
Towards the role of test design in
programming assignments

Lilian P. Scatalon∗, Jorge M. Prates∗‡, Draylson M. de Souza∗, Ellen F. Barbosa∗ and Rogério E. Garcia†
∗ University of São Paulo (ICMC-USP), São Carlos, SP – Brazil

† São Paulo State University (FCT-UNESP), Presidente Prudente, SP – Brazil
‡ Mato Grosso do Sul State University (UEMS), Nova Andradina, MS – Brazil

Email: {lilian.scatalon,jorgemprates}@usp.br, {draylson,francine}@usp.br, rogerio@fct.unesp.br

Abstract—Software testing can be very helpful to students if
adopted in programming assignments throughout the Computer
Science curriculum. Many testing practices involve students
writing their own test cases. This approach implies that students
are responsible for the test design task while performing the
test activity. On the other hand, some testing practices follow the
opposite approach of providing ready-made test cases, so students
only need to execute and evaluate test results for their solution
code. In this paper, we investigated the effect of test design in
student programming performance. We conducted an experiment
comparing two different testing approaches during programming
assignments: student-written and instructor-provided test cases.
We also assessed students’ perceptions of this subject by means
of a survey. Results suggest that when students are responsible
for test design, i.e. when they write their own test cases, they
perform better in programming assignments.

Index Terms—Software Testing, Test Design, Student-written
Tests, Instructor-provided Tests, Programming Assignments

I. INTRODUCTION

Traditionally, software testing has been addressed as an

isolate topic in upper division computing courses [1]. How-

ever, this approach for software testing education does not

ensure that testing skills are being reinforced during different

computing courses. Indeed, it is possible to observe Computer

Science seniors not being able to fully test even simple

programs [2].
Students learn how to program during different computing

courses, with many opportunities to practice their program-

ming skills. However, they do not learn in the same depth

how to validate their own programs. This issue has raised

several proposals to spread the teaching of software testing and

to integrate testing practices into programming assignments

throughout the Computer Science (CS) curriculum [3], [4],

[5].
Ideally, the teaching of software testing should begin as

early as possible in the CS curriculum, integrated into intro-

ductory programming courses [6], [7], [8]. This integration has

potential to improve how students learn both subjects, since

it provides opportunities to reinforce testing skills, which in

turn can result in higher quality code, leading to improved

programming skills as well.
A relevant aspect of software testing in this context is to

assure that students are adequately testing their programs. In

order to get useful feedback about their code, students should

rely on a set of test cases that represent the expected behavior

of the program. Since it is not feasible to perform exhaustive

testing, i.e. use all possible input values to exercise the code,

there is the need to select a subset of the input domain, aiming

to test the program thoroughly and effectively.

During the testing activity, test design is the task in which

the appropriate input values are selected to compose test cases.

If instructors are responsible for the test design task, then

a test suite would be available for students, which indicates

what is expected from the assignment solution. However, this

approach of instructor-provided test cases raises an important

question. If students do not perform the test design task, will

their programming performance be affected?

On the other hand, there are also important issues to

consider about the approach of student-written test cases. If

students are supposed to write the test cases themselves, then

they should be able to know how to select appropriate values

to compose test cases. Only then will students appropriately

check the validity of their program. They should be equipped

with techniques on how to select a set of input values and also

to improve their test suite [2].

Therefore, when testing practices are integrated into pro-

gramming assignments, students need to have some kind of

background on basic testing concepts, such as testing criteria.

A testing criterion is used to decide which test inputs should

be selected [9]. Using testing criteria, students would have

the rationale to write test cases, which could make the testing

practice more meaningful to them.

In this scenario, we intend to investigate in this paper the

role of the test design task in student programming activity. We

offered an extracurricular short course on the use of software

testing in programming assignments. Students were instructed

on basic testing concepts and testing criteria. They also learned

how to perform automated unit testing in C using with the

assert macro.

We used the final project of the short course to conduct an

experiment about the effect of test design on the programming

performance of students who attended. We also applied a

survey to assess their perceptions of this subject. Results

suggest that performing the test design task benefits student

programming performance. Also, it was possible to observe

that even freshman-level students were able to learn basic

testing concepts and apply testing criteria to design their own

test cases.

The 30th IEEE Conference on Software Engineering Education and Training

2377-570X/17 $31.00 © 2017 IEEE

DOI 10.1109/CSEET.2017.34

170

The 30th IEEE Conference on Software Engineering Education and Training

2377-570X/17 $31.00 © 2017 IEEE

DOI 10.1109/CSEET.2017.34

170

The remainder of this paper is organized as follows. Sec-

tion II points out how different testing practices adopted in

programming assignments can be characterized according to

tasks that compose the testing activity, including the test design

task. We discuss how our investigation relates to other studies

from the literature in Section III. The short course on software

testing, which is the context where our investigation took

place, is described in Section IV. Details on the experiment

and survey are given, respectively, in sections V and VI.

We discuss the obtained results in Section VII. Finally, we

present conclusions and possible future directions for research

in Section VIII.

II. BACKGROUND

When software testing is integrated into introductory

courses, test cases are a valuable resource of programming

assignments, in addition to the solution code. Students can use

test results as feedback about their code during the process of

solving the assignment, before final submission. In this way,

they have a mechanism to validate and improve their own

code. The goal is that testing practices help students to write

high quality code.

Test cases indicate what is expected from a program that

correctly solves the problem stated in the assignment. Hence,

binding programming and testing activities is very helpful for

students. Specially during programming assignments, since

students’ testing skills are related to understanding what

should be done in the assignment [10].

The integration of testing practices in this context usually

involves students writing and submitting their own test cases

for the programming assignment. This is the case, for example,

when instructors recommend students to apply TDD (test-

driven development), which is often combined with the use

of an automated assessment tool [11], [12], [13].

In TDD, there is a well-defined order to conduct pro-

gramming and testing activities. At first, the programmer

develops test cases. This aspect of TDD is known as test-first

programming. Next, he/she executes the test cases and finally

writes/refactors the code to the ones that failed. This sequence

of steps is repeated iteratively until the unit is complete.

Hence, if students are equipped with an automated assessment

tool, they will have feedback available for each iteration of the

TDD process.

Although TDD is largely used in educational settings [13],

it may not be appropriate for every specific context. When

comparing students from different levels, novice programmers

can be more reluctant to adopt a test-first approach [8],

[14]. This kind of evidence helps instructors configure the

appropriate testing practice for a given context. For example,

choosing to apply TDD or not involves the decision between

a test-first or a test-last approach.

There are many ways to configure how software testing

should be integrated into programming assignments. Figure 1

shows an initial outline of how to design this integration.

Regarding aspects of the programming assignment, it is

important to contextualize in which course it takes place and

to help determine if a given software testing approach is

appropriate for students of that course.

Introductory courses are already packed with the program-

ming content, so the addition of software testing should avoid

students’ cognitive overload. Each kind of testing practice

requires different background knowledge and skills. The pro-
gramming language used in the course is also a relevant factor.

Each language offers different supporting mechanisms to write

and execute test cases.

For the software testing approach being integrated into the

assignments, instructors should consider which are the testing
concepts that students should learn in order to be able to

perform testing. They should also consider how the testing
practice should be configured.

One way to define the testing practice is based on the

sequence of testing tasks that compose the testing activity [9]:

• test design: input values are chosen to compose test

cases, aiming to effectively test the program;

• test automation: the values are inserted into executable

code;

• test execution: running the code along with the test cases

and recording the results; and

• test evaluation: evaluating results and taking appropriate

actions accordingly, such as reporting to the person

responsible for implementing the program under test.

For test design, the instructor may require that students write

test cases themselves or provide ready-made test cases. The

automation task is related to the format that test cases will

assume.

The simpler format of test cases can be a manual testing

approach, with no automation involved, and inputs/expected

outputs organized in a table. Despite its simplicity, this can

be considered a way to increase students’ confidence in the

correctness of their code. Students manually enter the inputs,

observe the actual outputs (by means of prints, for instance)

and compare them to the expected ones listed on the table.

Towards automating execution, a student could use condi-

tional statements (in the format if(expected!=actual))

or use assert statements, as we did in this study. Depending

on the language used and students’ programming experience,

testing frameworks (such as JUnit) can be used to automate

execution and ease considerably the test evaluation task.

Test execution and evaluation might be the more straight-

forward tasks to integrate into programming assignments. In

these tasks students run test cases against the program being

developed. By performing these tasks, they can get feedback

to improve their code.

Finally, we point out some of the observed results that

could be observed from the integration of software testing

into programming assignments. Both deliverables, program

and test suite, can help to evaluate students’ programming and

testing performance. Additionally, two other kinds of results

are students’ actual behavior while completing the assignment

(given what was required from them) and their perceptions of

the software testing integration.

171171

Programming
assignmentSoftware testing

Testing concepts
Testing practice

- Testing tasks
Course
Programming language

Programming performance
Testing performance
Behavior and perceptions

Results

Fig. 1. Characteristics of the integration of software testing into programming assignments

Depending on how the approach is designed, students might

face difficulties to cope with programming and testing at the

same time, what can influence negatively how they perform

and see the testing practice. For example, the more novice

the student is, the more reluctant he/she is to adopt a test-

first approach (or TDD) [14]. Therefore, maybe test-first is

not completely adequate for first-year students, or otherwise

some secondary aspect should be reconsidered in this software

testing integration approach.

III. RELATED WORK

Several studies have investigated the integration of software

testing into programming assignments. Table I shows exam-

ples of such studies. More specifically, the testing practice

discussed in each one is framed according to the sequence of

testing tasks.

The tasks in which students were actively involved are

marked with an ’X’. In all studies they performed at least

the last two tasks (test execution and evaluation). The first

two tasks (test design and automation), which are the ones

associated with writing the test cases, present some variations

among the studies.

Overall, it is possible to note that students do not need to

be actively involved in all testing tasks. The instructor can

provide scaffolding for the testing activity, such as ready-

made tests [17]. The scaffolding seems reasonable if removes

unnecessary difficulties for students at the level in question

and adds benefits for their programming performance (such

as what happened in S6).

For studies S4 and S6, students received ready-made test

cases. Therefore, they were only responsible for execution and

evaluation. Researchers that advocate for the use of instructor-

provided test cases draw attention to the cognitive overload

that might happen, specially for freshman-level students [15],

[17]. Students can feel overwhelmed for dealing with both

programming and writing test cases.

On the other hand, requiring that students write their own

test cases helps improving their testing skills. By doing so,

they might be thinking more critically about the problem stated

in the assignment [11], [10]. For studies S1, S2 and S3 student-

written tests are required, and some of them also involve TDD

adoption (S1 and S2).

In particular, the study S5, performed by Isomöttönen and

Lappalainen [16], had a slightly different approach. They

provided ready-made test cases, but also allowed students to

write their own test cases for extra points. That is why this

study is coded as ’partial’ for the two first tasks. In this case,

it can be said that they applied a hybrid approach.

It is interesting to note that both approaches (student-written

and instructor-provided test cases) can offer benefits in terms

of learning for student. The decision on whether using student

or instructor test cases in programming assignments is directly

related to the test design task.

In order to gather evidence about this issue, we eval-

uated testing practices with these two approaches for test

design (student-written tests and instructor-provided tests) and

compared them in terms of programming performance. We

chose to evaluate student programming performance, since,

ultimately, the testing activity in this context should be a

supporting practice to the programming activity.

Studies in this context often use a single approach for the

test design task, either when students (student-written tests)

or instructors (instructor-provided tests) are responsible for

it. The approach of using student-written test is the most

prevalent one [11], [12], [8], [10] but, to the best of our

knowledge, there are no studies comparing both approaches

or investigating the benefits of assigning to students the

responsibility of the test design task.

Lemos et al. investigated the effect of testing knowledge

in students’ programming performance [18]. However, their

study was conducted during an advanced course of software

testing. The results suggest that testing knowledge indeed

benefit students’ programming performance.

Designing test cases involves choosing input values that test

the program effectively, since exhaustive testing is not feasible.

So, test design is a task that requires testing knowledge to

choose appropriate values. Nevertheless, it is interesting to

note that, although testing knowledge would help students in

performing test design, they are not often instructed in testing

concepts during introductory programming courses.

Only few studies report about instructing students in testing

concepts in this context [19], [6], [20], [21], [22], [23], [24],

[25]. The instruction ranges from some kind of input values

selection guideline to teaching testing criteria. In our study, we

taught students two testing criteria, equivalence partitioning
and boundary value analysis [26], similarly to the study

performed by Barbosa et al. [6].

172172

TABLE I
STUDENT INVOLVEMENT IN TESTING TASKS DURING PROGRAMMING ASSIGNMENTS

study authors year testing tasks
design automation execution evaluation

S1 Edwards [11] 2004 X X X X

S2 Spacco and Pugh [12] 2006 X X X X

S3 Janzen and Saiedian [8] 2008 X X X X

S4 Whalley and Philpott [15] 2011 X X

S5 Isomöttönen and Lappalainen. [16] 2012 partial partial X X

S6 Utting et al. [17] 2013 X X

IV. A SHORT COURSE ON SOFTWARE TESTING

We conducted our study during an extracurricular short

course offered in the São Paulo State University (Unesp). The

goal was to introduce testing concepts and explore the use of

unit testing during programming assignments.

A course on such subject was relevant in this setting because

software testing would only be addressed in a junior-level

Software Engineering course. So our idea was to teach students

about software testing earlier, emphasizing its relation with the

programming activity.

The course duration was eight hours and Computer Science

majors from all levels were able to enroll. A total of 21

students enrolled in the course and 11 of them consented

to release their data. An overview of the conducted activities

during the short course is given in Figure 2.

Characterization
questionnaire

Laboratory
class

Programming
project

Feedback
questionnaire

Fig. 2. Overview of the short course on software testing

In the first activity students completed a characterization
questionnaire. The idea was to identify which was their prior

knowledge about programming and find out about their testing

habits during programming assignments.

The next activity was a laboratory class in which we taught

basic testing concepts. We covered concepts such as basic

terminology (fault, error, failure), test suite and test cases

definition (input/expected output) and evaluation of results

after the test execution (program passed/failed). There were

several examples and exercises to help students grasp each of

these testing concepts.

After introducing testing concepts, the next activity was a

programming project, composed by three assignments. Stu-

dents were asked to apply software testing as a supporting

practice to complete the proposed assignments. We collected

student data from this activity as part of our experiment

described in Section V.

Students were trained on the testing practice during the first

assignment. During the other two assignments, we divided stu-

dents in two groups and asked they to use different approaches

to the testing practice. We used the data collected from

consenting students (n=11). Finally, as the last activity, we

applied a feedback questionnaire about their experience while

using testing practices to solve programming assignments (see

Section VI).

Throughout the class, we motivated students to think about

their perceptions of software testing. At first, we showed its

destructive aspect, since the purpose of executing tests is

to reveal the presence of faults in the program. This might

discourage students to test their assignments, since, in contrast,

programming has a constructive aspect.

On the other hand, we also pointed out the positive aspect

of applying software testing in programming assignments. We

argued that testing practices could help them find faults on

their code before the instructor does so. In this way, they would

be learning a skill that helps improving their grades.

We also taught students on how to select values for test cases

with equivalence partitioning and boundary value analysis.

We provided a step-by-step that students could follow to select

test values, considering the two criteria together:

1) Identify input conditions.

2) For each one, perform the equivalence class partitioning

for the input domain and determine valid and invalid

input classes.

3) Select:

a) one input value for each class and

b) input values from the boundaries of each class.

4) Construct test cases for the selected input values (deter-

mine the expected output values).

173173

All these testing concepts were instantiated to a particular

testing practice of automated unit testing. Students learned

how to write, execute and evaluate test cases using the assert

macro from the standard C library.

C is the language used during the first introductory pro-

gramming courses at Unesp. Following a similar approach of

Janzen and Saiedian [8], we chose the assert macro because

it would be simple enough to be understood by freshmen and

sufficient to automate execution of test cases.

An example that illustrates this testing practice is given next.

In this case, the unit under test is the function that computes

the factorial of a given integer (and contains a seeded fault).

i n c l u d e <a s s e r t . h>

i n t f a c t o r i a l (i n t n) {
i f (n < 0)

re turn −1;
e l s e i f (n < 1)

re turn 1 ;
e l s e

re turn n ∗ f a c t o r i a l (n − 1) ;
}

void f a c t o r i a l t e s t s () {
a s s e r t (f a c t o r i a l (−1) == −1) ;
a s s e r t (f a c t o r i a l (0) == 1) ;
a s s e r t (f a c t o r i a l (1) == 1) ;
a s s e r t (f a c t o r i a l (2) == 2) ;
a s s e r t (f a c t o r i a l (3) == 6) ;
p r i n t f (” f a c t o r i a l () p a s s e d a l l t e s t

c a s e s !\ n ”) ;
}

i n t main () {
f a c t o r i a l t e s t s () ;
re turn 0 ;
}

V. EXPERIMENT

The following subsections provide details about the exper-

iment we conducted and the obtained results. We followed

guidelines from Juristo and Moreno [27] and Wohlin et al.

[28] to plan and execute the study.

A. Goal

The integration of software testing in computing courses

should be done in a way that adds value to the programming

assignments. Students should be able to benefit from the

testing practice, what can lead them to perform it more

willingly.

In this scenario, we intend to investigate the integration of

testing practices into programming assignments. We focused

on one of the aspects of the testing activity, the test design

task, and its effect on student programming performance.

If students are being able to improve their code from the

feedback provided by testing results, they probably will feel

the need to do so and the integration of software testing will

not disrupt the normal course flow to teach the main subject,

i.e. the programming concepts.

B. Subjects

We applied a subject characterization questionnaire in the

beginning of the short course. In total, 21 students attended,

all Computer Science majors, distributed as indicated by Table

II. 11 students provided consent on the collected data.

TABLE II
DISTRIBUTION FOR STUDENT LEVEL (N=11)

Student level #
Freshman 45.45% (5)

Sophomore 9.09% (1)

Junior 9.09% (1)

Senior 36.36% (4)

Since we focused on the application of software testing for

programming assignments, we also characterized the students

regarding the introductory courses they had already completed

or were still attending (see Table III).

TABLE III
DISTRIBUTION FOR INTRODUCTORY PROGRAMMING COURSES (N=11)

Course #
Introductory Programming I 100% (11)

Introductory Programming II 100.00% (11)

Data Structures I 54.55% (6)

Data Structures II 54.55% (6)

Object Oriented Programming 45.45% (5)

Introductory Programming I and II are first-year courses that

involve the teaching of fundamental programming constructs,

with an imperative-first approach using the C language. Data

Structures I and II are second-year courses about data struc-

tures (also in C) and the corresponding algorithms to operate

them. Finally, Object Oriented Programming is a second-year

course in which students learn about object-oriented concepts

using the Java language.

Regarding their prior testing habits, according to Table IV,

they usually perform testing while working on their program-

ming assignments. However, as Table IV shows, most students

do not use or do not know what a testing criterion is. This is an

interesting outcome, considering that testing practices are not

addressed during regular programming courses in this setting.

Also, it shows that even though students test their code, they

are doing it without proper instruction in this subject.

C. Experimental Objects

The experimental objects were the programming assign-

ments from the final project proposed to students at the end

of the short course. The project was composed by three

assignments, which consisted in implementing alarm clock

features (based on the assignments from [17]).

In order to solve them, students had to represent time, as

composed of hours and minutes (in a simplified way) and

perform basic operations with time calculation.

174174

TABLE IV
STUDENT TESTING HABITS IN PROGRAMMING ASSIGNMENTS

Question: Do you test the programs you write?
Answer #

I do not know what it means to test a program 0% (0)

There is no need to 0% (0)

Yes, only if there is enough time 0% (0)

Yes, I always test at least a little 90.9% (10)

Yes, I always try to test a lot before delivering the program 9.1% (1)

TABLE V
USE/KNOWLEDGE OF TESTING CRITERIA

Question: Do you use any testing criteria to test your programs?
Answer #

Yes 45.45% (5)

No 27.27% (3)

I do not know what test criteria is 27.27% (3)

• Assignment 1. Tick operation: advance the current time

in one minute.

• Assignment 2. Alarm clock set features:

– (A) Wake-up time: set the alarm with the desired

wake-up time and show the user the remaining sleep

time. Involves the implementation of the sum of two

times.

– (B) Remaining sleep time: set the alarm with the

desired remaining sleep time and show user the

resulting wake-up time. Involves the implementation

of the subtraction of two times.

Assignment 1 was carried out as a training, with the instruc-

tor’s assistance. In this way, students were able to become

familiar with the testing practice and this problem context.

After, they completed assignments 2A and 2B by themselves.

D. Hypotheses

We intend to compare different testing approaches during

programming assignments, according to the hypotheses listed

on Table VI.

In the first approach students are not responsible for the

test design task, they receive ready-made instructor tests (IT).

In the second one students need to perform the test design,

besides the other testing tasks (test execution and evaluation).

So, the test cases are written by the own students (student tests

– ST).

The effect of these two testing approaches were observed

in students’ programming performance. In turn, programming

performance was considered in terms of correctness of the

program delivered by students to solve the assignment.

E. Variables

During the experiment, students were supposed to apply

two different testing approaches to complete programming

assignments. In order to configure these testing approaches,

some aspects were kept constant for both, while the test design

task was the aspect that varied.

Starting from the constant aspects, both assignments in-

volved automated unit testing using the assert macro in C.

Also, students were always responsible for the execution and

evaluation tasks of the testing activity. Regarding supporting

tools, students were free to use the IDE they were familiar with

to write the solution code, the test cases (when applicable) and

to execute test cases.

The experiment had one independent variable, the test
design task. This variable had the two following treatments:

• instructor-provided test cases (IT), when students receive

ready-made test cases and are not responsible for test

design, but only for test execution and evaluation; and

• student-written test cases (ST), when students are also

actively involved with the test design task and have to

write their own test cases.

Since we were aiming to evaluate students’ programming

performance, the dependent variable was the correctness of

the solution code submitted for the programming assignment.

We measured correctness as the pass rate of student solution

code.

This metric was calculated dividing the number of test cases

for which the unit passed by the total number of test cases for

that unit. We used a set of reference test cases, which was

the same we delivered to students in the assignments that they

were not responsible for test design.

F. Experimental Design

Considering the selection of one independent variable with

two treatments, we chose the paired comparison design [28].

However, to avoid the learning effect over results, we used

two different experimental objects for each subject.

Subjects were divided into two groups randomly. Table VII

shows the experimental design and how subjects were assigned

175175

TABLE VI
STUDY HYPOTHESES

Hypotheses type Formalized hypotheses
Null hypothesis H0: correctnessIT = correctnessST

Alternative hypotheses H1: correctnessIT > correctnessST

H2: correctnessIT < correctnessST

to experimental objects (assignments 2A and 2B) and treat-

ments (IT and ST).

G. Results

We analyzed students’ programs in order to calculate the

correctness of each one. We used the CUnit1 testing framework

in order to execute and evaluate test results.

Individual correctness values for both testing approaches

are given in figures 3 and 4. It is interesting to note that some

students kept their programming performance somewhat at the

same level for both approaches. Most of them (S1, S3, S6, S8,

S9, S11) achieved good results for both.

Other aspect from the individual results that draws attention

is that many subjects (S2, S4, S7, S10) achieved better

results with student-written test cases. Only subject S5 had

a considerably lower result with student-written test cases.

These results are summarized in Table VIII, using the

means and standard deviations for each approach. Table IX

shows results separately for each group. Comparing the means,

students that wrote their own test cases (ST approach) achieved

better correctness scores.

However, these results cannot support that there is indeed

a difference between the testing approaches. We applied the

Wilcoxon signed-rank test, but there was not enough evidence

to reject the null hypothesis at α = 0.05 significance level.

This outcome is very likely related to the small size sample.

VI. SURVEY

As the last activity of the short course we applied a feed-

back questionnaire about students’ experience in completing

the assignments with the aid of software testing. Students’

responses (Table X) allowed us to gather some insights about

their perceptions and behavior for the proposed activities.

All students agree that testing practices indeed help to work

on programming assignments (Q1). Most of them (81.8%)

think it helped for both testing approaches and a small portion

of them (18.2%) think it helped only when they wrote the test

cases themselves.

The responses also provided an overview of the actual stu-

dent behavior while working on the programming assignments.

90, 9% stated that applied the testing criteria while writing

test cases (Q2). Additionally, 72, 7% stated that did not face

difficulties while doing so (Q4). These numbers suggest that

most students were able to understand and to apply testing

criteria, including freshmen.

1cunit.sourceforge.net

One of the questions (Q3) assessed students’ tendency to

adopt test-first or test-last approaches. Students were quite

divided in this matter, with almost half of them for each

approach.

We did not impose a specific order to perform programming

and testing activities, but we did demonstrated examples and

exercises from the course material in a test-first manner and

this might have influenced students’ behavior.

The last question (Q5) assessed whether students intend

to incorporate testing practices as part of their strategy to

complete programming assignments in the future. All of them

answered positively.

In the beginning of the short course they had indicated that

already performed testing in their programming assignments,

but most of them were not used to apply or did not know what

a testing criterion was (see Section IV).

VII. DISCUSSION

In this investigation we were able to analyze both students’

performance and perceptions of testing practices in program-

ming assignments. Experiment results suggest that making

students responsible for writing their own test cases benefit

their programming performance (Section V).

Although results were not statistically significant, it is

interesting to note that students’ perceptions matched with

experiment results. All students agree that elaborating test

cases indeed helped the programming activity (Q1 in Table X).

Most of them think that working with instructor test cases also

helps solving programming assignments (81.8%).

This positive effect on programming performance can be

due to the fact that test design helps students better understand

the problem to be solved in the assignment [10]. In order to

select input values for test cases, they need to carefully analyze

the problem domain, what forces them to think more critically

about the assignment.

Regarding students’ actual behavior to complete the as-

signments (in contrast with what they were asked to do), all

students executed test cases while solving the assignment (Q3

in Table X). Besides, almost all of them applied the testing

criteria when they were supposed to write their own test cases

(Q2 in Table X).

Other interesting finding is that most of the subjects per-

formed well with both test design approaches and some of

them were able to improve their performance significantly by

designing testing cases (figures 4 and 3).

These two kinds of effect could simply be related to the

characteristics of the own subjects, which can have different

176176

TABLE VII
EXPERIMENTAL DESIGN

Instructor-provided Student-written
Test Cases (IT) Test Cases (ST)

Assignment 2A Group 1 Group 2

Assignment 2B Group 2 Group 1

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

subjects

co
rre

ct
ne

ss

Fig. 3. Individual results for student-written test cases (ST)

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

subjects

co
rre

ct
ne

ss

Fig. 4. Individual results for instructor-provided test cases (IT)

TABLE VIII
MEAN AND STANDARD DEVIATION FOR CORRECTNESS

Instructor-provided Student-written
Test Cases Test Cases

Mean 81.63% 91.24%

Std Dev. 25.99% 14.94%

aptitudes. However, the test design task could be considered

as a possibility to help turn ineffective novice programmers

into effective ones [29], [30].

Most of the subjects were freshman or sophomore (54, 54%
– Table II), and most of them were able to apply the testing

criteria without major difficulties (72.7% – Table X). This

result suggests that the material about testing criteria had a

TABLE IX
MEAN FOR CORRECTNESS SEPARATED BY GROUPS

Instructor-provided Student-written
Test Cases Test Cases

Group 1 76.55% 89.70%

Group 2 85.86% 92.53%

difficulty level that most of them were able to follow. However,

there were attending students from all levels, and there is the

need to evaluate this issue with a more homogeneous sample.

In general, results show that students recognized the impor-

tance of designing test cases and that they can do it without

major difficulties, even in the first-year level. This was an

interesting result considering that software testing is not an

177177

TABLE X
SURVEY RESPONSES (N=11)

Q1. Did the test cases help you implement the solution code?
Yes, for both assignments 81.8% (9)

Yes, just for the assignment with instructor test cases 0% (0)

Yes, just for the assignment that I wrote the test cases 18.2% (2)

No, for both assignments 0% (0)

Q2. While you wrote the test cases, did you apply the testing criteria?
Yes 90.9% (10)

No 9.1% (1)

Q3. When did you execute the test cases?
Only after I have completed the solution code 45.5% (5)

During implementation, even with incomplete versions 54.5% (6)

of the solution code

I did not execute the test cases 0% (0)

Q4. Did you face difficulties while writing test cases by yourself?
Yes 27.2% (3)

No 72.7% (8)

Q5. Do you intend to apply software testing in programming
assignments from future computing courses?
Yes 100% (11)

No 0% (0)

easy subject, especially for freshman students. However, since

we used a simple approach to represent test cases and to select

input values, students were able to learn and apply it.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we investigated the test design task during the

process of working on programming assignments. In studies

similar to our investigation, the testing activity is usually

seen from a holistic point of view. Conversely, in our study

we decomposed the testing activity into individual tasks and

investigated specifically the effect of the test design task.

We conducted an experiment and a survey with students that

participated in a short course we offered about this subject.

Results suggest that students’ programming performance can

be enhanced when they write their own test cases.

Moreover, students’ perceptions matched experiment re-

sults. Students recognized the relevance of software testing

as a supporting practice when completing the proposed as-

signments.

However, in order to enable students to write and improve

their test suite, they need to be instructed on testing concepts.

They need to learn how to select input values that will fully

and effectively test their program.

This issue motivated us to instruct students on two testing

criteria, equivalence partitioning and boundary value analysis.

In this way, they were able to choose input values system-

atically, instead of adopting a trial-and-error approach [2]. If

students are able to write an effective test suite, they will likely

see software testing as a helpful practice for programming

assignments.

Additionally, it was interesting to notice that the difficulty

level of the testing criteria guidelines was adequate even for

freshmen. Students were interested, paid attention and were

engaged in using the testing practice as a support to the

programming activity.

This experience showed the importance of instructing stu-

dents on how to select appropriate input values and then

elaborate test cases. They need background knowledge to

perform test design if they are going to be responsible for

it.

In our future work, we intend to investigate this effect in

more homogeneous and larger samples of students. Isolating

results for each level can help to design appropriate testing

practices and instructional materials. Moreover, we would like

to isolate the effect on programming performance before and

after learning testing criteria, similar to the study conducted

by Lemos et al. [18].

It is important to remember that, regarding testing practices

in programming assignments, one size does not fit all. Students

should have multiple and incremental testing experiences

throughout computing courses [31], [20]. This means that

several different testing approaches should be used throughout

the CS curriculum, starting simpler and increasing the level of

difficulty gradually as the students are able to cope with the

associated learning load.

Therefore, this kind of investigation is relevant to help

instructors design test practices to be integrated into pro-

gramming assignments. In particular, the test design task is

an important variation point for the instructor to consider

while deciding how the adopted testing practice should be

configured.

178178

ACKNOWLEDGMENT

We would like to thank students that participated in

the study. The authors also acknowledge Brazilian funding

agencies FAPESP (grants 2014/06656-8 and 2016/17575-4),

CAPES and CNPq for the financial support provided to this

research.

REFERENCES

[1] H. B. Christensen, “Systematic testing should not be a topic in the com-
puter science curriculum!” in Proceedings of the 8th Annual Conference
on Innovation and Technology in Computer Science Education (ITiCSE
’03). New York, NY, USA: ACM, 2003, pp. 7–10.

[2] J. C. Carver and N. A. Kraft, “Evaluating the testing ability of senior-
level computer science students,” in 24th IEEE-CS Conference on
Software Engineering Education and Training (CSEE&T), May 2011,
pp. 169–178.

[3] E. L. Jones, “Software testing in the computer science curriculum – a
holistic approach,” in Proceedings of the Australasian Conference on
Computing Education (ACSE ’00). New York, NY, USA: ACM, 2000,
pp. 153–157.

[4] S. H. Edwards, “Rethinking computer science education from a test-
first perspective,” in Companion of the 18th Annual ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages, and
Applications (OOPSLA ’03). New York, NY, USA: ACM, 2003, pp.
148–155.

[5] D. S. Janzen and H. Saiedian, “Test-driven learning: Intrinsic integration
of testing into the CS/SE curriculum,” in Proceedings of the 37th
SIGCSE Technical Symposium on Computer Science Education (SIGCSE
’06). New York, NY, USA: ACM, 2006, pp. 254–258.

[6] E. Barbosa, J. Maldonado, R. LeBlanc, and M. Guzdial, “Introducing
testing practices into objects and design course,” in 16th Conference on
Software Engineering Education and Training (CSEE&T), March 2003,
pp. 279–286.

[7] E. Barbosa, M. Silva, C. Corte, and J. Maldonado, “Integrated teaching
of programming foundations and software testing,” in Annual Frontiers
in Education Conference (FIE), Oct 2008, pp. S1H–5–S1H–10.

[8] D. Janzen and H. Saiedian, “Test-driven learning in early programming
courses,” in Proceedings of the 39th SIGCSE Technical Symposium on
Computer Science Education (SIGCSE ’08). New York, NY, USA:
ACM, 2008, pp. 532–536.

[9] P. Ammann and J. Offutt, Introduction to Software Testing, 2nd ed. New
York, NY, USA: Cambridge University Press, 2017.

[10] C. Fidge, J. Hogan, and R. Lister, “What vs. how: Comparing students’
testing and coding skills,” in Proceedings of the Fifteenth Australasian
Computing Education Conference (ACE ’13). Darlinghurst, Australia,
Australia: Australian Computer Society, Inc., 2013, pp. 97–106.

[11] S. H. Edwards, “Using software testing to move students from trial-
and-error to reflection-in-action,” in Proceedings of the 35th SIGCSE
Technical Symposium on Computer Science Education (SIGCSE ’04).
New York, NY, USA: ACM, 2004, pp. 26–30.

[12] J. Spacco and W. Pugh, “Helping students appreciate test-driven devel-
opment (TDD),” in Companion to the 21st ACM SIGPLAN Symposium
on Object-oriented Programming Systems, Languages, and Applications
(OOPSLA ’06). New York, NY, USA: ACM, 2006, pp. 907–913.

[13] C. Desai, D. Janzen, and K. Savage, “A survey of evidence for test-
driven development in academia,” SIGCSE Bulletin, vol. 40, no. 2, pp.
97–101, Jun. 2008.

[14] D. S. Janzen and H. Saiedian, “A leveled examination of test-driven
development acceptance,” in Proceedings of the 29th International
Conference on Software Engineering (ICSE ’07). Washington, DC,
USA: IEEE Computer Society, 2007, pp. 719–722.

[15] J. L. Whalley and A. Philpott, “A unit testing approach to building
novice programmers’ skills and confidence,” in Proceedings of the
Thirteenth Australasian Computing Education Conference (ACE ’11).
Darlinghurst, Australia, Australia: Australian Computer Society, Inc.,
2011, pp. 113–118.

[16] V. Isomöttönen and V. Lappalainen, “CSI with games and an emphasis
on tdd and unit testing: Piling a trend upon a trend,” ACM Inroads,
vol. 3, no. 3, pp. 62–68, Sep. 2012.

[17] I. Utting, A. E. Tew, M. McCracken, L. Thomas, D. Bouvier, R. Frye,
J. Paterson, M. Caspersen, Y. B.-D. Kolikant, J. Sorva, and T. Wilusz, “A
fresh look at novice programmers’ performance and their teachers’ ex-
pectations,” in Proceedings of the ITiCSE Working Group Reports Con-
ference on Innovation and Technology in Computer Science Education-
working Group Reports (ITiCSE -WGR ’13). New York, NY, USA:
ACM, 2013, pp. 15–32.

[18] O. A. L. Lemos, F. F. Silveira, F. C. Ferrari, and A. Garcia, “The
impact of Software Testing education on code reliability: An empirical
assessment,” Journal of Systems and Software, pp. –, 2017.

[19] S. Frezza, “Integrating testing and design methods for undergraduates:
teaching software testing in the context of software design,” in 32nd
Annual Frontiers in Education (FIE), vol. 3, Nov 2002, pp. S1G–1–
S1G–4 vol.3.

[20] M. Wick, D. Stevenson, and P. Wagner, “Using testing and JUnit
across the curriculum,” in Proceedings of the 36th SIGCSE Technical
Symposium on Computer Science Education (SIGCSE ’05). New York,
NY, USA: ACM, 2005, pp. 236–240.

[21] J. Collofello and K. Vehathiri, “An environment for training computer
science students on software testing,” in Frontiers in Education, 2005.
FIE ’05. Proceedings 35th Annual Conference, Oct 2005, pp. T3E–6.

[22] R. Agarwal, S. H. Edwards, and M. A. Pérez-Quiñones, “Designing an
adaptive learning module to teach software testing,” in Proceedings of
the 37th SIGCSE Technical Symposium on Computer Science Education
(SIGCSE ’06). New York, NY, USA: ACM, 2006, pp. 259–263.

[23] S. Elbaum, S. Person, J. Dokulil, and M. Jorde, “Bug hunt: Making
early software testing lessons engaging and affordable,” in Proceedings
of the 29th International Conference on Software Engineering (ICSE
’07). Washington, DC, USA: IEEE Computer Society, 2007, pp. 688–
697.

[24] H. B. Christensen, “Experiences with a focus on testing in teaching,”
in Reflections on the Teaching of Programming, ser. Lecture Notes in
Computer Science, J. Bennedsen, M. E. Caspersen, and M. Kölling, Eds.
Springer Berlin Heidelberg, 2008, vol. 4821, pp. 147–165.

[25] V. Thurner and A. Bottcher, “An ”objects first, tests second” approach
for software engineering education,” in IEEE Frontiers in Education
Conference (FIE), Oct 2015, pp. 1–5.

[26] M. E. Delamaro, J. C. Maldonado, and M. Jino, Introdução ao teste de
software (in portuguese). Elsevier, 2007.

[27] N. Juristo and A. M. Moreno, Basics of Software Engineering Experi-
mentation, 1st ed. Springer Publishing Company, Incorporated, 2001.

[28] C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell, and
A. Wessln, Experimentation in Software Engineering. Springer Pub-
lishing Company, Incorporated, 2012.

[29] S. H. Edwards, J. Snyder, M. A. Pérez-Quiñones, A. Allevato, D. Kim,
and B. Tretola, “Comparing effective and ineffective behaviors of student
programmers,” in Proceedings of the Fifth International Workshop on
Computing Education Research Workshop, ser. ICER ’09. New York,
NY, USA: ACM, 2009, pp. 3–14.

[30] J. Carter, S. White, K. Fraser, S. Kurkovsky, C. McCreesh, and
M. Wieck, “ITiCSE 2010 working group report motivating our top
students,” in Proceedings of the 2010 ITiCSE Working Group Reports,
ser. ITiCSE-WGR ’10. New York, NY, USA: ACM, 2010, pp. 29–47.

[31] E. L. Jones, “Integrating testing into the curriculum – arsenic in
small doses,” in Proceedings of the Thirty-second SIGCSE Technical
Symposium on Computer Science Education (SIGCSE ’01). New York,
NY, USA: ACM, 2001, pp. 337–341.

179179

