
Initial Evaluation of JaguarCode: A Web-Based
Object-Oriented Programming Environment with

Static and Dynamic Visualization

Jeong Yang
Dept. of Computing and Cyber Sceurity

Texas A&M University-San Antonio
San Antonio, U.S.A.

jeong.yang@tamusa.edu

Young Lee
Dept. of Electrical Engineering and

Computer Science
Texas A&M University-Kingsville

Kingsville, U.S.A.
young.lee@tamuk.edu

Kai H. Chang
Dept. of Computer Science and

Software Engineering
Auburn University

Auburn, U.S.A.
changka@auburn.edu

Abstract—Various visualization techniques have been
adopted to educational Object-Oriented Programming (OOP)
environments. Some provide software development with visual
notations without source code, while others support
programming with visual aids. Our research supports Java
programming along with static UML class diagrams and
dynamic execution trace of program synchronized in a web-
based programming environment - JaguarCode. It aims to help
students better understand static structure and dynamic
behavior of Java programs, and object-oriented design concepts.
This paper reports on an initial evaluation of JaguarCode to
investigate its effectiveness and user satisfaction through
quantitative and qualitative experiments. The experimental
results revealed that having both static and dynamic
visualizations did positively impact the correctness of program
understanding and tracing problems, and the visual
representations did affect students’ understanding on program
execution of the problems to higher accuracy. It was also
observed that students were satisfied with the aspects of those
visualizations provided in JaguarCode.

Keywords—object-oriented programming, static and dynamic
visualization, web-based programming environment, Java

I. INTRODUCTION
Object-Oriented Programming (OOP) is one of the core

areas in Computer Science, and learning OOP becomes a major
challenge in Computer Science education. While Java
programming language has been widely used in teaching and
learning of an OOP, studies have identified that it is difficult
for students to learn due to the underlying OO concepts and
principles, such as encapsulation, abstraction, inheritance, and
polymorphism [1, 2]. With inheritance, polymorphism, and
dynamic binding features, objects in OOP interact with each
other asynchronously, and object flows are difficult to track.
Learning difficulties could be also originated from different
sources, such as complexity and domain of a problem, program
design, programming environment, programmer’s logical
thinking ability and programming skills as well as OO concepts
and principles. Comprehension of structure and behavior of an
OO program is a crucial component of the process of
programming learning.

A student’s development environment is another factor that
influences learning OOP. It requires students to manage issues,
such as platform dependencies and conceptual understanding
of classes, objects, and Object-Oriented Design (OOD). Visual
techniques in various formats have been applied to educational
programming environments. Some provide visual notations
without source code, while others support a single aspect,
structural or functional behavior, of the program. Studies also
have found that novice students often encounter difficulties in
installing Integrated Development Environment (IDE) and
plugins, and setting up and modifying system environment
variables on their own machines [3, 4, 5]. In addition, IDEs,
like Dev-C++ and Visual Studio, run on Windows Operating
System (OS), while Mac OS is in high demand these days.

To enhance OO program comprehension, to improve OOD
concepts, and to deal with the platform dependency issues, our
research uses an approach that integrates structural and
behavioral aspects of OOP in a web-based programming
environment, JaguarCode (formerly JavelinaCode [7, 8, 9,
11]). JaguarCode provides synchronized static and dynamic
representations of visualizations along with source code, the
static structure of a Java program and the dynamic runtime
state of program execution. When a student is writing a line of
code, its corresponding structural information of the program is
highlighted in UML class diagrams, and the run-time state of
program execution is synchronized with the code. Through
these synchronized multi-view visualizations in a single
window, both structural and functional feedback of the current
line of the source code is immediately provided to the student.

The major motivation for this work is the lack of an
effective platform-independent OOP environment integrated
with both static and dynamic visualizations. When inheritance,
polymorphism, and dynamic binding are taught using class
diagrams and sequence diagrams with source code, students
must simulate the execution of programs in their minds to
understand how they work. As the combined visualization of
static and dynamic aspects was suggested [6], visualizing both
aspects corresponding to the source code is anticipated to help
students better understand the OO programming and design
concepts.

The 30th IEEE Conference on Software Engineering Education and Training

2377-570X/17 $31.00 © 2017 IEEE

DOI 10.1109/CSEET.2017.32

152

The 30th IEEE Conference on Software Engineering Education and Training

2377-570X/17 $31.00 © 2017 IEEE

DOI 10.1109/CSEET.2017.32

152

II. RELATED WORK
Some of the educational programming environmental tools

are reviewed in this section, based upon how the OO features
are highlighted in visualization in terms of static and dynamic
components of an object-oriented program. It provides a brief
description of tool’s purpose and interface, which visualization
techniques are used, and how well they are integrated with
source code. While some provide only static visualization,
dynamic runtime execution with object, or both, none of these
tools support both with an integrated user interface. The
comparative analysis of these tools was conducted to measure
the time required to download and install them [7, 9]. Unlike
JaguarCode, they must be downloaded and installed as a stand-
alone program or plugged into Eclipse or NetBeans.

A. BlueJ
BlueJ is an IDE that allows novice students to interact with

objects and link source code with its UML class diagram.
When a Java project is created/opened, a main window
displays a UML class diagram representing its static structure,
so students can interact with classes in the project. It was
identified that BlueJ’s capability of linking source code and
visualizations helped students learning in the cognitive domain
[11]. The studies also showed that BlueJ was useful for
students in the first-year OOP course and it helped them learn
object-oriented paradigm [10, 11]. BlueJ’s (Version 3.1.7,
released in February 2016) user interface was found to be
straightforward to build a new project, but running a project
was not integrated with the other features [12]. The program
source code, the output of the programs, and the display of
UML class diagrams are displayed in a separate window [9],
[12]. This makes linking them together more difficult to
understand and follow. BlueJ relies on the static class
diagrams that are interactive for learning, but no run time
visualization technique employed, thus it seems difficult to
detect run time errors of source code [12].

B. Jeliot 3
Jeliot 3 is a program visualization tool designed for novice

students to learn both procedural and OOP with a supporting
animation of the data flow, control flow, and expression
evaluation [13, 14]. Jeliot 3 (Version 3.7.2, released in March
2014) provides a visualization of a large subset of Java
programs, supporting object-oriented concepts. The main
structure of the animation frame used in visualization includes
method, expression evaluation, constant, and instances frames.
UML class diagram-like notation is used to visualize objects
shown as boxes containing attributes and values and
references shown as lines connecting the object and its
variable. The link between program source code and its
corresponding visualization area is also synchronized and
highlighted to identify them together at a time. But the
visualization techniques are restricted to the theater display
area, offering a dynamic behavior of its running state with the
lack of meaningful static visualization.

While studies found that students could benefit from Jeliot
3 animations to debug programs and the animation made it
easier to discuss programming concepts between students and
instructors [13], it was also found that novice student

programmers had difficulty to understand the animations [14].
Jeliot 3 does not support adding multiple files into a single
project, limiting students’ understanding of how classes are
distinct from one another [9].

C. jGRASP
jGRASP is an IDE for program visualizations that supports

structure identifier viewer to analyze source code and detect
arbitrary data structures. It allows interactions with its
dynamic viewers to support understanding of data structures
[15, 17]. jGRASP (Version 2.0.2_01, released in March 2016)
allows line by line program execution through the use of
debugger and canvas window. Execution of a Java project in
the canvas can be paused and elements from the debugger or
work bench can be dragged into the canvas window. By
dragging each of the created objects into the canvas, users can
observe the behavior of the object. Users also can generate a
simplified version of a UML class diagram of the project.

For the code understanding experiments using jGRASP
data structure viewers, it was found that students could detect
and correct logical errors more accurately using the viewers
than the traditional methods of visual debugging for singly
linked lists [16]. Using data structure visualization on certain
programming tasks, other experiments also have shown that
students in the experimental group consistently performed
better than a control group [15]. The results of the experiments
revealed positive effect of the canvas viewers that students
used the viewers did code faster and had fewer errors in
program development, and found more errors and faster in
existing code than students not using the viewers [17].
However, the source code, the canvas window, and a class
diagram are displayed in multiple windows. To gain a full
understanding of the program, students need to transit among
them, which make it difficult and disconnected by the use of
multiple windows [9].

D. AguiaJ
AguiaJ (Version 1.1, released in October 2013) is a

pedagogical tool and Eclipse plug-in that uses a visual
representation of metaphors to aid understanding of OO
concepts [18]. These metaphors support user interaction with
objects, polymorphic behaviors by associating reference types
and structural elements of objects, and inheritance concept by
visualizing inherited objects and identifying the difference
between the objects of super and sub classes. AguiaJ window
comprises two major areas: a class area and an object area.
Defined classes in source code are adapted into the class area,
and created objects are populated in the object area.

An evaluation study has concluded that AguiaJ was usable
for interactive lecturing and exercising, and teaching OOP
with the domain of image manipulation [19]. It was also
discovered that mapping source code and object illustration is
hard due to the multiple visualization windows displayed [12].
While AguiaJ supports flexible static visualization of source
code, classes and objects are not bound to nor dependent on a
particular runtime environment of the program, making it not
effective to check runtime errors [9]. When inherited methods
cannot be used as inputs to a particular object, problems
become not-traceable for checking runtime behavior [9].

153153

E. JIVE

JIVE is an interactive program execution environment,
supporting the visualizations of the runtime state and the call
history of a Java program. Its approach is to facilitate program
understanding and the comprehension of runtime execution of
object-oriented programs in Java, through displaying runtime
object structures, providing object states in multiple views,
visualizing the history of program execution with sequence
diagrams, supporting forward and backward program
execution, and producing clear drawings of the object
structure and method-invocation sequence [20, 21]. The JIVE
interface itself includes two UML diagrams, an object and
sequence diagram, and a contour model. A complete run-time
state of a program is visualized through a contour (object)
diagram, showing an object structure with method activations
in object contexts. A history of program execution is
visualized, using a time sequence diagram.

The experiences of using the extended notation of contour
model found that the technique of using contour diagrams
were appropriate for object-oriented programs, and the
diagrams were useful for debugging, particularly to make a
difference between a user’s imagined structure and an actual
structure created [22]. Although the time sequence diagrams
generated in JIVE have proven effective in explaining the
behavior of design patterns and program structures [21], it
made the history of the diagrams very complicated [21]. To
use JIVE in Eclipse, users must properly configure the
debugger and to enable the debugger for a project, users need
to create a launch configuration for the project, edit the
configuration to specify that JIVE must be used for
debugging, and open the JIVE window perspective for
checking the visualization of the program execution. The
project must be run at least once before configurations can be
modified to include JIVE [9].

III. JAGUARCODE

JaguarCode uses an approach to integrate structural and
behavioral aspects of OOP in a platform independent web-
based environment. It provides synchronized static and
dynamic visualization of Java programs at line level and a full
overview of a project under development. A student can access
JaguarCode through a front end web browser
(http://www.jaguarcode.com). An overview of the system and
applied design principles are presented in [8, 12]. The system
is also designed to complement and reinforce an easier and
flexible file management capability not only to save and open
project files to and from the cloud server but also do the same
on a local computer.

A. System Implementation
JaguarCode is being implemented with a front end, written

in HTML5, CSS3, and jQuery, and a back end, written in PHP
and Java. Ace, an embedded open-source code editor, is fully
integrated into the environment [25]. Ace editor comes with
numerous advantages such as syntax highlighting, automatic
indentation, facility to handle large files, clock highlighting,
and dragging and dropping source code from other resources.
To generate UML class diagrams for the static information of
Java source code, Plant UML, an open-source tool that

converts textual code description to draw UML diagrams, is
integrated into the system [26]. For the run-time state
visualization of program execution, Java Visualizer [27] is
customized and integrated [7]. JaguarCode has been
developed on the Amazon Web Services (AWS) cloud
computing platform on the back end virtual server, running
Ubuntu 14.04 operating system, Apache 2 HTTP server, and
MySQL database server with php5 and Java 8. PhpMyAdmin
is used to handle the administration of the MySQL and to
interact with its databases for managing users and project files.

B. User Interface
The user interface of JaguarCode is presented in Fig. 1.

The interface comprises four main components: static UML
diagram areas (a) and (b), an editor area (c), and a dynamic
run-time state visualization area (d). The editor area displays
the active Java code a student user is working on, and by
selecting a tab (Add Class), the user can create multiple Java
files and add them into a project. When a new class is added,
the default code, representing the basic structure of a Java
class, is presented to the user to start immediately changing
the existing code. After ‘Visualize Program Execution’ button
is clicked, for each line of the code, its corresponding class is
highlighted in the compact class diagram in (b) and dynamic
information of data is synchronized in the run-time state
visualization in (d). Using a set of buttons, each line of the
code can be traced and analyzed by stepping forwards and
backwards.

Three sets of UML diagrams are generated: (a) one for the
active Java program in the editor, (b) one compact diagram for
the whole project, and one detailed diagram containing all the
information related to the current project. When an enlarged
icon in area (b) is clicked, the detailed UML class diagram
for the project is illustrated in a separate window (see Fig. 2).
The detailed diagram in the new window shows all classes
created in the project including all relationships among
classes, such as association, inheritance, and interface. This
will become helpful, especially, when the program gets larger
with more classes added to the project.

C. Static and Dynamic Visualization
Plant UML and Java Visualizer are customized and

integrated into the JaguarCode interface. A static aspect of the
source code is visualized, using a customized Plant UML class
diagram, and a dynamic aspect of the program execution is
visualized, using a customized Java Visualizer. In both cases,
program execution happens in memory. All Java files made
from the editor for a project are merged into a single class file,
which will serve as a main class. Other classes in the project
will be inner classes for the main class.

Plant UML is a web-based open-source visualization tool
that allows users to create UML diagrams from a plain textual
description [26]. To draw a UML class diagram and to
integrate it into JaguarCode, a textual input from the merged
single Java file is produced with four different regular
expressions defined [7], which are used to detect classes,
extended classes, implemented interfaces, dependencies,
methods, and variables.

154154

Java Visualizer is a web-based program visualization tool
[12], which illustrates the dynamic run-time state of a Java
program by stepping forwards and backwards through
program execution. Java Visualizer re-adapts and uses the
Javascript frontend and replaces the backend with Java jail
that runs in a sandbox. The backend installation consists of
safeexec, a safe execution environment. The safeexec provides
a general-purpose sandbox environment which safely executes
user programs and prevents any malicious users from causing
troubles or mistakes that can damage a server [34]. The Java
jail serves as a chroot (changed root) for executing Java
programs, and TracePrinter, a Java package, is used to print
the traces of Java program executions in JSON format as they
execute [35]. The original Java Visualizer is customized and
integrated to the JaguarCode interface: only one highlighted
bar in yellow is used to indicate the line that has just been
executed and the bar jumps to another Java class in the editor
as the execution moves on, and multiple Java files made from
the editor for a project are merged into a single class file in
memory for compilation and execution.

D. Platform and Target Users
The biggest benefit of using this web-based learning

technology is that users simply use a web browser to run
JaguarCode, with no required software and plugin installation
or configuration on a local computer. There would be no need
to know how to install tools or modify environment variables
and to carry any kind of storage system to keep and manage
their project files. This will provide an easier and more
convenient environment for students to do programming on
their own schedule with the devices that they use most often.

The target users of JaguarCode are students, learning how
to program in Java and how to design an OO system, and
instructors, teaching Java programing and designing a system.
However, not only students and instructors can benefit from
this system but also developers can benefit in tracing and
understanding their code, especially for debugging.

IV. EVALUATION
In order to evaluate the learning effectiveness, and user

satisfaction of JaguarCode, both quantitative and qualitative
experiments were conducted during the spring semester of
2016. The evaluation approach was adopted based on the
suggestions by Rubin and Chisnell [29] and the ITiCSE
working group [30].

A. Quantitative Evaluation
Two controlled experiments were conducted to investigate

the impact of JaguarCode with visualizations. The evaluation
measured the results of data on performance from a group of
users using JaguarCode supporting static and dynamic
representations of source code and a group of users using a
standard IDE, NetBeans, with only the source code. Two
projects at different difficulty levels were used, i.e., one for a
relatively easy project and the other for a relatively hard project
while both incorporate fundamental OO concepts such as
inheritance and polymorphism.

Fig. 2. Enlarged UML Class Diagram.

Fig. 1. User Interface of JaguarCode.

155155

1) Experimental Design

Hypotheses: Null and alternative hypotheses were
accordingly formulated in the following:

H10: Having both static and dynamic visualizations
available in JaguarCode does not impact the time for
understanding programming problems.

H20: Having both static and dynamic visualizations
available in JaguarCode does not impact the correctness of
understanding problems.

H1: Having both static and dynamic visualizations
available in JaguarCode reduces the time for understanding
programming problems.

H2: Having both static and dynamic visualizations
available in JaguarCode increases the correctness of
understanding programming problems.

Questionnaire: For the first session of both experiments,
five Java classes including Main were used and the
questionnaire (TABLE I) was formed for tasks on OO
program tracing and understanding. The Java classes simulate
a PloyShape project that introduces fundamental inheritance
hierarchy with a Shape (S), Rectangle (R), Sphere (P), and
Cylinder (C) class. The later three classes inherit variables and
methods from their parent class and have an overridden
method that calculates the area for each. This is considered as
a relatively easy project to understand. For the second session
of the experiments, four Java classes including Main were
used and the questionnaire (TABLE II) was formed. Three
Java classes (Employee, studentEmployee, staffEmployee)
simulate the yo-yo effect that causes problems and results in a
data flow anomaly from method overriding and polymorphism
with an overridden method [23]. This is considered as a
relatively difficult project to understand and it serves as an

example of the issues students encounter when transitioning to
practical programming applications.

Participants: 16 lower-division computer science majors
enrolled in Data Structures and Algorithms at Texas A&M
University-Kingsville participated in Experiment 1. The
student participants were considered novices without much
experience in JAVA except for taking Object-Oriented
Software Engineering as a prerequisite of the current course.
75 graduate level computer science majors enrolled in Mobile
Application Programming at the same university participated
in Experiment 2. The participants were considered as relative
experts in the experimental task. To treat the participants in
accordance with the “Ethical Principles of Psychologists and
Code of Conductor” [24], they were given a small amount of
extra credits for the participation toward their final grade in
their course.

Method and Procedure: Student participants were
divided into two groups. One controlled group was given Java
projects (PolyShape project for Session 1 and yo-yo problem
project for Session 2) in plain text with NetBeans IDE while
the other experimental group was given the same projects with
the UML class diagrams and run time visualization of program
execution in JaguarCode. In both cases, the participants were
instructed to take their time as much as possible to fully
understand the given code and be ready to answer questions.
To equally balance two groups, the selection of the
participants was based on their cumulated grade for the
course. Both experiments were held in the computer
classrooms located in the College of Engineering at the
University. Each experiment had two one-day sessions (one
session each day) for each group. Each session lasted
approximately one hour.

TABLE I. POLYSHAPE PROJECT QUESTIONNARE USED IN BOTH EXPERIMENTS

TABLE II. YO-YO PROJECT QUESTIONNARE USED IN BOTH EXPERIMENTS

156156

Data Collection and Analysis: To record a response time
and answer accurately for each question, the questionnaire
was presented in a series of web pages. Each page contained a
single question. Whenever a question was answered by
selecting one of the choices, the response time and response to
that question were saved in a database. A response time was
calculated as the time elapsed from when the current question
was loaded until the student submitted a response by clicking
on the ‘Next’ button for a next question.

The experiments were designed in such a way that each
observation (question) in one population (a controlled group)
is matched with an observation in other population (an
experimental group). The matching is conducted by using the
same set of questions for each group. To statistically verify
whether both static and dynamic visualizations provided in
JaguarCode have impact on the response time and correctness
to answer questions, the null hypotheses were tested using the
Student’s t-test. In the t-test, differences among the means of
both response time and correctness between two populations
were studied. To validate that the t-test can be used, the
Kolmogorov-Smirnov (K-S) test was applied to verify normal
distribution in the sample. As shown in TABLEs III and IV, p-
values of the K-S test are greater than a value 0.05, which is
what we are looking for and is significant that the sample is
normal. Due to a small sample size (observation), the two-
sample K-S test was applied for the yo-yo problem project.

2) Results of Response Time

The average response time is the total average time taken
to respond each question. Our null hypothesis was that
“Having both static and dynamic visualizations available in
JaguarCode does not impact the time for understanding
programming problems”. Box plots in Fig. 3 illustrate the

comparison of the average response times taken to answer
questions related to the projects by the two groups (Group 1:
the controlled group with source code in plain text using
NetBeans IDE and Group 2: the experimental group with the
same code along with visualizations using JaguarCode).

In Experiment 1, while average response times (41.942
and 57.507 for the PolyShape and yo-yo projects respectively)
in group 2 are slightly higher than those (39.593 and 54.499)
in group 1, as shown in TABLE III, the statistical analysis
reveals that there is no significant difference between two
groups for both projects. In Experiment 2, for the PolyShape
project, there is no significant difference between two groups.
However, for the yo-yo problem project, the statistical
analysis reveals that there is a significant difference between
two groups (57.330 and 83.124 for groups 1 & 2 with p-value
0.012). The t-test rejects the null hypothesis, which means that
the response time is statistically significantly increased by the
availability of visualizations in JaguarCode. Although it does
not accept the first alternative hypothesis, this is an interesting
finding of an opposite result of what was expected. The
alternative hypothesis expected a reduced time for answering
questions, but it seemed that students fully utilized the aspects
of visual notations in tracing and understanding the code and
answering the questions.

3) Results of Correctness

The correctness is the percentage of correct responses to
each question. Our null hypothesis was that “Having both
static and dynamic visualizations available in JaguarCode
does not impact correctness of understanding problems”. Box
plots in Fig. 4 show the comparison of the correctness to
answer questions related to the projects by both groups.

TABLE III. STATISTICAL ANALYSIS OF RESPONSE TIME

Fig. 3. Box Plots Comparing Average Response Time.

157157

In Experiment 1, for the PolyShape project, the statistical
analysis reveals that there is a significant difference between
two groups (means 74.243 and 84.545 for groups 1 & 2 with
p-value 0.025 as in TABLE IV). The result of t-test rejects the
null hypothesis, which means that the correctness is
statistically significantly increased by the availability of
visualizations. For the yo-yo problem project, although the
correctness for all three questions (100%: mean 83.333) in
group 2 are equal to or higher (mean 33.333) than those in
group 1, there is no significant difference between two groups
(p-value 0.093). This is due to higher variances with a
relatively smaller sample size (observation 3).

For Experiment 2, as the correctness (means 81.192 and
78.293 for the PolyShape and yo-yo projects respectively) in
group 2 are higher than those (73.281 and 39.127) in group 1,
as shown in TABLE IV, statistical analysis reveals that there
is significant difference between two groups for both projects.
The results of t-test reject the null hypothesis and accept the
alternative hypothesis, meaning that the correctness is
statistically significantly increased by the availability of
visualizations in JaguarCode as the p-value is with 0.027 for
the PloyShpe project and 0.006 for the yo-yo problem project.

4) Discussion

In summary, it was observed that students in the
experimental group using two aspects of visualizations in
JaguarCode consistently performed better to correctly answer
questions on program understanding for both easy and hard
projects than the controlled group. Therefore, the statistical
analysis of the experimental data supports the conclusion that
having both static and dynamic visualizations available in
JaguarCode does positively impact on increasing the
correctness of program understanding and tracing problems, in

particular, for relatively difficult questions.

B. Qualitative Evaluation

1) Experimental Design

The qualitative study was designed to access whether using
JaguarCode with the static and dynamic visualization could
contribute to its goals of meeting user’s needs and providing
satisfaction. In this study, questionnaires with System
Usability Scale (SUS) suggested by ISO standard 9241 [31]
were used to gather data on how satisfied users were with
JaguarCode. The degree of disagreement or agreement on a 5-
point rating scale was used that ranged from 1 ‘Strongly
Disagree’ to 5 ‘Strongly Agree’.

Objectives: The objectives of this evaluation study were
established: a) Do the UML class diagrams in JaguarCode
support student’s understanding of object oriented concepts?
b) Does the run-time visualization in JaguarCode support
student’s understanding of object-oriented programming? c)
Does JaguarCode make learning of object-oriented program
easier? d) Is JaguarCode easy to use? e) Are students satisfied
and comfortable using JaguarCode?

Participants: 41 students (6 undergraduates and 35
graduates) out of 52 students from the previous experimental
groups participated in this evaluation. They experienced
JaguarCode through two sessions of the experiments for about
one and half hours before taking the questionnaire. Among the
41 respondents, the majority, 29 (71%) of respondents
indicated that they were either an advanced beginner or
competent in rating themselves in Java. All respondents were
Computer Science majors: including 35 graduates, 4 seniors,
and 2 sophomores.

TABLE IV. STATISTICAL ANALYSIS OF CORRECTNESS

Fig. 4. Box Plots Comparing Correctness.

158158

Method and Procedure: In both Experiments, after
completing the source code related questions in session 2, a
series of visualization and usability related questions described
in TABLES V and VI were asked for the participants to rate
the degree of disagreement or agreement on how satisfied they
were with JaguarCode. The questions were also presented on
web pages and responses were saved in the database.

2) Results of Visualization Related Questions

For the UML class diagram related questions (1 & 2 in
TABLE V), 40 (97.56%) and 36 (87.80%) respondents
indicated that they strongly agreed or agreed that the UML
class diagrams helped them better understand overall structure
of Java programs (mean rating = 4.439) and Object-Oriented
design concepts (mean rating = 4.390). For the run time
visualization related questions (3 & 4 in TABLE V), 40
(97.56%) and 35 (85.37%) respondents indicated that they
strongly agreed or agreed that they understood the “dynamic
run time visualization of Java program execution provided in
JaguarCode (mean rating = 4.610) and it helped them correct
and improve the quality of their program (mean rating =
4.392). For the two aspects of synchronized static and

dynamic visualization related questions (5 & 6 in TABLE V),
38 (92.68%) and 33 (78.05%) respondents indicated that they
strongly agreed or agreed that both visualizations together
make it easier for them to write Java programs (mean rating =
4.488) and both visualizations together could alleviate the
intimidation of Java programming (mean rating = 4.268).

3) Results of Usability Related Questions

 TABLE VI shows the mean rating and percentage
agreement for each of the usability related questions. The
mean ratings are high and consistently ranging between 4.415
and 4.683 along with high percentage of agreements (85.37%
and 92.68%) throughout all questions. The respondents
strongly agreed or agreed that JaguarCode makes it easier for
them to start writing Java programs (mean rating = 4.415), its
user interface is user friendly (mean rating 4.488), it was easy
to use (mean rating = 4.683), they enjoyed the time spent
using JaguarCode (mean rating = 4.512), working with
JaguarCode was satisfying (mean rating = 4.512), the way that
JaguarCode is presented was clear and understandable (mean
rating = 4.561), and they were comfortable in programming
with JaguarCode (mean rating = 4.537).

TABLE V. MEAN RATING AND PERCENT AGREEMENT FOR VISUALIZATION RELATED QUESTIONS

TABLE VI. MEAN RATING AND PERCENT AGREEMENT FOR USABILITY RELATED QUESTIONS

159159

4) For Associated Obectives

For the associated objectives, the mean ratings of all
objectives remain high and consistently ranging between
4.378 and 4.553 (TABLE VII). With percentage agreements
ranging between 87.5% and 92.68%, the respondents strongly
agreed or agreed that the UML class diagrams in JaguarCode
helped them understand object-oriented concepts (mean rating
= 4.415). The run-time visualization in JaguarCode also
supported their understanding of object-oriented programming
(mean rating = 4.501), made their learning of object oriented
program easier (mean rating = 4.378), was easy to use (mean
rating = 4.553), and they were satisfied and comfortable using
JaguarCode system (mean rating = 4.496).

5) Discussion

Overall, student respondents were satisfied with the
aspects of static visualization in UML class diagrams and the
run time visualization of program execution provided in
JaguarCode. Their key comment of using JaguarCode was that
there is no installation requirement, which they can use on any
device to compile and test programs. It was also mentioned
that the visualizations helped them understand the code, the
flow of program and the structure of inheritance and classes.
For any improvement to be made on JaguarCode, a few
respondents suggested that specifying errors during editing
and after executing programs can be improved, and the
execution speed must also be improved. The support of other
programming languages was also suggested.

C. Threats to Validity

The evaluation study was implemented for a short period
of time with a relatively small subjects. Further study with a
larger group of participants may be needed to generalize the
evaluation. Other weak points of the experiments are related
to the scale and domain of the programs used, the types of the
questions asked, and the claasification of novice and expert
users. Further experiments involving large-scale programs,
more specific OO related questions, and equally balanced
number of subjects would be carefully designed. In a sense
that an educational programming environment better supports
student performance compared with environments without
visual representations of code, there would be additional
empirical studies in a systematic comparison with other
educational IDEs.

V. CONCLUSION
This paper has reported on an initial evaluation of

JaguarCode in terms of its effectiveness and user satisfaction

through quantitative and qualitative experiments. The
quantitative evaluation study did explore differences in
correctness and time usage of program understanding and
tracing problems. The results of the experiments support the
conclusion that students in the experimental group using two
aspects of visualizations in JaguarCode performed better to
questions on program tracing and understanding than the
controlled group. The application of t-tests rejects the second
null hypothesis meaning the correctness is significantly
increased by the availability of visualizations along in
JaguarCode. With regard to the response time, the statistical
analysis from Experiment 2 reveals that, for the relatively hard
project, there is a significant difference between the controlled
and experimental groups. While the result of t-test does not
accept the alternative hypothesis, it rejects the first null
hypothesis, which means that the response time is
significantly increased by the availability of visualizations.
This is an interesting finding of how both visualizations did
affect students’ understanding on program execution. Students
took longer to answer, in particular, the relatively difficult
questions using the visualizations provided in JaguarCode,
which led to higher accuracy in answering the questions
correctly.

In the qualitative evaluation, student feedback on the
usability of JaguarCode interface was evaluated to investigate
whether the JaguarCode environment helps students make
their OOP learning easier and help their understanding of OO
concepts, and whether the interface would contribute to
providing satisfaction. The results of the evaluation support
the positive effect of JaguarCode on helping students better
understand OO concepts and meeting goals of providing
comfortability and satisfaction for both the observations of
visualization and usability related questions and the associated
objectives. Regarding any difficulties or improvements to be
made in JaguarCode, a few respondents have identified that
the speed of visualizing was a little slow and error messages
during editing and executing programs were not informatively
displayed. Therefore, providing detailed error messages and
visualization speed must be improved. On specific benefits of
using JaguarCode, it was clearly observed that users were
satisfied using JaguarCode - it is simple, user friendly,
understandable, and easy to use.

VI. FUTURE WORK
Important goals for future work of JaguarCode are to

extend its use and embed more functionality beyond the
current version. Plans are to include a Virtual Tutoring (VT)
capability, learning data analytics, and simplified run time
visualization of program execution with the improved speed.

TABLE VII. MEAN RATING AND PERCENT AGREEMENT FOR OBJECTIVES

160160

The VT system will consist of two major components, a
screen sharing capability by presenting a student’s code in real
time to a course instructor or a teaching assistant (TA) and a
list of commonly used coding segments. The student will be
provided a mentoring/tutoring session room to communicate
with the instructor or TA who can instantly join the room and
connect to the code editor to help them complete an
assignment. The student will also be provided a list of code
segments from which to make a selection. The selected
segment can be imported to the student’s code at the cursor’s
current position in the editor window. The objectives of the
VT system are to give students real-time assistance on coding
and an easier means of developing code segments that are
unfamiliar to them.

Student’s programming patterns can be saved in log files to
measure, collect, analyze, and report of data about their
behavioral patterns in programming. The purpose of student’s
learning analytics is to enhance student’s programming,
logical reasoning, and thinking skills through individualized
mentoring based on individual learning speed and ability. As
indicated in the evaluation, the improvement that must be
made to JaguarCode is the speed of visualizing program
execution. A sandbox environment to safely execute Java
programs on the server causes the slow speed of the
visualization. A better performance in speed must be achieved
with careful design consideration.

REFERENCES
[1] I. Lavy, R. Rashkovits, and R. Kouris, “Coping with abstraction in

object orientation with a special focus on interface classes,” Computer
Science Education, 19 (3):155-177, 2009.

[2] N. Liberman, C. Beeri, and Y. Ben-David Kolikant, “Difficulties in
learning inheritance and polymorphism,” Trans. Computer Education,
11(1):4:1-4:23, Feb. 2011.

[3] Nghi Truong, Peter Bancroft, Paul Roe, “A Web Based Environment for
Learning to Program,” ACSC '03 Proceedings of the 26th Australasian
computer science conference - Volume 16, pp. 255-264.

[4] Dianne Hagan and Selby Markham, “Teaching Java with the BlueJ
Environment,” Proceedings of Australasian Society for Computers in
Learning in Tertiary Education Conference ASCILITE, 2000.

[5] Philip J. Guo, “Online Python Tutor: Embeddable Web-Based Program
Visualization for CS Education,” Proceedings of the ACM Technical
Symposium on Computer Science Education, March 6-9, 2013.

[6] Noa Ragonis and Mordechai Ben-Ari, “On Understanding the Statics
and Dynamics of Object-Oriented Programs,” SIGCSE ’05, February
23-27, 2005, St. Louis, Missouri, USA.

[7] Jeong Yang, Young Lee, and David Hicks, “Synchronized Static and
Dynamic Visualization in a Web-Based Programming Environment,”
IEEE International Conference on Program Comprehension (ICPC),
May 16-17, 2016.

[8] Jeong Yang, “JavelinaCode: A Web-Based Object-Oriented
Programming Environment with Static and Dynamic Visualization,”
Ph.D. Dissertation, Auburn University, 2016.

[9] Brandon Earwood, Jeong Yang, and Young Lee, “Impact of Static and
Dynamic Visualization in Improving Object-Oriented Programming
Concepts,” IEEE Frontiers in Education 2016: The Crossroads of
Engineering and Business, October 12-15, 2016.

[10] Michael Kölling, “The design of an object-oriented environment and
language for teaching,” PhD Dissertation, University of Sydney, 1999.

[11] Van Haaster, K. and Hagan, D., “Teaching and Learning with BlueJ: an
Evaluation of a Pedagogical Tool.” Information Science & Information
Technology Education Joint Conference, Rockhampton, QLD,
Australia, June, 2004.

[12] Jeong Yang, Young Lee, David Hicks, and Kai Chang, “Enhancing
Object-Oriented Programming Education using Static and Dynamic
Visualization,” 2015 IEEE Frontiers in Education (FIE): Launching a
New Vision in Education Engineering, pp. 806-810, 2015.

[13] Andrés Moreno, Niko Myller, Erkki Sutinen, and Mordechai Ben-Ari,
“Visualizing Programs with Jeliot 3,” Proceedings of the International
Working Conference on Advanced Visual Interface AVI, May 2004.

[14] Andrés Moreno and Mike S. Joy, “Jeliot 3 in a Demanding Educational
Setting”, Fourth International Program Visualization Workshop, June
29-30, 2006.

[15] J. H. Cross, T. D. Hendrix, D. A. Umphress, L. A. Barowski, j. Jian, and
L. Montogomery, “Robust Generation of Dynamic Data Structure
Visualizations with Multiple Interaction Approaches,” ACM
Transactions on Computing Education, vol. 9, no. 2, pp. 13:1-13:32,
June 2009.

[16] J. Jian, J. H. Cross, T. D. Hendrix, and L. A. Barowski, “Experimental
Evaluation of Animated-Verifying Object Viewers for Java,” in
Proceedings of SoftVis 2006, Brighton, UK, 2006.

[17] J. H. Cross, T. D. Hendrix, L. A. Barowski, and D. A. Umphress,
“Dynamic Program Visualizations – An Experience
Report,” Proceedings SIGCSE 2014, pp. 609-614, 2014.

[18] Andre L. Santos, “AGUIA/J: A Tool for Interactive Experimentation of
Objects,” ACM ITiCSE’11, June 27-29, 2011, Darmstadt, Germany.

[19] Andre L. Santos, “Novel Interaction Metaphors for Object-Oriented
Programming Concepts,” 14th International Conference on Computer
Science Education, Koli, Finland, 2014.

[20] Paul V. Gestwicki, Bharat Jayaraman, “JIVE: Java Interactive
Visualization Environment,” In Companion to the 19th Annual ACM
SIGPLAN Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA), pp. 226–228, 2004.

[21] Paul V. Gestwicki, Bharat Jayaraman, “Methodology and Architecture
of JIVE,” In Proceedings of the 2005 ACM Symposium on Software
Visualization (SOFTVIS), pp. 95–104, 2005.

[22] Bharat Jayaraman, Charlotte M. Baltus, “Visualizing Program
Execution,” In Proceedings of the 1996 IEEE Symposium on Visual
Languages, pp. 30–37, 1996.

[23] Offutt, J., Alexander, R., Wu, Y., Xiao, Q., Hutchinson, C. “A fault
model for subtype inheritance and polymorphism,” In: Proceedings of
the 12th International Symposium on Software Reliability Engineering.
pp. 84-93. ISSRE IEEE Computer Society, Washington, DC (2001).

[24] Ethical Principles of Psychologists and Code of Conduct,
http://www.apa.org/ethics/code/.

[25] Ace, The High Performance Code Editor for the Web, http://ace.c9.io/.
[26] PlantUML, http://plantuml.com/.
[27] Java Visualizer, http://www.cs.princeton.edu/~cos126/ java_visualize/.
[28] Online Python Tutor, http://www.pythonturor.com/.
[29] Jeffrey Rubin and Dana Chisnell, Handbook of Usability Testing,

Second Edition: How to Plan, Design, and Conduct Effective
Tests, Wiley Publishing, Inc., 2008.

[30] Almstrum, V. L., Dale, N., Berglund, A., Granger, M., Currie Little, J.,
Miller, D. M., et al., “Evaluation: Turning technology from toy to tool:
Report of the Working Group on Evaluation,” In ITiCSE '96:
Proceedings of the 1st conference on integrating technology into
computer science education, Volume 28 Issue SI, 1996.

[31] ISO 9241-210:2010(en), Ergonomics of human-system interaction -
Part 210: Human-centered design for interactive systems.

[32] Madhusudan Srinivasan, Young Lee, and Jeong Yang, “Enhancing
Object-Oriented Programming Comprehension using Optimized
Sequence Diagram,” IEEE Conference on Software Engineering
Education and Training (ICSEE), pp. 81-85, 2016.

[33] Madhusudan Srinivasan, Jeong Yang, and Young Lee, “Case Studies of
Optimized Sequence Diagram for Program Comprehension,”
International Conference on Program Comprehension (ICPC), 2016.

[34] Safe Execution Environment, https://github.com/cemc/safeexec.
[35] Java Jail, https://github.com/daveagp/java_jail.

161161

