The 30th IEEE Conference on Software Engineering Education and Training

Software Engineering Education: Converging
with the Startup Industry

Nitish M. Devadiga
*Datarista Inc., Providence, RI, USA
*Carnegie Mellon University, Pittsburgh, PA, USA
ndevadiga@datarista.com, ndevadig@alumni.cmu.edu

Abstract— Startups are agents of change that bring in
innovations and find solutions to problems at various scales. An
all-rounded engineering team is a key driver for the ability to
execute the entrepreneurial ambition, from building a minimum
viable product to later stages of product vision. Software
engineering education provides students with the knowledge to
transition to mature companies with defined structure in place
successfully. However, the fluidity, risk, time-sensitivity, and
uncertainty of startups demand a dynamic and agile set of skills
to rapidly identify, conceptualize and deliver features as per
market needs. This requires the adoption of latest development
trends in software processes, engineering and DevOps practices
with automation to iterate fast with low governance and the
ability to take on multiple roles. This paper presents a study of
the dynamics and engineering at startups and compares it with
the current curriculum of software engineering.

Index Terms— Software Engineering Education, Startups,
Startup Engineering, Innovation and Education, Software
Engineering Degree Programs

I. INTRODUCTION

Startups advance the state of technology with innovations to
solve a wide array of problems in diverse domains and are a
key driver for economic development. In the year 2016 $71
billion was invested in startups by VC’s, and in the first
quarter of 2017, $16.5 billion is invested in more than 1,800
startups [5]. More than one-third of these deals are in the
software sector. Startups incorporated in the past decade or so
like Facebook, Dropbox, Airbnb, Netflix have evolved into
successful businesses and are setting the standards of the new
way of software development in the industry. They are a
catalyst to the evolution of next set of startup companies.
Many early stage startups with their entrepreneurial drive and
focus are building innovative products in a rapidly evolving
and uncertain environment.

Engineering in startups is unique in comparison to mature

*The views expressed herein are of the author alone and not necessarily the
views of Carnegie Mellon University or Datarista Inc. or any of its affiliates.
The information presented herein is only for informational and educational
purposes. This work was done by the author while working at The
MathWorks and then continued with it at Datarista Inc.

**Including the organizations author worked at, as mentioned above.

Nitish Devadiga is a graduate of Carnegie Mellon University, Pittsburgh,
PA 15213 USA (e-mail: ndevadig@alumni.cmu.edu) and currently works for
Datarista Inc. Providence, RT 02903 USA (e-mail: ndevadiga@datarista.com).

2377-570X/17 $31.00 © 2017 IEEE
DOI 10.1109/CSEET.2017.38

192

organizations and late stage startups.

Sutton defines startups as creative and flexible in nature and
reluctant to introduce processes or bureaucratic measures,
which may result in ineffective practices [6]. Eric Ries, the
creator of the Lean Startup movement, defines a startup as a
newly formed company, the purpose of which is to develop
new, usually innovative products or services in uncertain
circumstances [22]. This paper presents a study of the
dynamics and engineering at startups and compares it with the
current curriculum of software engineering. This study took
place over a period of two years from 2015 to 2017. Data was
collected on software processes, team dynamics, development,
deployment, infrastructure and hiring requirements. This data
was collected from interviews with startup organizations**,
meetups and job interviews. The characteristics of startups
were analyzed and compared with the current state of software
engineering education and identified that the current
curriculum does not adequately support the requirements of
the startup industry.

A. Background

With the rise of business incubators, startup schools,
university entrepreneurship programs there is a constant drive
to build solutions targeting diverse domains. This has caused a
high demand for software engineers who form the foundation
of these startups by understanding the vision, the problem
space and building the product based on market needs.
Startups work on a tight schedule especially in the initial
phases (Seed, Series A) as they need to balance company
funding, market demand, and development costs. The
engineering team is the core foundation of a startup; it lays the
groundwork for sales and marketing and reaching the desired
consumers within expected time frame. The development of
the product has a direct impact on whether it meets the
customer’s requirements and whether the product will ship in
time. A startup requires an able development team which can
grasp the vision, understand the market demands and builds a
scalable product that meets the functional and systemic
requirements. As startups rely on venture capitalist funding it
is low on human resources to execute the task though must get
to the market quickly, as time-to-market is a key metric for
success at startups.

Software engineering as a discipline over the past 45 years
with its curricula based on software engineering book of

knowledge (SWEBOK) [10] has provided students with the
necessary software engineering skills to transition and excel in
the software industry smoothly. Software engineering
education today provides students with valuable industry skills
like project management, software estimation, software
architecture, etc. which are a great asset in organizations
which follow the formal software development structure [1].
Established organizations have multiple teams to perform
specific jobs, and their release process is well defined, such
that software engineering graduates fit right in as it charts well
with the education they have received.

Particular topics in software engineering education today
have drifted from the software development practices adopted
in technology-oriented companies [2]. Students who joined
established organizations did not find much difficulty in
transitioning to the development workflow as these
organizations have well set up training plans and invest
heavily in getting new engineers up to speed in their
engineering practices. Also, the organizations have well-
documented processes for employees to get up to speed and
help themselves. On the contrary in startups, the environment
is dynamic, unpredictable, and even chaotic. As Bach defines
a startup as “a bunch of energetic and committed people
without defined development processes” [13]. Startups don’t
have the time and resources to invest in training activities like
established organizations [6] and thus requires people who can
start contributing immediately and have the knowledge and
experience to comprehend the existing systems and
methodologies [23]. In this paper, we identified certain gaps in
the current software engineering curricula which do not equip
the students with enough knowledge and skills to adopt and
perform as engineers who can be part of the founding team at
startups.

B. Software engineering students

Students pursuing software engineering degrees have varied
backgrounds with most students having a background in
computer science. Experience levels of students vary
anywhere from 0 to 6+ years, students at the start of this range
tend to have worked as software engineers or interns, and
students at the end of this interval have worked as project or
product managers. Students after graduation mostly join as
software engineers in established technology organizations
[14]. These organizations have a more computer science
oriented interview process and don’t emphasize much on
software engineering skills as that is taken care of by their
employee on-ramp and training activities [2]. Another
important point to note is that students that join as software
engineers in these organizations don’t have much authority in
the project goals and directions as those are done by the senior
engineering and project management teams.

II. RESEARCH METHODOLOGY

The goal of this study is to understand the relevance and
impact of software engineering in the startup industry. It was
realized that a significant segment of the technology industry,
i.e., startups are not adequately studied in software

193

engineering programs such that the students are not well
equipped to operate optimally at startups. A similar
observation was observed by Sutton [6] that “software startups
represent a segment that has been mostly neglected in process
studies” [24], [25], [18]. This premise led to the study of the
engineering principles and expectations of startups today and
provide that feedback to academia.

To learn more about engineering at startups, the author
collected information from organizations the author worked at,
interviewed employees at startups, established organizations,
technology meetups [17], startup events, and analyzed results
from job interviews. The author interviewed senior software
engineers, software engineers, CTO’s in particular
organizations and product managers. The interviews were
conducted conversationally to let the interviewee speak at
length about their experiences and opinions, and were
questioned with a predefined set of topics.

A. Data collection

The author conducted all the interviews; the meetups
attended were mainly in the Boston area. Notes were taken
during the meeting, and post the interview, organized and
consolidated. For notes that were not clear, participants were
asked follow-up questions to understand their intent better.
Meetups on subjects that were relevant to the engineering
development were attended and discussed with the attendees.
During candidate job interviews for engineering roles, notes
were taken on the knowledge that the student gained from
their graduate degree and how it aligned with the industry.

Interview questions were based on the following topics:
Description of business: About the firm and what problem
the company was solving and who their customers are, this
was mainly to understand the business and its domain better.
Funding: Is the company funded by VC’s and how many
rounds of financing the business has completed, the goal was
to understand the allocation of funds for different tasks and
their current burn rate. Tried to gain insight into the how
volatile and fast is the work environment.

Team: Asked about the team and the experience levels of
employees in the engineering group. Tried to gain insight into
their team dynamics and work interactions. Most startups were
in their early phases; employee count was below 20 in most
cases. Gathered information on how many of those employees
were part of the engineering team and their impact and
contribution to the product.

Development cycle: Asked about their adopted software
processes and how strictly they were adhering to their
textbook versions, relevancy and application of software
estimation, project management and other topics mentioned in
SWEBOK [2].

Engineering practices: Asked what engineering practices the
team employed and skills desired from potential future
employees. Use of programming patterns, system design and
architecture, coding practices, tools the development team
uses, the transition from architecture to code, and testing.
Code management: Asked how the team managed code
repository and whether they followed any particular workflow

for distributed development, code reviews and how new
employees ramp up with the system.

Build and Deployment process: Asked about their build
system, runtime infrastructure, its maintenance and their build
to deployment process and the people responsible for this
activity.

Engineer roles: Asked about the roles of engineers and
gained insight into the experience levels of engineers who
acted in these functions.

Documentation: Asked about documentation of design and
architecture of the product, its alignment with SWEBOK, its
maintenance, and new employee on-ramp documentation.
Customer support: Asked about customer support, if there
was any dedicated support team and triaging to engineering.
Cost management: Asked how development and
infrastructure costs were managed, primary owner for such
tasks, level of wunderstanding required to understand
infrastructure cloud computing costs.

B. Data consolidation and theory validation

Collected data notes were analyzed, tagged into different
topic categories and extracted their intrinsic characteristics.
1) Business characteristics
Vision and strategy: The image of the company defines the
entrepreneurial ambition and/or potential scalable product or
service idea for a large enough target market. Setting the
vision along with an initial strategy was the key attribute for
all organizations. In startups, this was extremely important as
it had a direct impact on fundraising, especially in the early
stages. This attribute was also deemed essential for hiring as
founders and potential hires needed to believe in the collective
vision of the company. At established organizations, though
this was important, not much emphasis was given as they
seemed to have high employee count and mainly needed
people to do well at their job.
Time-to-market: This defines the amount of time the product
will take to be released to their customer base. The timing of
product release was an important attribute for startups. It had a
direct impact on customer acquisition and its revenue. At
established organizations, this was important however they
already had a mature well-received product out in the market
and had enough resources/income to sustain delays.
Limited resources: This topic defines human resources and
funds that are available. It was brought up multiple times
while interviewing participants at startups as startups thrive on
VC funding and in most cases, don’t have a positive case cash
flow. The burn rate of startups vs. its growth defines how long
the startups will last.
2) Engineering characteristics
Team: This topic understands the dynamics of the team, their
interactions and the tools teams used for team management.
Identified the roles engineers of the founding team managed
and how they balanced time-to-market with funding. It was a
key attribute observed in early-stage startups. The impact and
influence of engineers in product development cycle and
product releases were analyzed and compared with established
companies. The difference in the engineering culture and

194

product contribution were noted. Identified the software
development process adopted by teams for managing the
product lifecycle. Software processes at established
organizations are categorized into a light-weight agile process
(like Kanban) whereas in startups the software processes
among founding teams were more of casual discussions and
high trust, and in mid-stage startups, it was limited to quick
standups and assignments of tasks using software’s like Jira.
Application development: This topic was widely discussed
during the interview with participants. We identified key
components of application development:

a) Development velocity — This varied from startups to
established organizations. At startups, product release was led
by the engineering teams, and in established organizations,
there were separate teams to perform these tasks. Startups
adopted short release cycles with rapid prototyping and based
on the customers at times selected ad-hoc development.

b) Clean code — This topic reflected the strong emphasis on
writing scalable code. This was more prevalent among senior
engineers and was also considered a key growth attribute.

c) Testing — This reflects the investment in testing and test
infrastructure by the engineering team, testing was mainly
done by the engineers themselves and QA was done at later
stages post deployment to the test system.

d) Build process — This captures the build process and systems
that are used by organizations.

e) Code Reviews — In most cases code reviews are done for all
changes to the system, from bug fixes to feature
developments. Strict code review was an accepted practice
among most organizations at various scales.

f) Distributed development — Developers work concurrently,
and this requires systems that would support seamless
concurrent development from build to deployment.
Developers make changes to the systems several times a day
and ensure that the system can scale as more developers
contribute to the system.

Roles: Engineers part of the founding team at startups took up
multiple positions due to limited resources in the organization.
Engineers did market research and contributed to new product
ideas, designed system architecture and took up DevOps
activities to manage infrastructure code and deployment. At
established companies, engineers mostly worked within their
verticals.

Documentation: Explored the extent of documentation done
by engineers in startups and established organizations.
Identified what pieces of the system were documented and
what was deemed as important and not important.
Infrastructure and DevOps: Organizations now adopt
infrastructure as code practices and any change to the
infrastructure is done through code. DevOps engineers
manage these tasks and ensure that the system can scale based
on customer demands. This role also entitles understanding of
cloud computing architecture and building redundant systems.
Hiring: It was noted that job interviews at startups were more
diverse where the candidates were interviewed on varied
topics like programming, algorithms, system design,
infrastructure, code practices, familiarity with tools, software

architecture, project management, etc. At established
organizations, the interview process was much more
streamlined with algorithms, design and other computer
science topics based on job profile.

[II. FINDINGS

Engineers at startups take up major responsibilities and
roles [1] due to limited resources and in some cases, lack of
expertise. At established technology organizations engineers
were required to have a good systems level understanding to
take up on the internet scale challenges, however, engineers
mostly worked within their verticals. As startups want to bring
the product to market as soon as possible, applications were
built iteratively with rapid prototyping [15], as the resource
that they are mostly lack of is time.

Most developers had a local environment setup where they
could run the product locally in their system and test it.
Developers write test cases for the feature they are building
and test it locally in their system. Post-development engineers
run their changes in a remote build system agent, and the code
is tested in a fresh setup of the infrastructure. Startups use
commercial offerings to avoid spending the time building such
systems and maintain focus on their core product, reducing the
amount of infrastructure they need to maintain. At major
companies, they have their homegrown version of such
systems, and engineers gradually learn this on their job [19].

Most companies follow the distributed development model
like Git Flow [11] with distributed version control systems
like Git and its online hosting repository service GitHub.

The quality of documentation improved with the maturity of
the organization. However, in startups as well as in established
organizations the documentation for in-house staff did not use
formal notations.

Code review process was considered extremely important in
all technology organizations. Back and forth on code review
helps the team in keeping the code clean and avoiding bugs.
The review process also ensures that the developer has added
enough test cases to test the feature. This ensures that if in
future some other engineer made changes to that subsystem
they will be able to test their change without breaking the

system.
Devops was another emerging topic with the rise of high
internet scale products and services. Most startups

organizations don’t own any local infrastructure and run their
applications on Amazon Web Services, or Microsoft Azure or
other similar compute platforms. These cloud computing
platforms provide high redundancy and availability for their
compute instances with datacenters across the globe, however,
to set up such an infrastructure engineer require sound systems
level knowledge. These systems based on their offering have
complex billing structures, senior engineers need to
understand this as it's difficult for non-technical staff to grasp
processor, storage, system level expenses.

IV. COMPARISON TO SOFTWARE ENGINEERING CURRICULUM

Software engineering curriculum as taught in universities

195

[9] [10] provide students with varied backgrounds the ability
to understand the development of software from its initial
phase to product deployment. However, there is great
emphasis on strict adherence to the software processes
(traditional or agile), software estimation, analysis of software
artifacts, etc. This knowledge though useful is slowly being
phased out from technology oriented fast paced internet scale
companies [2].

Using the above engineering characteristics and comparing
it to the core courses students study [9] in software
engineering programs, it was identified that,

1) Students spend a significant amount of time studying,
practicing software engineering processes, when they work on
projects prime importance is given to the process they
adopted, time tracking, and deciding if the process they used
worked for the project or not. This is observed in the software
engineering curriculum at Carnegie Mellon [9], the end of
semester presentation emphasizes this.

2) Software Architecture knowledge area is extremely
relevant to the industry, especially in startups as the students
who join startups play a significant role in defining the system
architecture. Students learn architectural patterns, system
modeling and its systemic properties, managing tradeoffs and
formally documenting architecture models with different
views. However, there is not much focus on application design
and code structure to write clean, reusable and scalable code to
build those architectural components. Software engineers with
their software architect hats on should have the ability to stub
out well-designed code structure using latest design and
programming paradigms. An exemplary demonstration of this
can be observed in the seminal paper on MapReduce by
Google [26].

3) Code review is another development step that is not
incorporated in student projects. Being able to review code
and provide valuable feedback is an important attribute of a
senior engineer, as it requires the knowledge and ability to
digest and produce clean code. This is also a reason for
students being hired as entry-level software engineers at
startups and other organizations [14].

4) Software testing knowledge area teaches formal testing
methods with static analysis random checkers, etc., which
equips students in understanding how to test software
programs, however it does not address testing of distributed
systems, web services, A/B testing, testing patterns as
observed in testing pyramid [20] and testing infrastructure
resiliency. With the rise of micro-services architecture and
single page applications, testing of the user interface and
backend systems are essential.

5) DevOps and infrastructure-as-code are subjects that are
not taught enough in most software engineering schools. With
the rise of cloud computing and infrastructure-as-a-service,
students need a practical understanding of cloud platforms.
Services like EC2 (compute instances), S3 (object storage),
SQS (queue service) on AWS are so widely used today that,
its assumed web engineers understand it. Students need to
know these infrastructure components to think and design
scalable solutions to today’s big data problems. This is

important for startups especially as their entire software stack
is deployed in cloud platforms [8].

6) Cloud computing services with their distributed property
and startups with its lack of resources and rapid development
model requires a certain level of automation for management
and deployment of software to cloud services. There are
infrastructure architecture design patterns like immutable
infrastructure etc. built with orchestration tools like terraform,
chef, puppet. Understanding of such topics is essential when
students join the industry, at large organizations such topics
are handled during their developer on-ramp activities.

7) Software management knowledge area focuses on the
project schedule, budget, time reporting, and project quality,
these topics are not very relevant to the current practices in the
software industry and are mostly only used by consulting
organizations. Topics like process quality, project area
monitoring, CMMI development are hardly used in the
technology software industry.

V. COMPARISON TO ESTABLISHED ORGANIZATION PROCESSES

Established organizations have developed in-house training
and on-ramp processes for software engineers to understand
their development culture and software process. Graduates of
software engineering that take up jobs in these companies join
as software engineers [14]. At the size of these organizations,
most software engineers don’t have much say in the project
management or architectural structure of these project as seen
in startups. These engineers mostly tend to rely on their
computer science knowledge for their day to day job activities.
Unlike startups, they get to use the knowledge they gained in
software engineering as they move up in the organization and
not immediately after joining.

VI. CONCLUSION

Prominent in evolutionary learning theory is the idea of
search, i.e., a problem-solving process in which organizations
recombine, relocate, and manipulate existing knowledge in
order to create new knowledge - Levinthal, 1997; Katila, 2002
[7].

Software engineering as a discipline would play a vital role
in the growth of engineering at startups. Software engineering
education equips students with the knowledge to analyze
requirements, design and architect software, and build scalable
software systems. It provides education to reduce uncertainty
and detect patterns to bring order to chaos. In Carnegie
Mellon, there are more than 24-degree programs in the school
of computer science itself like masters in computer science,
masters in machine learning, etc. and these programs are ideal
for students who wish to pursue in-depth specialization in
those fields [16].

However, in startups, we observed there is a high value for
graduate students who have the ability to manage tradeoffs,
understand different aspects of software developments and can
combine software management with software development.
Such talents provide startups with immense value in building a
strong foundation for the company.

Startups are agents of change that bring in innovations and
cutting-edge software products with broad impact on the

196

market. Software engineering and software development form
the core foundation of startups. Despite their high failure rate
[21] proliferation of startups is not matched by a scientific
book of knowledge [3]. To be able to contribute to software
development strategies of startups with scientific and
engineering approaches, the first step is to comprehend the
startups existing behavior. In this paper, we study multiple
attributes of startups and then identify gaps in the current state
of software engineering education, which can be used a
starting point to understand and build a more relevant
industry-focused curriculum for students such that they can be
the catalyst for development in the startups of tomorrow.

REFERENCES
(1]

S. Chenoweth, “Undergraduate Software Engineering Students in
Startup Businesses,” 2008 21st Conference on Software Engineering
Education and Training, 2008.

M. Bass, “Software Engineering Education in the New World: What
Needs to Change?” 2016 IEEE 29th International Conference on
Software Engineering Education and Training (CSEET), 2016.

C. Giardino, N. Paternoster, M. Unterkalmsteiner, T. Gorschek, and P.
Abrahamsson, “Software Development in Startup Companies: The
Greenfield Startup Model,” IEEE Transactions on Software
Engineering, vol. 42, no. 6, pp. 585-604, Jan. 2016.

Kauffman Index Startup Activity, 2016.

Pitchbook-NVCA venture monitor 1Q, 2017.

S. M. Sutton, “The role of process in software start-up,” IEEE Softw.,
vol. 17, no. 4, pp. 33-39, Aug. 2000.

R. Katila, E. L. Chen, and H. Piezunka, “All the right moves: How
entrepreneurial firms compete effectively,” Strategic Entrepreneurship
Journal, vol. 6, no. 2, pp. 116-132,2012.
https://aws.amazon.com/solutions/case-studies/
http://mse.isri.cmu.edu/software-engineering/index.html

P. Bourque and R.E. Fairley, eds., Guide to the Software Engineering
Body of Knowledge, Version 3.0, IEEE Computer Society, 2014;
https://datasift.github.io/gitflow/IntroducingGitFlow.html

L. Zhu, L. Bass, and G. Champlin-Scharff, “DevOps and Its
Practices,” IEEE Software, vol. 33, no. 3, pp. 32-34, 2016.

J. Bach, “Microdynamics of process evolution,” IEEE Comput., vol. 31,
no. 2, pp. 111-113, Feb. 1998.
http://www.cmu.edu/career/aboutus/salaries_and_destinations/2016.html
N. M. Devadiga, “Tailoring Architecture Centric Design Method with
Rapid Prototyping”, 2017; arXiv:1706.01602.
https://www.cs.cmu.edu/masters-programs

https://www.meetup.com

G. Coleman and R. O’Connor, “Using grounded theory to understand
software process improvement: A study of Irish software product
companies,” Inf. Softw. Technol., vol. 49, no. 6, pp. 654— 667, 2007.
Potvin, R., & Levenberg, J. (2016). Why Google stores billions of lines
of code in a single repository. Communications of the ACM, 59(7), 78-
87. doi:10.1145/2854146
https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-
tests.html

N. Paternoster, C. Giardino, M. Unterkalmsteiner, T. Gorschek, and P.
Abrahamsson, “Software development in startup compa- nies: A
systematic mapping study,” Inf. Softw. Technol., vol. 56, no. 10, pp.
1200-1218, Oct. 2014.

Ries, Eric. The Lean Startup: How Today's Entrepreneurs Use
Continuous Innovation to Create Radically Successful Businesses. New
York: Crown Business, 2014.

D. Yoffie, “Building a company on Internet time: Lessons from
netscape,” California Manage. Rev., vol. 4, no. 3, 1999.

G. Coleman and R. O’Connor, “An investigation into software
development process formation in software start-ups,” J. Enterprise Inf.
Manage., vol. 21, no. 6, pp. 633-648, 2008.

G. Coleman and R. O’Connor, “Investigating software process in
practice: A grounded theory perspective,” J. Syst. Softw., vol. 81, no. 5,
pp. 772784, May 2008.

J. Dean and S. Ghemawat, “MapReduce,” Communications of the ACM,
vol. 51, no. 1, p. 107, Jan. 2008.

(2]

(3]

[4]
[5]
[6]
(7]
(8]
(]
[10]

[11]
[12]

[13]

[14]
[15]

[16]
[17]
[18]

[19]

[20]

[21]

(22]

[23]

[24]

[25]

[26]

