize for a given .

Since cannot be found directly before change, we
hypothesize that is a useful estimate, and hence
comparing would help us decide which design is better
given a behavioral change .

B. Interpreting Dependency Graphs
We have defined semantic dependencies such that they are

inherent in the structuring of the solution – no rearrangement of
code into different chunks will remove them. Thus when we
teach the Dependency Graph Method to undergraduates, we
focus on syntactic dependencies. We take syntactic
dependencies to be non-transitive. The intuition can be seen by
considering a client module’s requests being passed through an
adapter module that forwards them to a service. Should the
syntax of the service be changed (a change in address, API
naming, etc.) the adapter is modified but the client module does
not need to be modified; that is the purpose of the adapter.
Preliminary studies suggest that the size of the set of dependent
modules, , which are derived from the non-transitive
directed syntactic dependencies on the seed modules, is a better
estimate of the ripple set than the fully transitive propagation
[28].

Given the graph structure, directed and non-transitive
syntactic dependencies, we can assign modifiability properties
to pairs of nodes based on whether or not there is a dependency
between them. The Changeable property derives from the idea
of protected variation – other modules are protected from
variation in the changeable module. Changeable is defined as:
“The implementation module X is labeled changeable
respective to module Y if and only if: 1) X and Y are separate
modules and 2) there are no direct syntax dependencies from
module Y to module X. Part 1 of the definition ensures that
separation of concerns is identified – failure to separate
concerns results in modifying larger and more complex
modules.

From this definition we can then define two sets for each
seed module. All modules with a direct syntactic dependency
on the seed module are in the dependent set. All other modules,
with no direct syntactic dependency on the seed module are
protected from the change. Thus in comparing alternative
designs, we prefer the smaller dependent set for each expected
change.

IV. D-GRAPHER
We introduce D-Grapher, a plugin for IntelliJ. It extracts the

Abstract Syntax Tree using the Program Structure Interface in
IntelliJ. The tool parses Java programs to produce a dependency
graph. From the dependency graph, the developer is able select
seed modules for a requirement change he is considering, and
the tool will derive the dependent set based on his selection and
that will be produced as a graph for the user, as shown in Figure
1.

Fig. 1. Non-transitive dependencies of FlumeEvent, FlumeAvroAppender and
FlumeEventFactory, from an actual change made in the open source Java
project log4j. The arrows show direction of dependencies, so for example,
FlumeAvroAppender depends on FlumeEventFactory.

Internally, IntelliJ parses the Java project and stores it in a
data structure that represents the abstract syntax tree, and this
data structure can be accessed using the Program Structure
Interface (PSI). In this section, we will talk about the data
structures used for representing the dependencies and the
algorithms used to parse the abstract syntax tree.

A. Parsing the Abstract Syntax Tree
When the user requests the D−Grapher Tool Window, we

parse the AST provided by IntelliJ. We start by retrieving all
top level packages, which makes it possible to show multiple
independent applications in a single window. This can be useful
for making comparisons between alternative designs. From the
top level packages, we collect all classes and sub-packages until
all classes are found. Each class is added to the graph as a node.

Each class represented as an object of type PsiClass. We
recursively parse children of the class using a depth first search.
Each child (a code element within the class) is of type
PsiElement and the method of parsing is different depending on
the construct the actualized type represents. Each subclass of
PsiElement represents a specific Java programming construct,
and is therefore parsed differently in order to derive the classes
that are referenced in each PsiElement. Once the referenced
classes are found the dependency is added to the graph as a
directed edge between the referencing class and referenced class.

D−Grapher supports most Java programming structures.
Currently, annotations used at precompile time are not covered.
Java9 features have not been tested.

B. Visualizing the Graph
Previously learned concepts and different graph notations

can interfere with the learning of a new language [10]. Our
students have prior knowledge of UML class diagrams, whose
notation differs from the published DGM notation. In DGM
notation, syntax dependencies are represented by solid arrows.
For mapping of semantic dependencies, dashed arrows are used.

146146

Fig. 2. Notation for Dependency Graph Method from Steppe [25].

However, in class diagram notation, dashed arrows represent
the ‘uses’ relationship, which conceptually is closer to DGM’s
syntax dependency.

Fig. 3. UML class diagram’s dependency notation.

We felt that the change in notation would cause confusion
for students. Additionally, D−Grapher only displays syntax
dependencies. For these reasons we decided to have D−Grapher
follow the UML notation, with dashed arrows representing
syntax dependencies (which are a more rigorously defined
version of the class diagram “uses”).

Fig. 4. D-Grapher’s Revised dependency notation.

For the graph lay out we use Prefuse. Prefuse uses a spring
and gravity model to lay out the graph. This provides a clean
lay out for small graphs. For large applications, and when the
design is poorly modularized, overlaps of dependencies are
inevitable. We also provide the option to output a matrix
representation of dependencies. Because Prefuse is based off
of Java Swing, we have native integration with the UI elements
in IntelliJ (i.e., the JPanel objects in the Tool Windows).

Further we use a signaling technique to distinguish between
seed modules and dependent modules [27]. Signaling is a
technique recommended to be used in environments to signal
semantically important information, and it has been found to
improve comprehension of the signaled material [26]. We
highlight selected seed modules in yellow and dependent
modules in green. This serves to ensure that the graph is read
correctly (a problem encountered without the tool) and to direct
the user’s attention as the graph gets more complex.

Fig. 5. D-Grapher’s display of a Seed change, DependentModule class and a
class NotDependent. NotDependent has a white background, while clicking on
the SeedModule turns it yellow and the DependentModule turns to green.

In Figure 6 we show the dependency graph for a small part
of a potential design of a vending machine. The SelectionPanel
module displays the sodas available and calls the
SodaDispenser when a soda is selected. The SodaDispenser
emits cans and informs Soda to change the inventory. We can
see that the SodaDispenser makes calls to the Soda module and
hence has a syntactic dependency on it. SodaDispenser is called
by the SelectionPanel and thus is depended on. We can
immediately see that SelectionPanel is “changeable” meaning
that modifications to SelectionPanel, including API changes,
have no impact on the other modules. With the tool, the
SelectionPanel is marked as a seed, highlighted in yellow and
the user will immediately notice that there are no green
dependent modules.

Fig. 6. Dependency graph for part of a design of a vending machine.

Fig. 7. Example of the D−Grapher interface in IntelliJ

C. Example use of D−Grapher
As an example use of the Dependency Graph Method with

D−Grapher, we present an evaluation of two candidate designs
for a small project. Our sample project takes orders from the
user and communicates those orders to the AccountDepartment
and CustomerRecords modules. In the “Service” design (see
Figure 8), the User module sends an Order to the OrderTaker.
The OrderTaker sends order information to CustomerRecords

147147

and AccountDepartment. Those modules have an API requiring
only the data elements they need from the Order.

Fig. 8. Dependency Graph for Service Design

In the observer design (see Figure 9), the OrderTaker is an
Observable and CustomerRecords and AccountDepartment are
Observers. Note that in our example implementation, the
dependency from CustomerRecords and AccountDepartment to
the Observer and Observable classes are not shown as
D−Grapher omits all JDK classes. In this design, whenever a
user submits an Order, the OrderTaker sends the Order to all
registered listeners without needing to know which modules are
registered as listeners.

Fig. 9. Dependency Graph for Observer Design

Let us assume that the business wants to collect more
information from the Order into CustomerRecords. The
D−Grapher using developer selects CustomerRecords as the
seed change (turning it yellow). In the “Service” design, the
OrderTaker is highlighted in green, showing the developer that
it is likely to need modification as well. However, when the
developer looks at the “Observer” design, she sees that there are
no dependent modules, making it the preferred design for this
change.

Of course we can easily imagine a change where the
“Service” design is preferable. If the developer selects the
Order class as a likely change, she will see that in the “Service”
design the User class and OrderTaker are likely to need

adjustment (entering extra fields and reading them). While in
the “Observer” design, all classes need modification as all
interact with the Order class directly.

V. STUDY METHODOLOGY
We planned to test whether students would be able to learn

and apply the Dependency Graph Method better with the tool
than without one. Our hypothesis was that the tool would
eliminate errors for tasks that the tool could automate, enable
less experienced students to perform the same tasks as
experienced students, and to improve the outcomes for decision
making tasks.

For this study we had sixty student volunteers sit for a one-
day workshop on the technique. Most had just completed the
first year of an undergraduate information systems degree –
15% had completed the second year. All had completed at least
two semester-long courses on Java programming. We note that
these participants had considerably less experience than the
participants in the prior study [25]. Based on past class grades,
two students (3%) in this study were from the top quartile of
their cohort, thirty-two students (53%) were from the second
quartile, twenty-four students (40%) were from the third
quartile and two students (3%) were from the bottom quartile.

All of the first-year students participants – 85% – had no
prior experience with IDEs. The second year students – 15% –
had used NetBeans for one semester. None of the second year
students had prior experience with IntelliJ. Hence, we added
half a day to the workshop to familiarize them with the basics
of IntelliJ.

The workshop consisted of a lecture portion, which included
motivation for the technique and covered the dependency graph
method presented above. We presented examples of creating a
graph based on code or UML diagrams. We also presented
examples of dependency and ripple sets for a simple graph of
domain object, data access object, and persistent storage. We
discussed example cases using the technique to decide between
alternative designs and using the technique to improve designs.

After explaining the method manually, we gave the students
the D−Grapher plugin. We illustrated how to use the tool to
produce dependency graphs, select change seed modules and
identify dependent modules. As the tool is mostly automated
with few actions required from the user, we found that students
learn its use within an hour and are able to use the tool and
method to make design decisions within the one-day workshop.

We then gave the students a set of scenario based exercises.
The scenarios used are based off class practices and common
mistakes in software design that novices may make, as we want
to make these scenarios as relevant and realistic as possible
from an undergraduate student’s point of view. The scenarios
give students practice reviewing designs with D−Grapher,
comparing designs, and implementing changes on the selected
design. For example, our scenarios include a simplified e-
commerce site where the shopping may be replaced, a photo
display application where the gallery API may change, and a
bank transaction processor whose data source will change.

At the end of the workshop we had the students attempt a
test. We used this test to assess whether the students were able

148148

to correctly apply the technique and thus whether it is usable by
novices. The students were allowed to use the D−Grapher tool
during the test. We had five categories of questions to assess
five tasks the students should be able to complete.

The first category of questions requires the student to take a
few code samples and produce a dependency graph showing the
syntactic dependencies in the code. In the second category of
questions, the students were given sequence diagrams and
asked to produce a dependency graph to match each diagram.
These test their ability to relate other artifacts to dependency
diagrams.

In the third category, we gave the students a dependency
diagram plus a change scenario, including which modules are
the seed of the change and asked them to determine which other
modules might need to be modified due to ripple effects. This
tests the students’ understanding of how to use the graphs for
change analysis.

 In the fourth category we gave the students dependency
diagrams for two alternative designs plus a change scenario and
asked them to determine which of the alternatives would
respond to the change better. We use these questions to test if
the method enables the students to make comparisons as
intended by the method.

Lastly, we presented the students with questions giving a
candidate design plus change scenario and asked them to
modify the design to make the change easier to accommodate.
The intention was to see if the students understand how a good
design protects the system from variation and if they can use
that understanding to turn a poor design into a better one.

We expected that use of the D−Grapher tool would result in
significant improvements for categories one and three
(producing a graph from code and identifying dependent
modules). After the assessment students were asked to fill out
a short survey of their experience with the method and tool.

VI. RESULTS
In Table 1 we show the percentage of correct answers by

category of question for this study. Table 2 shows the prior
results without tool support. We discuss these results in more
detail below.

TABLE I. PERCENTAGE OF CORRECT ANSWERS BY QUESTION
CATEGORY WITH TOOL SUPPORT

TABLE II. PERCENTAGE OF CORRECT ANSWERS BY QUESTION
CATEGORY WITHOUT TOOL SUPPORT[25]

As expected, the “code to graph” tasks were executed

perfectly with tool support. This is no surprise as the tool
generates the graph for the user. Similarly, “identify ripples”
questions were answered perfectly when students had tool

support. With the tool these questions only required the student
to select a change seed module (which was given) within the
graph window and read the highlighted dependent modules.
These two results show that we achieved our goal to make these
tasks easy through tooling.

In the past a common error was misinterpreting the arrow
directionality. We have chosen for arrows to follow the
direction of dependence. This means that ripple effects go the
opposite direction of the arrows – modifications to B could
ripple to A. The previous study showed that some students
interpret the arrow direction inconsistently and thus expect
different effects than the graph indicates. Here the tool’s
highlighting of seed and dependent modules significantly
improved the student’s understanding of dependency graphs.

The accuracy of choosing alternatives stayed about the same
and the correctness of improving given designs dropped
slightly. This shows that even after just one year of
programming experience, most students are able to use the
method and tool to analyze software designs. The lack of
improvement from the with-tool group might be evidence of
catching-up (they would have done much worse without the
tool as they had less experience than the without-tool group).
Or it could be that our questions, which were mostly based on
usage of patterns, were too simple.

The accuracy of translations from sequence diagrams to
graphs dropped in this study. We suspect the drop is due to a
combination of less experienced participants and less time spent
in training this particular task. However, this also raises the
concern that our participants were able to follow the rules of the
method without having a strong understanding of what
dependencies represent at the code level. The ability of students
to see the linkage between code structures and dependencies
inhibiting modifiability is explored in [11].

Table 3 shows the average response (out of 10) to our survey
questions. We find that the students generally have a favorable
impression of the usefulness of the method and tool and report
that they are likely to use them for future projects. We note that
the coloring of modules was less helpful than we originally
expected.

TABLE III. SURVEY OF PARTICIPANTS’ IMPRESSION OF THE METHOD
AND TOOL

149149

A. Limitations
The D−Grapher tool is limited by the identification of seed

modules. Developers have to manually select the seed set for a
given requirement change, and this often requires some
experience. If students fail to select the correct seed modules,
the highlighted dependent set will not be a sensible estimate of
the actual impact.

We also find that students had more difficulty as the
dependency graphs got more complicated. In a study with
Genting, we found that even for a large program (over one
million lines of code), the developers were able to limit cycles
and keep the structure understandable. However, the graphs
became very large for some changes and in some areas became
very complicated. Graph lay out is a difficult problem and it is
likely impossible to produce a clean (no overlapping nodes or
edges) graph for more complex systems. To combat this, we
plan for D−Grapher to provide ways to hide classes from the
graph window.

This paper compares the performance of a with-tool group to
a without-tool group. The without-tool study was done with an
earlier cohort of students. While the courses both groups took
were largely unchanged, there may have been changes which
impacted their performance in this study. Further, the without-
tool group had more experience, having been drawn from second
and third year students. This may be why there is little
difference in success choosing between designs.

VII. CONCLUSION
 We reported using tool support to improve the use and
teaching of the Dependency Graph Method [25]. We taught the
method and the tooling to a group of mostly first-year
undergraduate students in a one-day workshop. We explicitly
tested the students’ ability to apply this technique to analyzing
the impact of changes on given designs and to choose between
alternative design options. Our tests find that most students are
able to make good design choices after the workshop. As
expected, we find that the number of errors in creating and
interpreting dependency graphs is reduced to zero through use
of the tool support. Based on the survey, students found both
the dependency graph method and D−Grapher useful for
evaluating software.

ACKNOWLEDGMENT
The authors would like to thank Eric Nyberg from Carnegie

Mellon University, for extensive advice in formulating both the
technique and the study. The authors would like to thank Richard
Davis of Act8Design for advice on user-interface design. The
authors would also like to thank the reviewers for their valuable
advance and corrections.

REFERENCES
[1] D. Parnas, “On the criteria to be used in decomposing systems into

modules,” Communications of the ACM, 5(12). 1972.
[2] Yassine, A., et al., “Information hiding in product development: the

design churn effect.” Research in Engineering Design, vol 14, pp. 17,
2003.

[3] C.Y. Baldwin and K.B. Clark, Design Rules, Vol 1: The Power of
Modularity. MIT Press, 2000.

[4] F. Wilkie and B. Kitchenham, “Coupling measures and change ripples in
C++ application software,” The Journal of Systems and Software, vol. 52
pp. 8, 2000.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 2002.

[6] D. Parnas, “Designing software for ease of extension and contraction.”
IEEE Transactions of Software Eng., 5(2), 1979.

[7] D. Jackson, “Module dependences in software design”, in Monterey
Workshop on Radical Innovations of Software and Systems Engineering
in the Future, Venice, Italy, 2002

[8] H. Yang, E. Tempero, and R. Berrigan, “Detecting Indirect Coupling”,
Australian Software Engineering Conference, 2005

[9] M. J. LaMantia, Y. Cai, A. D. MacCormack, and J. Rusnak. “Analyzing
the evolution of large software systems using design structure matrices
and design rule theory.” In Proc. 7th WICSA, pages 83-82, 2008.

[10] J. Bonar and E. Soloway, “Preprogramming Knowledge: A Major Source
of Misconceptions in Novice Programmers.” Studying the Novice
Programmer, Lawrence Erlbaum Associates: 325-353, 1989.

[11] Y. Cai, R. Kazman, C. Jaspan and J. Aldrich. “Introducing Tool-
Supported Architecture Review into Software Design Education.” In
Proc. of the 26th IEEE Conference on Software Engineering Education
and Training (CSEE&T), 2013.

[12] Y. Cai, D. Iannuzii and S. Wong, “Leveraging Design Structure Matrices
in Software Design Education”. In Proc. of the 24th IEEE Conference on
Software Engineering Education and Training. 2011.

[13] P. Bhatt, G. Shroff, A. Misra, “Dynamics of software maintenance.” ACM
SIGSOFT Software Engineering Notes, Vol. 29, No. 5, 2004

[14] Bengtsson, N. Lassing, Bosch and H. Vliet, “Analysing software
architectures for modifiability”, Vrije Universiteit, 2000.

[15] R. Rupakheti and Chenoweth. “Teaching software architecture to
undergraduate students: An experience report.” IEEE/ACM 37th IEEE
International Conference on Software Engineering, Vol. 2, pp. 445 – 454,
2015.

[16] G. Pirklbauer, C. Fasching and W. Kurschl, “Improving change impact
analysis with a tight integrated process and tool,” Seventh International
Conference on Information Technology: New Generations (ITNG), 956-
961, 2010.

[17] J. Ratzinger, M. Fischer and H. Gall, “EvoLens: Lens-view visualizations
of evolution data,” Eighth International Workshop on Principles of
Software Evolution, 103-112, 2005.

[18] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl, “Mining version
histories to guide software changes,” IEEE Transactions on Software
Engineering, 31(6), 429-445, 2005.

[19] S. Bohner and R. Arnold, Software Change Impact Analysis, IEEE
Computer Society Press. 1996.

[20] T. Wetzlmaier and R. Ramler, “Improving manual change impact analysis
with tool sSupport: A study in an industrial project,” Lecture Notes in
Business Information Processing Software Quality. Software and Systems
Quality in Distributed and Mobile Environments, pp 47-66, 2015.

[21] G. Tóth, P. Heged s, A. Beszédes, T. Gyimóthy, and J. Jász, “Comparison
of different impact analysis methods and programmer's opinion,”
Proceedings of the 8th International Conference on the Principles and
Practice of Programming in Java, 2010.

[22] R. Wang, R. Huang, and B. Qu, “Network-Based Analysis of Software
Change Propagation” The Scientific World Journal, 2014.

[23] A. Mockus, L. G. Votta. “Identifying reasons for software changes using
historic databases”. In Proceedings of the International Conference on
Software Maintenance, 2000.

[24] Szabo, C., “Novice code understanding strategies during a software
maintenance assignment”, 37th IEEE International Conference on
Software Engineering, Vol. 2, pp. 276 – 284, 2015.

[25] K. Steppe, “Teaching Analysis of Software Designs Using Dependency
Graphs”, 27th Conference on Software Engineering Education and
Training (CSEE&T), pp 65-73, 2014.

[26] E.M. Gellenbeck and C.R. Cook, “Does signaling help professional
programmers read and understand computer programs?” Empirical
Studies of Programming: Fourth Workshop, 82-98. 1991

150150

[27] J.F. Pane and B.A. Myers, "Usability issues in the design of novice
programming systems," Carnegie Mellon University, School of Computer
Science Technical Report CMU-CS-96-132, 85 pages. 1996.

[28] K. Steppe “A Dependency Graph Method for Analyzing Software
Modifiability” Ph.D. Dissertation, Singapore Management University,
2015.

151151

