
Integrating Components, Contracts, and Reasoning in CS Curricula with
RESOLVE: Experiences at Multiple Institutions

Wayne Heym, Paolo A. G. Sivilotti, Paolo Bucci
Computer Science and Engineering

The Ohio State University
Columbus OH, USA

{heym, paolo, bucci}@cse.ohio-state.edu

Joseph E. Hollingsworth
Computer Science

Indiana University Southeast
New Albany IN, USA

jholly@ius.edu

Murali Sitaraman, Kevin Plis
School of Computing
Clemson University
Clemson SC, USA

{murali, kplis}@clemson.edu

Joan Krone
Math and Computer Science

Denison University
Granville OH, USA
krone@denison.edu

Nigamanth Sridhar
Electrical Engineering and Computer Science

Cleveland State University
Cleveland OH, USA

nsridhar1@csuohio.edu

Abstract— Analytical reasoning is central to code correctness,
and every computer science curriculum aims to teach students
how to achieve this objective in one form or another. With the
acceptance of object-based computing and component-based
software engineering, the need for analytical reasoning that is
based on formal contracts to establish correctness of software
across module boundaries has become ever more obvious. Yet
there are few institutions that have integrated modular,
analytical reasoning principles into their undergraduate
curriculum. Among many reasons for this shortcoming are:
the effort it takes overloaded faculty to integrate new ideas of
any kind in their courses, the challenge of institutionalizing
ideas within a specific context, and constraints of a particular
college. This paper presents our experiences over nearly two
decades at five different institutions with the hope that they
will serve as useful curriculum examples for like-minded
educators at other institutions.

Components; correctness proofs; specification; verification;
design-by-contract

I. INTRODUCTION
The courses discussed in this paper share two common

objectives that we believe are shared by many CS educators:
Students must learn to reason about the correctness of code
(within components) and students must learn to build and
reason about component-based software using contracts.
The first one is a typical objective of earlier courses and the
second one is a common objective of later courses.
Typically, the reasoning process that is taught and the
contracts that are used to describe components are presented

informally. We believe the reason for absence of formality
in code reasoning and component contracts is multi-fold:

• Commonly used programming languages in CS
education, such as C++ and Java, do not have
formal syntactic slots for expressing contracts or
reasoning.

• Instructors do not have the time to develop formal
contract specifications and integrate them
seamlessly into their existing courses.

• Fellow faculty at institutions are still skeptical that
undergraduate students can actually learn to
understand and use formal contracts in reasoning,
and that there are benefits for such reasoning in
developing high quality software.

We have conducted numerous assessments to show that
students can successfully learn formal reasoning principles.
A summary of one such assessment spanning a 5-year
period in two courses may be found in [1, 2]. More
importantly, collectively we have successfully taught nearly
10,000 students at five institutions (four of which are
public) over the last 15 years, and have witnessed firsthand
the ability of typical undergraduates to learn formal
reasoning.

The structures of the computer science curricula at the
five institutions are all different and the places in the
curriculum where we introduce formal reasoning also differ.
Our hope, then, is that through this experience report
educators will see that formal reasoning ideas can be
introduced in a variety of ways, in a variety of courses at

The 30th IEEE Conference on Software Engineering Education and Training

2377-570X/17 $31.00 © 2017 IEEE

DOI 10.1109/CSEET.2017.40

202

The 30th IEEE Conference on Software Engineering Education and Training

2377-570X/17 $31.00 © 2017 IEEE

DOI 10.1109/CSEET.2017.40

202

different depths and using different example sequences.
Materials and software used in these courses are either
available publically at our web sites or available freely upon
request.

At Ohio State, the ideas are introduced in the
introductory CS course sequence where Java is the
programming language of choice. At IU Southeast, the
principles are taught in a second-year data structures and
algorithms course, using C++ as the language of instruction.
At Clemson, a required two-course software engineering
sequence presents the ideas with support from a web-
integrated environment to facilitate reasoning. At Cleveland
State, the ideas are used throughout the software lifecycle
process in a required software engineering course. At
Denison, some of the principles underlying verification are
presented in a software engineering course. In all cases,
analytical reasoning is one of the topics covered, but not the
only one. At all institutions, the ideas have gone through
extensive assessment before they were institutionalized,
though details of these assessment efforts are not the topic
of the present paper.

The common element of the offerings of these
institutions is the use of RESOLVE specification notation—
conceived and refined over a period of 30 years especially
with undergraduate computing education in mind [3, 4].
While there are several specification approaches in the
literature, RESOLVE notation has been employed and
assessed for use in undergraduate audiences for decades.
The notation is intended to make a variety of core reasoning
concepts taught in undergraduate computing easily
accessible. At the same time, RESOLVE is sufficiently
developed as a research vehicle that it is possible to specify
and verify non-trivial software components automatically
using a push-button verifying compiler that we have
developed.

It is important to note that the ideas of formal contracts
and reasoning are not the only content of the courses
discussed in this paper. They are merely integrated with
other topics normally taught in the courses. A part of the
challenge is how to incorporate reasoning topics without
necessarily displacing other topics that need to be covered.
For example, in the software engineering course at
Clemson, only five weeks are devoted to the topics covered
in this paper. The rest of the course is concerned with other
software lifecycle topics, such as requirements analysis.

The rest of the paper is organized into the following
sections. Section II is a summary of the introductory course
sequence at Ohio State, a novel aspect of which is a
simultaneous introduction to specification, programming
(Java), and reasoning. Section III is a summary of IU
Southeast offering of data structures and algorithms in C++,
a novelty of which is its online component. Section IV is a
summary of the Clemson two-course sequence with focus
on the novel usage of a web-integrated reasoning
environment for developing verified components in a
software engineering course. Section V contains a summary
of the Cleveland State and Denison software engineering
courses. In the discussion of our experience at each
institution, we give an overview of the courses and outline
the reasoning topics covered in the course. We also

summarize assignments, labs, or projects that are used to
reinforce the ideas. In each case, we present illustrative
examples to highlight key points. Sections VI and VII
outline some related work and summarize.

II. SUMMARY OF THE INTRO SEQUENCE AT OHIO STATE
Introductory computer science at Ohio State is a two-

course (one academic year) sequence: Software I and
Software II. About 1000 students, mostly CS or EE majors,
take the sequence each year. Each course meets four times
per week in forty-student sections: twice in a lecture hall
and twice in a computer lab. Pair programming is
encouraged during the lab activities. Students complete
frequent small homework assignments, in-lab programming
activities, and larger multi-week projects [5].

This sequence is not an introduction to programming.
Before taking Software I, students must demonstrate
programming proficiency in an imperative language of their
choice. AP Computer Science A serves as a possible pre-
requisite, as do various one-semester courses offered at
Ohio State such as “Intro to programming in Java” and
“Intro to programming in C++”.

Java is used as the programming language and Eclipse
as the development environment for the entire sequence.
Eclipse is configured with some plugins (e.g., Checkstyle
and FindBugs) as well as specific preference settings (e.g.,
format-on-save) to encourage adherence to specific coding
conventions. Other standard tools, such as JUnit, Javadoc,
and the Eclipse debugger, are also used throughout the
sequence.

The key characteristic of this sequence is the order of
presentation: Students are first taught how to use
components, then how to implement them. We call this
approach “client-view first” [6, 7]. This deliberate
decomposition cleanly partitions the two courses: Software I
is entirely client-view, while Software II is from the
implementer’s perspective. In the first course, students learn
to read component specifications, including mathematical
models of state and behavioral contracts for methods. They
write procedural code using these components and reason
about the behavior of their code based on the component
specifications. In the second course, students peel back the
cover and look inside the components they used in Software
I. They learn the relationship between a component’s
internal concrete realization and its external abstract state.
They implement method bodies that satisfy given contracts
and they learn how to create layered, modular
implementations.

The client-view first approach has many benefits.
Firstly, students quickly get to use a rich collection of
components to do engaging projects. For example, in the
first few weeks of Software I, students use an XMLTree
component to scrape interesting information from real-time
RSS feeds. Secondly, students gain an appreciation for
clean, well-documented interfaces. For example, tracing the
step-by-step execution of a program using a Set component
is possible only if students fully understand the client-side
documentation of that component. Finally, students learn
best practices for building modular systems. These best
practices emerge as natural consequences of the strict

203203

decomposition of client view and implementer’s view,
rather than simple ad hoc coding idioms.

We have found that formal methods, including
specifications and mathematical models, are invaluable in
supporting the client-view first structure of this course
sequence. Furthermore, we have found that formal methods
can be tightly integrated throughout the introductory
sequence and can support learning of traditional topics such
as iteration, recursion, argument passing, reference types,
etc.

A. Abstraction: Mathematical Models for the Client
Information hiding is an important topic in any course

that teaches modular programming. Equally important, but
often omitted, is the other side of the coin: Abstraction.
Since information hiding restricts what a client knows about
the internals of a component, there is a complementary need
for a client-visible explanation of a component’s behavior.
Such an explanation should not expose internal
implementation details, so it is written in terms of a
component’s abstract state.

Abstraction is pervasive in computer science. It is used
so often, in so many ways, and in so many different courses,
that it hardly draws any particular attention. In our client-
view first introduction to computer science, however, we
highlight abstraction as a first-class citizen of software
design [8]. For each programming type, a corresponding
mathematical model is introduced or reused. In Software I,
the description of a component is always done in terms of its
mathematical model.

There are many opportunities for confusion between an
implementation and its abstraction. There is overlap in
vocabulary; for example, “type” could refer to a program
type (int) or a mathematical type (integer). There is also
overlap in notation; for example, “=” could be assignment in
Java or a statement about equality in mathematics. In some
cases, there is even overlap in semantics, when the mapping
between one and the other is trivial, for example the
mathematical model for an UnboundedInteger being an
integer.

Therefore, it is important that the distinction between
implementation and abstraction be made clearly and
consistently. Java provides a convenient syntax for
supporting this distinction: We use interfaces to define
mathematical models and method contracts written in terms
of those models, while classes contain implementations. By
decomposing each component into an interface and a class,
the discipline of writing an implementation-neutral cover
story follows per force. The best practice of “coding to the
interface” also follows as a natural consequence of a client-
view first approach and is supported with interfaces. More
details about this use of Java interfaces are in [7].

While interfaces and abstract classes are used in the
standard Java libraries, their use is not consistent and they
are never fully abstract. Therefore, we provide students with
a library of components with clear abstractions defined in
distinct interfaces [9]. Some of these components parallel
parts of the Java collections framework (e.g., Queue,
Stack, List), some are illustrative of basic concepts (e.g.,
AMPMClock), some are utilitarian (e.g., XMLTree,

SimpleReader, SimpleWriter), and some are exemplars
of best practices (e.g., NaturalNumber).

The building blocks for mathematical models for all of
these components are simple mathematical types familiar to
all freshmen, such as integers, reals, booleans, sets, and
strings (i.e., lists of elements). Each type has a few
operators, such as ^ for exponentiation and | | for the
length of a string. Importantly, these operators are distinct
from operators in the programming language. This
difference between math syntax and Java syntax reinforces
for students the difference between a client-side cover story
(written in the former) and the artifact itself (written in the
latter).

1) Example: Strings for Queues and Stacks
Mathematical strings—finite sequences of entries—are

used extensively to model container classes. For example,
both Queues and Stacks are modeled by strings.

type Queue is modeled by string of T
type Stack is modeled by string of T

This documentation is part of the Javadoc for each
component’s core interface which also contains formal
contracts for each method. The contracts are written in
terms of pre and post-conditions, with # in post-conditions
to indicate the initial values of formal parameters and the
name of the method to indicate the returned value.
Parameter modes (such as “clears” meaning the argument
will be reset to an initial value for its type and “updates”
meaning the argument may be modified as specified by the
ensures clause) are also used as shorthand for common
conditions. Custom Javadoc tags are used to structure these
contracts, integrating them with standard Java
documentation and including them in generated
documentation.

For example, Listing 1 gives the contracts for Queue’s
append and dequeue methods. These are read by the
students and used to reason abstractly about their behavior.

/**
 * @updates this
 * @clears q
 * @ensures this = #this * #q
 */
 void append(Queue<T> q)

/**
 * @updates this
 * @requires this /= <>
 * @ensures #this = <dequeue> * this
 */
 T dequeue()

Listing 1: Javadoc Contracts for Queue Methods

Notice the mathematical notation and operators used in
contracts, where = is equality (not assignment) and /= is
inequality (not !=). The * operator is string concatenation,
the term < > is the empty string, and <dequeue> is a string
consisting of a single element (the value returned by the
dequeue method).

204204

B. Example: Unbounded Natural Numbers
Other components require slightly refined models. For

example, the NaturalNumber component stores an
unbounded non-negative integer and involves an invariant
on the abstract state (i.e., a constraint), namely that the
integer is not negative:

type NaturalNumber is modeled by NATURAL

NATURAL is integer
 exemplar n
 constraint n >= 0

The interface for this component contains the method
contracts which use this mathematical abstraction for the
value of this. For example, in the method contract for
divideBy10 (below), the (abstract) value of this is a
NATURAL:

/**
 * @updates this
 * @ensures #this = 10 * this + divideBy10 and
 * 0 <= divideBy10 < 10
 */
int divideBy10()

C. Tracing Tables
Tracing tables employ strictly a client-view when “hand

tracing” over any method call. Such tracing is in service of
reasoning about the correctness of a method body under
development. At this stage, each method to be implemented
is done so in layered fashion. That is, it is not cooperating
with other methods to represent a data type; instead, it
provides an enhanced capability for an existing data type or
is otherwise a “stand-alone” method. Such a method’s
contract presents its client-view; the implementer reasons
whether the proposed method body always satisfies its
contract under the assumption that all methods called satisfy
their contracts. The tracing table is similar in spirit to the
reasoning table discussed in [10] for a Java-based course at
Clemson.

One pedagogical advantage of this approach comes in
teaching recursion. By learning to trace over all method
calls, including recursive ones, students can see the
implementation of a recursive method body as a problem of
the same kind as the foregoing, with just a couple of
additional constraints on the reasoning [6].

D. Implementing a Data Type
The task of arranging instance variables and bodies of

constructors and methods to cooperate in representing a data
type is significantly complex. For example, just the task of
reasoning about the correctness of one method body
involved in such a representation is significantly more
complex than about that of one layered method body.
Fortunately, techniques exist to organize and make explicit
these additional demands in order to manage and simplify
this complexity. Several of these techniques are involved in
the art of designing the client-view of a data type; some
more are involved in the art of designing a plan of
implementation of such a data type. Our pedagogical
approach supposes that students are well-served when they

are asked to examine and work in the presence of many
examples of good design long before they are asked to
perform overall design tasks themselves. Therefore,
Software II focuses on the practice of implementing a
representation of a component and has students practice
implementing the component’s constructors and methods
within the constraints of an already-complete design.

The primary artifact of such a completed design is, of
course, the client-view of the component. In the currently-
used programming language, this view is presented in Java
interfaces, which, typically, have one or more generic type
parameters and can be seen in [5]. Specification reuse is
achieved via multiple inheritance. A salient feature of this
design arises from the recognition that layered
implementations of methods are significantly easier than
implementations involving representation. Hence, the latter
are kept to a small number by finding a minimal kernel set
of methods that capture the primary features of the
component and make its values observable and controllable
via these kernel methods. The contracts for these methods
are gathered together in the interface that also has the key
job of describing the client-view of the values of objects of
this component type. All other useful methods for this
component have their contracts presented together in an
“enhanced” interface, which extends the kernel interface.
The enhanced interface is implemented by an abstract class,
which doesn’t implement any of the kernel methods, but
which does implement the enhanced methods in a layered
fashion based, ultimately, on calls to the kernel methods,
whose implementations are deferred to “kernel” classes that
extend this “secondary” abstract class.

It is valuable for a given component to have multiple
kernel implementations because these can differ in their
time- and space-performance characteristics. As an example
of engineering tradeoffs, they also vary in ease of
implementation and/or understanding. A kernel class that is
easy to implement can be built before one that has better
performance characteristics and be used as a reference
implementation in unit testing of the latter implementation.
We have our students implement kernel classes in an in-
class laboratory setting and as outside-of-class pair
programming projects. We present our design decisions for
each kernel class in three parts. A primary part is the choice
of the types and names of the instance variables used in the
representation. The next two parts, together, constitute the
internal contract among the kernel methods. Often, not all
(combinations of) possible values of these variables are
sensibly used in the representation: a stated representation
invariant (presented in a custom Javadoc tag @convention)
captures this design decision. The intended interpretation of
the instance variables’ values cooperatively representing a
client-view value is stated in the abstraction relation
(presented in a custom Javadoc tag @correspondence). The
abstraction relation need only be sensible for instance
variables’ values that satisfy the representation invariant. If
each constructor and method body respects these three
aspects of the design with respect to the corresponding
contract in the interface, then the kernel class
implementation will be correct. Hence, each operation’s
body can be developed independently of each other body.

205205

Additionally, we may wish our students to satisfy certain
performance criteria, so we state those as well and may also
require that certain algorithms be used.

An illustrative example comes from the third week of
Software II. One in-class laboratory is dedicated to students
implementing a kernel for the Set interface using one Queue
value as the representation. The class they complete has the
name Set2 in our catalog [5]. The one instance variable is
named elements. The client-view for Queue (presented in
QueueKernel) informs us that any value of elements is a
string of T. It is to be used to represent a set of T, the client-
view found in SetKernel. By this point in the two-course
sequence our students are well-versed at taking the client
view, and they reason about a component, e.g., Queue, using
its math model rather than a concrete representation such as
a linked-list or an array. The obvious interpretation of a
string as a set is stated in the abstraction relation using a
mathematical function from string of T to set of T named
entries. This function “gathers together” every element
present in the string to be a member of the set, disregarding
any duplicates, of course. Because we designers recognized
that the algorithms for methods remove and removeAny
would be made more complicated if duplicates were
permitted in the representation string, the representation
invariant disallows duplicates (by insisting that the length of
the string equals the size of the set obtained from that string
via the mathematical function entries):

|$this.elements| = |entries($this.elements)|

We use the dollar sign (‘$’) as a prefix to “this” to
indicate the representing class so that we can use “this” by
itself to indicate the client-view value. Hence the abstraction
relation here is expressed as:

this = entries($this.elements)

Consider, then, reasoning about the correctness of an
implementation of the SetKernel method removeAny. The
contract for this method is shown below:

/**
 * @updates this
 * @requires |this| > 0
 * @ensures removeAny is in #this and
 * this = #this \ {removeAny}
 */
T removeAny();

The precondition states that the set is non-empty. The
postcondition says that the return value should be some
element of the incoming value of the set, and that the
outgoing value of the set should contain all values that were
in the incoming value, except the value that is returned. The
implementer can reason by the abstraction relation that
every element in the queue is a member of the represented
set, so that dequeueing the front element of the queue will
provide an element of the incoming set, and this value can
then be returned. It is only by assuming, however, that the
queue has no duplicates that one can reason that dequeuing
an element has caused the queue to represent a set that no
longer has in it the element that came out of the queue. It is
the representation invariant that justifies this assumption.

The implementer, then, also has the obligation to satisfy this
same representation invariant upon return. Obeying this
obligation, of course, is easily done, for example, by not
gratuitously duplicating another element within the queue,
even though doing so would still, through the abstraction
function, represent the contractually expected outgoing
value of the set. The additional involvement of the
abstraction relation and the representation invariant is the
reason why implementing a kernel method is more difficult
than implementing a method without using direct access to a
representation. For this in-class laboratory, we asked
students to implement one private static helper method (a
typical layered implementation) named “moveToFront” as
preparatory homework. We provided the implementation of
the one constructor specified in comments in the SetKernel
interface, but asked students to implement the five
SetKernel [5] methods during the laboratory session.

The topic of this subsection is revisited in Section IV.B
with a detailed code example in the RESOLVE notation.

III. SUMMARY OF THE DATA STRUCTURES COURSE
AT IU SOUTHEAST

IU Southeast’s B.S. in computer science includes CS1
and CS2 as the first two courses for majors. Data structures
and algorithms are introduced in CS2 as is common;
however, a more in-depth coverage is permitted by our third
course CSCI C343, which is called Data Structures. The
introduction of data structures and algorithms in CS2 frees
up time in C343 to integrate principles of engineering
software that can lead to higher quality software
development. One of the principles that we hit hard is
design-by-contract, [11] which for us includes contracts
consisting of requires and ensures clauses and the
assignment of obligations and benefits between the client
(calling operation) and service supplier (called operation).
This one-semester course typically includes software
development labs that include, first, client-view
programming, followed by implementing container
components by directly using C++’s built-in types, e.g.,
pointer types, and also by layering a new component on
other existing components. Typical component abstractions
implemented are: lists, sequences, maps, and sorting
machines [12]. For example, the students often implement
Map three different ways using the technique of layering –
layered on list using linear search, layered on an array of
lists using hashing, and layered on a binary tree component
using binary search. All of these C++ components [13] have
contracts embedded as comments where the contracts are
written in the RESOLVE specification language. Students
use the components’ contracts to reason abstractly about
their behavior—this is taught early in the semester.

A. Teaching Students to Evaluate Software Design
One of the primary learning outcomes is: students will

be able to evaluate an operation’s design (including its
implementations, this course’s primary concern for this
learning outcome) for adhering to the design-by-contract
assignment of obligations and benefits. Instructional
materials have been developed to support this learning
outcome and time is spent in class examining various

206206

operations that adhere and do not adhere to the design-by-
contract engineering technique.

Below are two examples of operations that might be
given to students for evaluation. During grading of lab
assignments we collect examples of student submitted
operations that violate design-by-contract and use these to
drive discussion or test questions—many are more complex
and nuanced than what follows.

The Queue template that we supply to the students is an
unbounded queue and has specifications written in
RESOLVE that are embedded as C++ comments.
Specifications of Queue operations are similar to those
discussed in the previous section, except that they are
presented in a C++ context.

Now examine the operation addToAll in Listing 2 which
has a requires clause of true, i.e., the client of addToAll is
permitted to call it with a queue of any length. In English,
addToAll ensures that it will add the value found in
parameter x to all integers found in the parameter q.
addToAll is an example of an operation to be evaluated by
the students in order to determine if it is a “good” client of
Queue, i.e., that addToAll never violates (under any
circumstances) any of the requires clauses of the operations
it calls.

typedef Queue<Integer> IntegerQueue;

void addToAll(IntegerQueue& q, Integer x)
// requires: true
// ensures: for all k: integer (0 <= k < |q|
// implies q[k,k+1) = #q[k,k+1) + x) and
// x = #x
{
 IntegerQueue qTemp;

 do {
 Integer y;
 q.dequeue(y);
 y = y + x;
 qTemp.enqueue(y);
 } while (q.length() > 0);
 q.transferFrom(qTemp);
} // addToAll

Listing 2: A Purported Implementation of the addToAll

Operation

Examining addToAll’s code quickly reveals that it is a
defective client in that it cannot guarantee that it will satisfy
dequeue’s requires clause under all circumstances. (Recall,
from Listing 1, that the dequeue operation’s precondition
requires that the queue be non-empty.) To computing
instructors, this is an obvious “rookie” mistake, but to the
students it is not so obvious. If this example is used as a
teaching tool, then once the class agrees that addToAll is a
defective client, we can then turn our attention to correcting
the defect, e.g., by using a zero-trip loop such as for or
while. Training the student’s eye to catch these types of
defects is paramount for us.

Another design exercise asks the students to evaluate an
implementation of an operation with respect to taking
advantage of the operation’s requires clause. In C343,

students work with both bounded and unbounded versions
of our components. The dequeue operation in Listing 3
comes from a bounded version where the BoundedQueue’s
internal representation is an array named contents, using a
straightforward non-circular implementation.
template <class T, int maxLength>
void BoundedQueue1<T, maxLength>::dequeue(T& x)
{
 if(currentLength > 0) {
 x = contents[0];
 int z = (currentLength - 1)
 for (int k = 0; k < z; k++) {
 contents[k] = contents[k + 1];
 } // end for
 currentLength--;
 } // end if
} // dequeue

Listing 3: A Purported Implementation of the dequeue

Operation

This operation is an example of an implementation that
students are asked to evaluate for taking advantage of the
requires clause. Under design-by-contract, the obligation for
meeting the requires clause is on the client—in this case the
caller of dequeue is required to call with a non-empty queue.
The corresponding benefit is that the implementer of
dequeue can assume the queue to be non-empty at the time
of the call, therefore there is no need to have extra code to
check for the queue being empty. The implementer of
dequeue in Listing 3 failed to take advantage of this benefit
as is seen by the all-encompassing if statement that first
verifies that currentLength > 0. What is illustrated here is
often referred to as defensive programming, which in
general we agree with but only in specific locations of a
software system. Defensive programming should be used
when the software system has no control of the incoming
data, e.g., data incoming from across the Internet. However,
once that data has passed the system’s “outer checking wall”
and is now moving from one internal operation to another, a
switch to design-by-contract must be made, which brings
with it the ability to leverage design-by-contract’s benefits.

B. Online Course Offering Considerations
Learning can be improved with increased student

engagement; this is true for face-to-face classes as well as
with online courses. Effective teaching in the online
environment [14] must foster student-to-faculty interaction
and also engagement among students. We have used the
examples above in discussion forums as a way to foster and
increase online student engagement in our face-to-face,
hybrid, and our totally online classes. Through our learning
management system, we post one or more examples where
the students are asked to evaluate an operation’s
implementation with respect to adhering to design-by-
contract principles. We are careful to set the discussion
forum’s options so that a student can only see the posts of
other students after he or she has first made a post. These
posts can be as simple as determining if design-by-contract
has been followed and why not if the answer is “no”. Or,
going further, the instructions might require the student to

207207

post a better-engineered version of the operation under
evaluation.

IV. SUMMARY OF THE SOFTWARE ENGINEERING
SEQUENCE AT CLEMSON

With unanimous consent, the faculty of the School of
Computing at Clemson has included the requirement that
the CS graduates “will be able to apply design and
development principles to develop defect-free software that
functions according to its specification” as one of the six
outcomes for all graduates. Since 2012, the principles of
specification and reasoning are institutionalized in two
required courses for CS majors, one, a second year
introduction to software development foundations, where
the basic concepts are presented in the context of Java, [9,
10] and another, a third year software engineering course.
Students use the RESOLVE specification and
implementation language in this latter course and develop
verified components using a web-integrated environment
[15, 16].

A. Software Development Foundations
At Clemson, a prerequisite to the software engineering

course (discussed next) is a required course that introduces
students to object-based development using Java, and
instills basic principles of analytical reasoning using
specifications. Contents and organization of this course as
an exemplar ACM 2013 curriculum course are detailed in
[10]. Some of the topics covered in this course are similar
to those detailed for the introductory Java-based course
sequence at Ohio State in Section II.

One of the important additions to the course, occurring
in all its sections for the 2016-2017 academic year, is the
incorporation of a web-based tool to enhance student
understanding of formal reasoning. A detailed description of
the tool, its experimentation in multiple sections, and results
from evaluation are reported elsewhere [17]. Using simple
examples, the tool aims to help students gain a general
understanding about code, going beyond tracing with
specific input values. The goal is for students to learn to
predict what a given piece of code, involving assignment
and control statements, will do on arbitrary inputs without
actually running the code. The tool is supported in the back
by the RESOLVE verifier to give feedback to students and
to give feedback to instructors regarding where students
face obstacles in reasoning.

B. Software Engineering
The software engineering course at Clemson uses the

RESOLVE specification and implementation language, and
students develop code according to given contract
specifications. Moreover, they use a web-integrated and
automated RESOLVE verification system, available through
a web IDE to verify that their code satisfies formal contracts
[18]. Different sections of the software engineering course
introduce and use RESOLVE and its supporting tools to
varying degrees. Given below is the summary of some of
the activities in one recent offering.

One of the simplest exercises students do in this course
is to develop code for the secondary Queue Rotate
operation. (See Listing 4.) In the ensures clause, Prt_Btwn is

a mathematical string notation, and it is the substring
between the given positions. The verification system checks
that the code (procedure) satisfies the contracts for the
operations it calls (requires clauses of Dequeue and
Enqueue) and that the code ensures the contract of the
operation it implements (ensures clause of Rotate). The
verification, of course, assumes the requires clause of
Rotate, because it is the responsibility of Rotate’s caller.
Any errors are reported and students iterate the process until
the code is verified.

Operation Rotate(updates Q: Queue);
 requires 1 <= |Q|;
 ensures Q = Prt_Btwn(1, |#Q|, #Q) o
 Prt_Btwn(0, 1, #Q);
Procedure
 Var E: Integer;
 Dequeue(E, Q);
 Enqueue(E, Q);
end Rotate;

Listing 4: The Rotate Operation

A more complex activity involves implementing one
component using another. For example, implementation of a
Set component was discussed in Section II. Listing 5
contains part of an implementation of Queue_Template
using List_Template in RESOLVE. The key idea in
implementing data abstraction is the use of internal
contracts asserting a convention (to capture the
representation invariant) and a correspondence (which
captures the abstraction function or relation between the
abstraction in the specification and the representation in the
implementation). Students are given the interface
specifications of components and the internal contracts that
must be satisfied.

In the List_Template, a list is modeled mathematically
as an ordered pair of strings of entries: a preceding string of
entries, and a remaining string of entries. This
conceptualization allows one to think of a list as having a
cursor position in between the two strings. When an element
is inserted into the list, it is added to the front of the
remaining string. The remove operation has the opposite
effect, so that an insertion followed by an immediate
removal leaves the list unaffected. There is also an operation
Advance that allows the cursor position to be moved so that
insertions can occur at different places in the list. The Reset
operation has the effect of moving the cursor position to the
front and Advance_to_End has the effect of moving it to the
rear.

For the assignment given in Listing 5, the representation
invariant is that the preceding string is always empty. The
correspondence is that the abstract queue is what is in the
remaining string. This is why the code for Dequeue can
simply call the list Remove operation. But the Enqueue code
needs to move the cursor position to the end before
insertion. To satisfy the representation invariant that code
needs to reset the cursor, so that the preceding string is
empty.

208208

Realization List_Based_Realiz for Queue_Template;
 -- not shown: declaration of an instance
 -- of list of entries, named LF.List
 Type Queue = Record
 Contents: LF.List;
 ...
 end;
 convention Q.Contents.Prec = Empty_String;
 correspondence Conc.Q = Q.Contents.Rem;

 Procedure Enqueue(alters E: Entry;
 updates Q: Queue);
 Advance_to_End(Q.Contents);
 Insert(E,Q.Contents);
 Reset(Q.Contents);
 end Enqueue;

 Procedure Dequeue(replaces R: Entry;
 updates Q: Queue);
 Remove(R,Q.Contents);
 end Dequeue;

 -- code for other Queue operations
 ...
end List_Based_Realiz;

Listing 5: The Enqueue and Dequeue Procedures

V. SUMMARY OF THE SOFTWARE ENGINEERING
COURSES AT CLEVELAND STATE AND DENISON

At both Cleveland State and Denison universities, the
RESOLVE notation is used in an undergraduate Software
Engineering course, which is a four-credit-hour, overview
course that covers all aspects of the software engineering
life-cycle.

At Cleveland State, the course has specific emphasis on
the correct construction of software systems and it is
required for all Computer Science and Computer
Engineering students. Students spend five weeks (20 hours
of total instructional time) working with the RESOLVE
notation. The first use of the notation is in the context of
requirements specification. Students are introduced to the
idea of specifying requirements in a formal, unambiguous
manner. At the same time, students are also made conscious
that rigorous formal specifications do not necessitate heavy,
detailed, proof systems. Rather, the students are exposed to
the modular specification method that is characteristic of
RESOLVE—the proof obligations are embedded in the
lower-level components, and clients of these lower-level
components can leverage these proof guarantees in a light-
weight manner. Later in the course, when working on design
and implementation phases in the software engineering
lifecycle, students rely on RESOLVE-style specifications to
reason about correctness of implementations.

An example of an exercise that students work on in this
course is the detailed specification of software for a portion
of an air-traffic control (ATC) system. In particular, students
describe how the ATC system can manage a number of
aircraft in a given sector of airspace at a particular time,
with the following constraints: (a) the airspace may include
a number of aircraft, each with a unique identifier, (b) all

aircraft must be separated by at least 300 meters in height,
(c) a controller may create a new sector, (d) aircraft may
enter, leave, and move in the sector, and (e) a controller may
look up a particular aircraft, and check if a particular region
is occupied. The students go through an iterative design
process, writing specifications for the abstract state of the
sector, and each of the operations. Over the course of the
iterations, the students use specifications for modeling the
Set, PartialMap, and eventually,
BijectivePartialMap components. The students then
work through a reasoning exercise to construct a correctness
argument for the Sector component.

The catalog description for the elective software
engineering course at Denison emphasizes the importance of
making connections between theory and practice, and it
states that students will apply their theoretic background,
together with current research ideas to solve real problems
and that they will draw from their entire computer science
curriculum, noting how theoretic results apply to real
problems.

This course covers all aspects of software engineering
even as students seek to apply the principles to a real-world
problem. For example, in one offering, students completed a
webpage that allowed local taxpayers to look at the tax
reports of the school system and make predictions according
to what level of taxation the village had.

Students learn to design software that is based on the
principles that the RESOLVE system promotes: Each
software component should be carefully specified so that
reasoning about the design can be done abstractly. The
overall design must be modular so each component can be
checked for correctness based only on its abstract
specification. It should be implemented efficiently. Students
have access to the RESOLVE web interface provided by
Clemson University where they see examples of software
specified, implemented, and verified using that system.
Before their introduction to RESOLVE, the students
examine specifications of library components in C++ to
critique those specifications and figure out why they are not
adequate for making choices about using those components.
Then they examine RESOLVE specifications for stacks and
queues and are introduced to the concept of formal,
mathematical specifications. They write one or more
enhancements of stacks or queues to see the importance of,
and ease of building new components using existing
components that are formally specified and that have been
verified.

Students at Denison have a strong mathematical
foundation and so we examine and apply some basic proof
rules for RESOLVE constructs so students get a glimpse of
what it means to use automated verification. Then they use
the RESOLVE web IDE to verify the enhancements they
have written. Although students are not RESOLVE experts
upon completing CS349, they have gained a sense of how
software might be done in the future and they have not only
some practical experience in doing their own project, but
they have developed and mastered many principles that they
can carry over into their graduate programs or jobs.

209209

VI. RELATED WORK
The importance of mathematical thinking in computer

science is widely recognized, and there are many
approaches for teaching it as part of undergraduate curricula
[19, 20]. Educators have explored a variety of ways to teach
formal methods, in particular, at the undergraduate level
[21, 22, 23, 24, 25]. The assessment of these approaches is
typically done in the context of a single institution, and
often a single course. In contrast, we have considered how a
single approach, one using RESOLVE for formal reasoning,
has succeeded at a variety of institutions and at a variety of
levels of courses.

Design-by-contract, in a general sense, is naturally part
of any specification and reasoning methodology. One
language often associated with this style is Eiffel, which has
found use in education, as illustrated in [26]. While
languages such as Eiffel enjoy significant tool support, the
focus is typically on the specification rather than on the
analytical reasoning involved in verification. In contrast,
the RESOLVE approach supports both specification and
mathematical reasoning through verification conditions,
while at the same time including tool support for rapid
feedback to students.

One idea that frequently appears in the context of
teaching formal methods is that of run-time checking for
violations of assertions or contracts. Unfortunately,
executable specs can easily blur the distinction between
mathematical model and concrete implementation. For
example, in [27], the author provides a set of exercises that
require students to implement an instructor-created ADT
that has been specified axiomatically. The students begin by
synthesizing a Java class interface based on the provided
axioms and annotate this class with object-oriented
assertions translated from the axioms. A third-party open-
source tool is used, which processes the assertion-annotated
Java source code and generates instrumented code for
checking the assertions at run time. Inheritance is used in
the Java-class implementations. In contrast, specifications
in our approach are model-based and they employ types
from mathematical theories as models for object (and
variable) values. Feldman points out that, in the context of
axiomatic specifications, “it is difficult to express in this
formalism the fact that the values corresponding to all other
keys [in a map] have remained the same” after the call of a
put method. It is an important advantage that, using model-
based specification, expressing this fact (and all others
we’ve encountered) is easy. While Feldman mentions
“class invariants” several times, describing important
technical aspects relating to them, the paper provides no
specific example as it might appear in an exercise. Hence,
there is no example of using: an internal contract that
specifies how a variable’s internal representation maps to its
external abstract value, or an internal contract for specifying
the representation invariant. These internal contracts are
central to the assignments given at Clemson or Ohio State,
for example, which ask students to implement a given
component using model-based specifications of all the
involved components.

In [28], the authors describe teaching students how to
develop contracts for operations (pre- and post-conditions)

using their tool called ProVIDE. The student is asked to
provide a post-condition for an operation and the tool aids
the student with constructing an appropriate precondition.
We are not asking our students to develop contracts; our
course materials provide the contracts, and students evaluate
and use these contracts.

VII. SUMMARY
In principle, any formal specification language, such as

those summarized in [29] could be used to describe
contracts. Some of these languages are tailored to particular
programming languages (e.g., JML) and some others (e.g.,
Z) are more general. However, few specification languages
have been designed for specifications to be used in
mechanical reasoning about code correctness. Even fewer
have been conceived and developed to teach component-
based software engineering for undergraduate computing
students. Almost none has received multiple decades of
undergraduate educational experimentation and tuning as
has RESOLVE. This paper illustrates how it can serve as an
ideal vehicle in a range of computing courses, starting from
introductory courses to advanced software engineering
courses with or without using any popular programming
language in conjunction. It also shows that the language is
conducive to presenting software engineering and reasoning
concepts in a few lectures to a few weeks at a variety of
educational institutions with differing curricular constraints.
The plethora of materials, exercises, activities, and
assignments available make it easy for educators to adapt
and customize.

ACKNOWLEDGMENT
We gratefully acknowledge the members of the

RESOLVE Software Research Groups (RSRG) at Clemson
and Ohio State. Many individual members of our research
groups contributed significantly to the ideas contained in
this paper. We also acknowledge that this research is funded
in part by U. S. National Science Foundation (NSF) grants
IUSE-1611714, DUE-1022941, SHF-1161196, and DUE-
1610957. Any opinions, findings, conclusions, or
recommendations expressed here are those of the authors
and do not necessarily reflect the views of the NSF.

REFERENCES
[1] Svetlana Drachova. 2013. Teaching and Assessment of

Mathematical Principles for Software Correctness Using a
Reasoning Concept Inventory. Ph.D. Dissertation. Clemson
University.

[2] Svetlana V. Drachova, Jason O. Hallstrom, Joseph E. Hollingsworth,
Joan Krone, Rich Pak, and Murali Sitaraman. 2015. Teaching
Mathematical Reasoning Principles for Software Correctness and Its
Assessment. Trans. Comput. Educ. 15, 3, Article 15 (August 2015),
22 pages. DOI=10.1145/2716316 http://doi.acm.org
/10.1145/2716316

[3] Murali Sitaraman and Bruce W. Weide. 1994. Special Feature on
RESOLVE, ACM SIGSOFT Software Engineering Notes, October
1994, 21-68.

[4] Murali Sitaraman, et al., “Building a Push-Button RESOLVE
Verifier: Progress and Challenges,” Formal Aspects of Computing
23, 2011, 607-626.

210210

[5] “OSU CSE Components – API Specification.” (31 January 2016)
Retrieved from http://web.cse.ohio-state.edu/software/common/doc/

[6] Long, T.J., Weide, B.W., Bucci, P., and Sitaraman, M., “Client View
First: An Exodus From Implementation-Biased Teaching”,
Proceedings of the 30th SIGCSE Technical Symposium on
Computer Science Education, ACM Press, 1999, 136-140.

[7] Paolo A.G. Sivilotti and Matthew Lang. 2010. "Interfaces first (and
foremost) with Java". In Proceedings of the 41st ACM technical
symposium on Computer science education (SIGCSE '10). ACM,
New York, NY, USA, 515-519. DOI=http://dx.doi.org
/10.1145/1734263.1734436

[8] Bucci, P., Long, T.J., and Weide, B.W., “Do We Really Teach
Abstraction?”, Proceedings of the 32nd SIGCSE Technical
Symposium on Computer Science Education, ACM Press, 2001, 26-
30.

[9] Charles T. Cook, Svetlana Drachova, Jason O. Hallstrom, Joseph E.
Hollingsworth, David P. Jacobs, Joan Krone, and Murali Sitaraman.
2012. A systematic approach to teaching abstraction and
mathematical modeling. In Proceedings of the 17th ACM annual
conference on Innovation and technology in computer science
education (ITiCSE '12). ACM, New York, NY, USA, 357-362.
DOI=http://dx.doi.org/10.1145/2325296.2325378

[10] Jason O. Hallstrom, Cathy Hochrine, Jacob Sorber, and Murali
Sitaraman. 2014. An ACM 2013 exemplar course integrating
fundamentals, languages, and software engineering. In Proceedings
of the 45th ACM technical symposium on Computer science
education (SIGCSE '14). ACM, New York, NY, USA, 211-216.
DOI=http://dx.doi.org/10.1145/2538862.2538969

[11] Bertrand Meyer. Applying Design by Contract. Computer,
25(10):40–51, October 1992.

[12] B. W. Weide, W. F.Ogden, and M. Sitaraman. Sept. 1994. Recasting
Algorithms to Encourage Reuse. In IEEE Software, vol. 11, no. 5,
pp. 80–88. DOI=10.1109/52.311066.

[13] “C343 Standard C++ Components.” (31 January 2016) Retrieved
from http://pages.iu.edu/~jholly/C343/Notes/ComponentSpecs
/StandardComponents.html

[14] Marcia D. Dixson. 2010. Creating effective student engagement in
online courses: What do students find engaging? Journal of the
Scholarship of Teaching and Learning, 10(2):1-13, June 2010.

[15] Charles T. Cook, Heather Harton, Hampton Smith, and Murali
Sitaraman. 2012. Specification Engineering and Modular
Verification Using a Web-Integrated Verifying Compiler. Proc. 34th
International Conference on Software Engineering, IEEE/ACM,
2012, 1379-1382.

[16] Charles T. Cook, Svetlana Drachova, Yu-Shan Sun, Murali
Sitaraman, Jeff Carver, and Joseph E. Hollingsworth. 2013.
Specification and Reasoning in SE Projects Using a Web-IDE. Proc.
26th Conference on Software Engineering Education and Training,
IEEE, 2013.

[17] Michelle Cook, Megan Fowler, Jason O. Hallstrom, Joesph E.
Hollingsworth, Matthew P. Pfister, Tim Schwab, Yu-Shan Sun, and
Murali Sitaraman. 2017. Pinpointing Student Obstacles to Logical
Reasoning about Code. Technical Report RSRG-17-01, School of
Computing, Clemson University.

[18] http://www.cs.clemson.edu/group/resolve (5 Sept 2014).
[19] Douglas Baldwin, Henry M. Walker, and Peter B. Henderson. 2013.

The roles of mathematics in computer science. ACM Inroads 4, 4
(December 2013), 74-80. DOI: http://dx.doi.org/10.1145
/2537753.2537777

[20] John P. Dougherty, Joseph E. Hollingsworth, Joan Krone, and
Murali Sitaraman. 2016. Mathematical Reasoning in Computing
Education: Connecting Math We Teach with Writing Correct
Programs (Abstract Only). In Proceedings of the 47th ACM
Technical Symposium on Computing Science Education (SIGCSE
'16). ACM, New York, NY, USA, 707-707. DOI:
https://doi.org/10.1145/2839509.2850491

[21] Jeannette M. Wing. 2000. Invited Talk: Weaving Formal Methods
into the Undergraduate Computer Science Curriculum. In
Proceedings of the 8th International Conference on Algebraic
Methodology and Software Technology (AMAST '00), Teodor Rus
(Ed.). Springer-Verlag, London, UK, UK, 2-9.

[22] Doug Baldwin, “Math-thinking-l – Mathematical reasoning in CS
curricula”, at: http://mail.geneseo.edu/mailman/listinfo/math-
thinking-l/ (5 Sept 2014).

[23] Raymond Boute. 2009. Teaching and practicing computer science at
the university level. SIGCSE Bull. 41, 2 (June 2009), 24-30.
DOI=http://dx.doi.org/10.1145/1595453.1595458

[24] Gene Fisher and Corrigan Johnson. 2016. Making Formal Methods
More Relevant to Software Engineering Students via Automated
Test Generation. In Proceedings of the 2016 ACM Conference on
Innovation and Technology in Computer Science Education (ITiCSE
'16). ACM, New York, NY, USA, 224-229. DOI:
http://dx.doi.org/10.1145/2899415.2899424

[25] Erik Poll. 2009. Teaching Program Specification and Verification
Using JML and ESC/Java2. In Proceedings of the 2nd International
Conference on Teaching Formal Methods (TFM '09), Jeremy
Gibbons and José Nuno Oliveira (Eds.). Springer-Verlag, Berlin,
Heidelberg, 92-104. DOI=http://dx.doi.org/10.1007/978-3-642-
04912-5_7

[26] Paige R.F., Ostroff J.S. (2004) Specification-Driven Design with
Eiffel and Agents for Teaching Lightweight Formal Methods. In:
Dean C.N., Boute R.T. (eds) Teaching Formal Methods. TFM 2004.
Lecture Notes in Computer Science, vol 3294. Springer, Berlin,
Heidelberg

[27] Yishai A. Feldman. 2005. Teaching quality object-oriented
programming. J. Educ. Resour. Comput.5, 1, Article 1 (March 2005).
DOI=http://dx.doi.org/10.1145/1101670.1101671.

[28] Timothy S. Gegg-Harrison, Gary R. Bunce, Rebecca D. Ganetzky,
Christina M. Olson, and Joshua D. Wilson. 2003. Studying program
correctness by constructing contracts. In Proceedings of the 8th
annual conference on Innovation and technology in computer
science education (ITiCSE '03), David Finkel (Ed.). ACM, New
York, NY, USA, 129-133. DOI=http://dx.doi.org/10.1145
/961511.961548

[29] Victor Klebanov, et al., The 1st Verified Software Competition:
Experience Report. In FM 2011: Formal Methods, Proceedings 17th
International Symposium on Formal Methods, Springer LNCS 6664,
June 2011, 154-168.

211211

