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Abstract— Analytical reasoning is central to code correctness, 
and every computer science curriculum aims to teach students 
how to achieve this objective in one form or another.  With the 
acceptance of object-based computing and component-based 
software engineering, the need for analytical reasoning that is 
based on formal contracts to establish correctness of software 
across module boundaries has become ever more obvious.  Yet 
there are few institutions that have integrated modular, 
analytical reasoning principles into their undergraduate 
curriculum.  Among many reasons for this shortcoming are: 
the effort it takes overloaded faculty to integrate new ideas of 
any kind in their courses, the challenge of institutionalizing 
ideas within a specific context, and constraints of a particular 
college.  This paper presents our experiences over nearly two 
decades at five different institutions with the hope that they 
will serve as useful curriculum examples for like-minded 
educators at other institutions. 

Components; correctness proofs; specification; verification; 
design-by-contract 

I. INTRODUCTION 
The courses discussed in this paper share two common 

objectives that we believe are shared by many CS educators:  
Students must learn to reason about the correctness of code 
(within components) and students must learn to build and 
reason about component-based software using contracts. 
The first one is a typical objective of earlier courses and the 
second one is a common objective of later courses. 
Typically, the reasoning process that is taught and the 
contracts that are used to describe components are presented 

informally. We believe the reason for absence of formality 
in code reasoning and component contracts is multi-fold:  

• Commonly used programming languages in CS 
education, such as C++ and Java, do not have 
formal syntactic slots for expressing contracts or 
reasoning.  

• Instructors do not have the time to develop formal 
contract specifications and integrate them 
seamlessly into their existing courses. 

• Fellow faculty at institutions are still skeptical that 
undergraduate students can actually learn to 
understand and use formal contracts in reasoning, 
and that there are benefits for such reasoning in 
developing high quality software. 

We have conducted numerous assessments to show that 
students can successfully learn formal reasoning principles. 
A summary of one such assessment spanning a 5-year 
period in two courses may be found in [1, 2]. More 
importantly, collectively we have successfully taught nearly 
10,000 students at five institutions (four of which are 
public) over the last 15 years, and have witnessed firsthand 
the ability of typical undergraduates to learn formal 
reasoning. 

The structures of the computer science curricula at the 
five institutions are all different and the places in the 
curriculum where we introduce formal reasoning also differ. 
Our hope, then, is that through this experience report 
educators will see that formal reasoning ideas can be 
introduced in a variety of ways, in a variety of courses at 
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different depths and using different example sequences. 
Materials and software used in these courses are either 
available publically at our web sites or available freely upon 
request. 

At Ohio State, the ideas are introduced in the 
introductory CS course sequence where Java is the 
programming language of choice. At IU Southeast, the 
principles are taught in a second-year data structures and 
algorithms course, using C++ as the language of instruction. 
At Clemson, a required two-course software engineering 
sequence presents the ideas with support from a web-
integrated environment to facilitate reasoning. At Cleveland 
State, the ideas are used throughout the software lifecycle 
process in a required software engineering course.  At 
Denison, some of the principles underlying verification are 
presented in a software engineering course. In all cases, 
analytical reasoning is one of the topics covered, but not the 
only one. At all institutions, the ideas have gone through 
extensive assessment before they were institutionalized, 
though details of these assessment efforts are not the topic 
of the present paper. 

The common element of the offerings of these 
institutions is the use of RESOLVE specification notation—
conceived and refined over a period of 30 years especially 
with undergraduate computing education in mind [3, 4]. 
While there are several specification approaches in the 
literature, RESOLVE notation has been employed and 
assessed for use in undergraduate audiences for decades. 
The notation is intended to make a variety of core reasoning 
concepts taught in undergraduate computing easily 
accessible. At the same time, RESOLVE is sufficiently 
developed as a research vehicle that it is possible to specify 
and verify non-trivial software components automatically 
using a push-button verifying compiler that we have 
developed. 

It is important to note that the ideas of formal contracts 
and reasoning are not the only content of the courses 
discussed in this paper. They are merely integrated with 
other topics normally taught in the courses. A part of the 
challenge is how to incorporate reasoning topics without 
necessarily displacing other topics that need to be covered. 
For example, in the software engineering course at 
Clemson, only five weeks are devoted to the topics covered 
in this paper. The rest of the course is concerned with other 
software lifecycle topics, such as requirements analysis. 

The rest of the paper is organized into the following 
sections. Section II is a summary of the introductory course 
sequence at Ohio State, a novel aspect of which is a 
simultaneous introduction to specification, programming 
(Java), and reasoning. Section III is a summary of IU 
Southeast offering of data structures and algorithms in C++, 
a novelty of which is its online component. Section IV is a 
summary of the Clemson two-course sequence with focus 
on the novel usage of a web-integrated reasoning 
environment for developing verified components in a 
software engineering course. Section V contains a summary 
of the Cleveland State and Denison software engineering 
courses. In the discussion of our experience at each 
institution, we give an overview of the courses and outline 
the reasoning topics covered in the course. We also 

summarize assignments, labs, or projects that are used to 
reinforce the ideas. In each case, we present illustrative 
examples to highlight key points. Sections VI and VII 
outline some related work and summarize. 

II. SUMMARY OF THE INTRO SEQUENCE AT OHIO STATE 
Introductory computer science at Ohio State is a two-

course (one academic year) sequence: Software I and 
Software II. About 1000 students, mostly CS or EE majors, 
take the sequence each year. Each course meets four times 
per week in forty-student sections: twice in a lecture hall 
and twice in a computer lab. Pair programming is 
encouraged during the lab activities. Students complete 
frequent small homework assignments, in-lab programming 
activities, and larger multi-week projects [5]. 

This sequence is not an introduction to programming. 
Before taking Software I, students must demonstrate 
programming proficiency in an imperative language of their 
choice. AP Computer Science A serves as a possible pre-
requisite, as do various one-semester courses offered at 
Ohio State such as “Intro to programming in Java” and 
“Intro to programming in C++”. 

Java is used as the programming language and Eclipse 
as the development environment for the entire sequence. 
Eclipse is configured with some plugins (e.g., Checkstyle 
and FindBugs) as well as specific preference settings (e.g., 
format-on-save) to encourage adherence to specific coding 
conventions. Other standard tools, such as JUnit, Javadoc, 
and the Eclipse debugger, are also used throughout the 
sequence. 

The key characteristic of this sequence is the order of 
presentation: Students are first taught how to use 
components, then how to implement them. We call this 
approach “client-view first” [6, 7]. This deliberate 
decomposition cleanly partitions the two courses: Software I 
is entirely client-view, while Software II is from the 
implementer’s perspective. In the first course, students learn 
to read component specifications, including mathematical 
models of state and behavioral contracts for methods. They 
write procedural code using these components and reason 
about the behavior of their code based on the component 
specifications. In the second course, students peel back the 
cover and look inside the components they used in Software 
I. They learn the relationship between a component’s 
internal concrete realization and its external abstract state. 
They implement method bodies that satisfy given contracts 
and they learn how to create layered, modular 
implementations. 

The client-view first approach has many benefits. 
Firstly, students quickly get to use a rich collection of 
components to do engaging projects. For example, in the 
first few weeks of Software I, students use an XMLTree 
component to scrape interesting information from real-time 
RSS feeds. Secondly, students gain an appreciation for 
clean, well-documented interfaces. For example, tracing the 
step-by-step execution of a program using a Set component 
is possible only if students fully understand the client-side 
documentation of that component. Finally, students learn 
best practices for building modular systems. These best 
practices emerge as natural consequences of the strict 
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decomposition of client view and implementer’s view, 
rather than simple ad hoc coding idioms.  

We have found that formal methods, including 
specifications and mathematical models, are invaluable in 
supporting the client-view first structure of this course 
sequence. Furthermore, we have found that formal methods 
can be tightly integrated throughout the introductory 
sequence and can support learning of traditional topics such 
as iteration, recursion, argument passing, reference types, 
etc. 

A. Abstraction: Mathematical Models for the Client 
Information hiding is an important topic in any course 

that teaches modular programming. Equally important, but 
often omitted, is the other side of the coin: Abstraction. 
Since information hiding restricts what a client knows about 
the internals of a component, there is a complementary need 
for a client-visible explanation of a component’s behavior. 
Such an explanation should not expose internal 
implementation details, so it is written in terms of a 
component’s abstract state. 

Abstraction is pervasive in computer science. It is used 
so often, in so many ways, and in so many different courses, 
that it hardly draws any particular attention. In our client-
view first introduction to computer science, however, we 
highlight abstraction as a first-class citizen of software 
design [8]. For each programming type, a corresponding 
mathematical model is introduced or reused. In Software I, 
the description of a component is always done in terms of its 
mathematical model. 

There are many opportunities for confusion between an 
implementation and its abstraction. There is overlap in 
vocabulary; for example, “type” could refer to a program 
type (int) or a mathematical type (integer). There is also 
overlap in notation; for example, “=” could be assignment in 
Java or a statement about equality in mathematics. In some 
cases, there is even overlap in semantics, when the mapping 
between one and the other is trivial, for example the 
mathematical model for an UnboundedInteger being an 
integer. 

Therefore, it is important that the distinction between 
implementation and abstraction be made clearly and 
consistently. Java provides a convenient syntax for 
supporting this distinction: We use interfaces to define 
mathematical models and method contracts written in terms 
of those models, while classes contain implementations. By 
decomposing each component into an interface and a class, 
the discipline of writing an implementation-neutral cover 
story follows per force. The best practice of “coding to the 
interface” also follows as a natural consequence of a client-
view first approach and is supported with interfaces. More 
details about this use of Java interfaces are in [7]. 

While interfaces and abstract classes are used in the 
standard Java libraries, their use is not consistent and they 
are never fully abstract. Therefore, we provide students with 
a library of components with clear abstractions defined in 
distinct interfaces [9]. Some of these components parallel 
parts of the Java collections framework (e.g., Queue, 
Stack, List), some are illustrative of basic concepts (e.g., 
AMPMClock), some are utilitarian (e.g., XMLTree, 

SimpleReader, SimpleWriter), and some are exemplars 
of best practices (e.g., NaturalNumber). 

The building blocks for mathematical models for all of 
these components are simple mathematical types familiar to 
all freshmen, such as integers, reals, booleans, sets, and 
strings (i.e., lists of elements). Each type has a few 
operators, such as ^ for exponentiation and | | for the 
length of a string. Importantly, these operators are distinct 
from operators in the programming language. This 
difference between math syntax and Java syntax reinforces 
for students the difference between a client-side cover story 
(written in the former) and the artifact itself (written in the 
latter). 

1) Example: Strings for Queues and Stacks 
Mathematical strings—finite sequences of entries—are 

used extensively to model container classes. For example, 
both Queues and Stacks are modeled by strings.  

type Queue is modeled by string of T 
type Stack is modeled by string of T 

This documentation is part of the Javadoc for each 
component’s core interface which also contains formal 
contracts for each method. The contracts are written in 
terms of pre and post-conditions, with # in post-conditions 
to indicate the initial values of formal parameters and the 
name of the method to indicate the returned value. 
Parameter modes (such as “clears” meaning the argument 
will be reset to an initial value for its type and “updates” 
meaning the argument may be modified as specified by the 
ensures clause) are also used as shorthand for common 
conditions. Custom Javadoc tags are used to structure these 
contracts, integrating them with standard Java 
documentation and including them in generated 
documentation.  

For example, Listing 1 gives the contracts for Queue’s 
append and dequeue methods. These are read by the 
students and used to reason abstractly about their behavior. 

/**
 * @updates this 
 * @clears q 
 * @ensures this = #this * #q 
 */ 
 void append(Queue<T> q) 
 
/** 
 * @updates this 
 * @requires this /= <> 
 * @ensures #this = <dequeue> * this 
 */ 
 T dequeue()  

Listing 1: Javadoc Contracts for Queue Methods 

Notice the mathematical notation and operators used in 
contracts, where = is equality (not assignment) and /= is 
inequality (not !=). The * operator is string concatenation, 
the term < > is the empty string, and <dequeue> is a string 
consisting of a single element (the value returned by the 
dequeue method). 
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B. Example: Unbounded Natural Numbers 
Other components require slightly refined models. For 

example, the NaturalNumber component stores an 
unbounded non-negative integer and involves an invariant 
on the abstract state (i.e., a constraint), namely that the 
integer is not negative: 

type NaturalNumber is modeled by NATURAL 
 
NATURAL is integer 
  exemplar n 
  constraint n >= 0 

The interface for this component contains the method 
contracts which use this mathematical abstraction for the 
value of this.  For example, in the method contract for 
divideBy10 (below), the (abstract) value of this is a 
NATURAL: 

/** 
 * @updates this 
 * @ensures #this = 10 * this + divideBy10 and 
 *          0 <= divideBy10 < 10 
 */ 
int divideBy10() 

C. Tracing Tables 
Tracing tables employ strictly a client-view when “hand 

tracing” over any method call. Such tracing is in service of 
reasoning about the correctness of a method body under 
development. At this stage, each method to be implemented 
is done so in layered fashion. That is, it is not cooperating 
with other methods to represent a data type; instead, it 
provides an enhanced capability for an existing data type or 
is otherwise a “stand-alone” method. Such a method’s 
contract presents its client-view; the implementer reasons 
whether the proposed method body always satisfies its 
contract under the assumption that all methods called satisfy 
their contracts.  The tracing table is similar in spirit to the 
reasoning table discussed in [10] for a Java-based course at 
Clemson. 

One pedagogical advantage of this approach comes in 
teaching recursion. By learning to trace over all method 
calls, including recursive ones, students can see the 
implementation of a recursive method body as a problem of 
the same kind as the foregoing, with just a couple of 
additional constraints on the reasoning [6]. 

D. Implementing a Data Type 
The task of arranging instance variables and bodies of 

constructors and methods to cooperate in representing a data 
type is significantly complex. For example, just the task of 
reasoning about the correctness of one method body 
involved in such a representation is significantly more 
complex than about that of one layered method body. 
Fortunately, techniques exist to organize and make explicit 
these additional demands in order to manage and simplify 
this complexity. Several of these techniques are involved in 
the art of designing the client-view of a data type; some 
more are involved in the art of designing a plan of 
implementation of such a data type. Our pedagogical 
approach supposes that students are well-served when they 

are asked to examine and work in the presence of many 
examples of good design long before they are asked to 
perform overall design tasks themselves. Therefore, 
Software II focuses on the practice of implementing a 
representation of a component and has students practice 
implementing the component’s constructors and methods 
within the constraints of an already-complete design. 

The primary artifact of such a completed design is, of 
course, the client-view of the component. In the currently-
used programming language, this view is presented in Java 
interfaces, which, typically, have one or more generic type 
parameters and can be seen in [5]. Specification reuse is 
achieved via multiple inheritance. A salient feature of this 
design arises from the recognition that layered 
implementations of methods are significantly easier than 
implementations involving representation. Hence, the latter 
are kept to a small number by finding a minimal kernel set 
of methods that capture the primary features of the 
component and make its values observable and controllable 
via these kernel methods. The contracts for these methods 
are gathered together in the interface that also has the key 
job of describing the client-view of the values of objects of 
this component type. All other useful methods for this 
component have their contracts presented together in an 
“enhanced” interface, which extends the kernel interface. 
The enhanced interface is implemented by an abstract class, 
which doesn’t implement any of the kernel methods, but 
which does implement the enhanced methods in a layered 
fashion based, ultimately, on calls to the kernel methods, 
whose implementations are deferred to “kernel” classes that 
extend this “secondary” abstract class. 

It is valuable for a given component to have multiple 
kernel implementations because these can differ in their 
time- and space-performance characteristics. As an example 
of engineering tradeoffs, they also vary in ease of 
implementation and/or understanding. A kernel class that is 
easy to implement can be built before one that has better 
performance characteristics and be used as a reference 
implementation in unit testing of the latter implementation. 
We have our students implement kernel classes in an in-
class laboratory setting and as outside-of-class pair 
programming projects. We present our design decisions for 
each kernel class in three parts. A primary part is the choice 
of the types and names of the instance variables used in the 
representation. The next two parts, together, constitute the 
internal contract among the kernel methods.  Often, not all 
(combinations of) possible values of these variables are 
sensibly used in the representation: a stated representation 
invariant (presented in a custom Javadoc tag @convention) 
captures this design decision. The intended interpretation of 
the instance variables’ values cooperatively representing a 
client-view value is stated in the abstraction relation 
(presented in a custom Javadoc tag @correspondence). The 
abstraction relation need only be sensible for instance 
variables’ values that satisfy the representation invariant. If 
each constructor and method body respects these three 
aspects of the design with respect to the corresponding 
contract in the interface, then the kernel class 
implementation will be correct. Hence, each operation’s 
body can be developed independently of each other body. 
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Additionally, we may wish our students to satisfy certain 
performance criteria, so we state those as well and may also 
require that certain algorithms be used. 

An illustrative example comes from the third week of 
Software II. One in-class laboratory is dedicated to students 
implementing a kernel for the Set interface using one Queue 
value as the representation. The class they complete has the 
name Set2 in our catalog [5]. The one instance variable is 
named elements. The client-view for Queue (presented in 
QueueKernel) informs us that any value of elements is a 
string of T. It is to be used to represent a set of T, the client-
view found in SetKernel. By this point in the two-course 
sequence our students are well-versed at taking the client 
view, and they reason about a component, e.g., Queue, using 
its math model rather than a concrete representation such as 
a linked-list or an array. The obvious interpretation of a 
string as a set is stated in the abstraction relation using a 
mathematical function from string of T to set of T named 
entries. This function “gathers together” every element 
present in the string to be a member of the set, disregarding 
any duplicates, of course. Because we designers recognized 
that the algorithms for methods remove and removeAny 
would be made more complicated if duplicates were 
permitted in the representation string, the representation 
invariant disallows duplicates (by insisting that the length of 
the string equals the size of the set obtained from that string 
via the mathematical function entries): 

|$this.elements| = |entries($this.elements)| 

We use the dollar sign (‘$’) as a prefix to “this” to 
indicate the representing class so that we can use “this” by 
itself to indicate the client-view value. Hence the abstraction 
relation here is expressed as: 

this = entries($this.elements) 

Consider, then, reasoning about the correctness of an 
implementation of the SetKernel method removeAny. The 
contract for this method is shown below: 

/** 
 * @updates this 
 * @requires |this| > 0 
 * @ensures removeAny is in #this and 
 *          this = #this \ {removeAny} 
 */ 
T removeAny(); 

The precondition states that the set is non-empty. The 
postcondition says that the return value should be some 
element of the incoming value of the set, and that the 
outgoing value of the set should contain all values that were 
in the incoming value, except the value that is returned. The 
implementer can reason by the abstraction relation that 
every element in the queue is a member of the represented 
set, so that dequeueing the front element of the queue will 
provide an element of the incoming set, and this value can 
then be returned. It is only by assuming, however, that the 
queue has no duplicates that one can reason that dequeuing 
an element has caused the queue to represent a set that no 
longer has in it the element that came out of the queue. It is 
the representation invariant that justifies this assumption. 

The implementer, then, also has the obligation to satisfy this 
same representation invariant upon return. Obeying this 
obligation, of course, is easily done, for example, by not 
gratuitously duplicating another element within the queue, 
even though doing so would still, through the abstraction 
function, represent the contractually expected outgoing 
value of the set. The additional involvement of the 
abstraction relation and the representation invariant is the 
reason why implementing a kernel method is more difficult 
than implementing a method without using direct access to a 
representation. For this in-class laboratory, we asked 
students to implement one private static helper method (a 
typical layered implementation) named “moveToFront” as 
preparatory homework. We provided the implementation of 
the one constructor specified in comments in the SetKernel 
interface, but asked students to implement the five 
SetKernel [5] methods during the laboratory session. 

The topic of this subsection is revisited in Section IV.B 
with a detailed code example in the RESOLVE notation. 

III. SUMMARY OF THE DATA STRUCTURES COURSE 
AT IU SOUTHEAST  

IU Southeast’s B.S. in computer science includes CS1 
and CS2 as the first two courses for majors. Data structures 
and algorithms are introduced in CS2 as is common; 
however, a more in-depth coverage is permitted by our third 
course CSCI C343, which is called Data Structures. The 
introduction of data structures and algorithms in CS2 frees 
up time in C343 to integrate principles of engineering 
software that can lead to higher quality software 
development. One of the principles that we hit hard is 
design-by-contract, [11] which for us includes contracts 
consisting of requires and ensures clauses and the 
assignment of obligations and benefits between the client 
(calling operation) and service supplier (called operation). 
This one-semester course typically includes software 
development labs that include, first, client-view 
programming, followed by implementing container 
components by directly using C++’s built-in types, e.g., 
pointer types, and also by layering a new component on 
other existing components. Typical component abstractions 
implemented are: lists, sequences, maps, and sorting 
machines [12]. For example, the students often implement 
Map three different ways using the technique of layering – 
layered on list using linear search, layered on an array of 
lists using hashing, and layered on a binary tree component 
using binary search. All of these C++ components [13] have 
contracts embedded as comments where the contracts are 
written in the RESOLVE specification language. Students 
use the components’ contracts to reason abstractly about 
their behavior—this is taught early in the semester.  

A. Teaching Students to Evaluate Software Design 
One of the primary learning outcomes is: students will 

be able to evaluate an operation’s design (including its 
implementations, this course’s primary concern for this 
learning outcome) for adhering to the design-by-contract 
assignment of obligations and benefits. Instructional 
materials have been developed to support this learning 
outcome and time is spent in class examining various 
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operations that adhere and do not adhere to the design-by-
contract engineering technique. 

Below are two examples of operations that might be 
given to students for evaluation. During grading of lab 
assignments we collect examples of student submitted 
operations that violate design-by-contract and use these to 
drive discussion or test questions—many are more complex 
and nuanced than what follows. 

The Queue template that we supply to the students is an 
unbounded queue and has specifications written in 
RESOLVE that are embedded as C++ comments. 
Specifications of Queue operations are similar to those 
discussed in the previous section, except that they are 
presented in a C++ context. 

Now examine the operation addToAll in Listing 2 which 
has a requires clause of true, i.e., the client of addToAll is 
permitted to call it with a queue of any length. In English, 
addToAll ensures that it will add the value found in 
parameter x to all integers found in the parameter q. 
addToAll is an example of an operation to be evaluated by 
the students in order to determine if it is a “good” client of 
Queue, i.e., that addToAll never violates (under any 
circumstances) any of the requires clauses of the operations 
it calls. 

typedef Queue<Integer> IntegerQueue; 
 
void addToAll(IntegerQueue& q, Integer x) 
// requires: true 
// ensures: for all k: integer (0 <= k < |q| 
// implies q[k,k+1) = #q[k,k+1) + x) and 
// x = #x 
{ 
   IntegerQueue qTemp; 
 
   do { 
      Integer y; 
      q.dequeue(y); 
      y = y + x; 
      qTemp.enqueue(y); 
   } while (q.length() > 0); 
   q.transferFrom(qTemp); 
}  // addToAll 

 
Listing 2: A Purported Implementation of the addToAll 

Operation 

Examining addToAll’s code quickly reveals that it is a 
defective client in that it cannot guarantee that it will satisfy 
dequeue’s requires clause under all circumstances. (Recall, 
from Listing 1, that the dequeue operation’s precondition 
requires that the queue be non-empty.) To computing 
instructors, this is an obvious “rookie” mistake, but to the 
students it is not so obvious. If this example is used as a 
teaching tool, then once the class agrees that addToAll is a 
defective client, we can then turn our attention to correcting 
the defect, e.g., by using a zero-trip loop such as for or 
while. Training the student’s eye to catch these types of 
defects is paramount for us. 

Another design exercise asks the students to evaluate an 
implementation of an operation with respect to taking 
advantage of the operation’s requires clause. In C343, 

students work with both bounded and unbounded versions 
of our components. The dequeue operation in Listing 3 
comes from a bounded version where the BoundedQueue’s 
internal representation is an array named contents, using a 
straightforward non-circular implementation. 
template <class T, int maxLength> 
void BoundedQueue1<T, maxLength>::dequeue(T& x)
{ 
   if(currentLength > 0) { 
      x = contents[0]; 
      int z = (currentLength - 1) 
      for (int k = 0; k < z; k++) { 
         contents[k] = contents[k + 1]; 
      } // end for 
      currentLength--; 
   } // end if 
}  // dequeue 

 
Listing 3: A Purported Implementation of the dequeue 

Operation 

This operation is an example of an implementation that 
students are asked to evaluate for taking advantage of the 
requires clause. Under design-by-contract, the obligation for 
meeting the requires clause is on the client—in this case the 
caller of dequeue is required to call with a non-empty queue. 
The corresponding benefit is that the implementer of 
dequeue can assume the queue to be non-empty at the time 
of the call, therefore there is no need to have extra code to 
check for the queue being empty. The implementer of 
dequeue in Listing 3 failed to take advantage of this benefit 
as is seen by the all-encompassing if statement that first 
verifies that currentLength > 0. What is illustrated here is 
often referred to as defensive programming, which in 
general we agree with but only in specific locations of a 
software system. Defensive programming should be used 
when the software system has no control of the incoming 
data, e.g., data incoming from across the Internet. However, 
once that data has passed the system’s “outer checking wall” 
and is now moving from one internal operation to another, a 
switch to design-by-contract must be made, which brings 
with it the ability to leverage design-by-contract’s benefits. 

B. Online Course Offering Considerations 
Learning can be improved with increased student 

engagement; this is true for face-to-face classes as well as 
with online courses. Effective teaching in the online 
environment [14] must foster student-to-faculty interaction 
and also engagement among students. We have used the 
examples above in discussion forums as a way to foster and 
increase online student engagement in our face-to-face, 
hybrid, and our totally online classes. Through our learning 
management system, we post one or more examples where 
the students are asked to evaluate an operation’s 
implementation with respect to adhering to design-by-
contract principles. We are careful to set the discussion 
forum’s options so that a student can only see the posts of 
other students after he or she has first made a post. These 
posts can be as simple as determining if design-by-contract 
has been followed and why not if the answer is “no”. Or, 
going further, the instructions might require the student to 
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post a better-engineered version of the operation under 
evaluation. 

IV. SUMMARY OF THE SOFTWARE ENGINEERING 
SEQUENCE AT CLEMSON 

With unanimous consent, the faculty of the School of 
Computing at Clemson has included the requirement that 
the CS graduates “will be able to apply design and 
development principles to develop defect-free software that 
functions according to its specification” as one of the six 
outcomes for all graduates. Since 2012, the principles of 
specification and reasoning are institutionalized in two 
required courses for CS majors, one, a second year 
introduction to software development foundations, where 
the basic concepts are presented in the context of Java, [9, 
10] and another, a third year software engineering course. 
Students use the RESOLVE specification and 
implementation language in this latter course and develop 
verified components using a web-integrated environment 
[15, 16]. 

A. Software Development Foundations 
At Clemson, a prerequisite to the software engineering 

course (discussed next) is a required course that introduces 
students to object-based development using Java, and 
instills basic principles of analytical reasoning using 
specifications. Contents and organization of this course as 
an exemplar ACM 2013 curriculum course are detailed in 
[10].  Some of the topics covered in this course are similar 
to those detailed for the introductory Java-based course 
sequence at Ohio State in Section II. 

One of the important additions to the course, occurring 
in all its sections for the 2016-2017 academic year, is the 
incorporation of a web-based tool to enhance student 
understanding of formal reasoning. A detailed description of 
the tool, its experimentation in multiple sections, and results 
from evaluation are reported elsewhere [17]. Using simple 
examples, the tool aims to help students gain a general 
understanding about code, going beyond tracing with 
specific input values.  The goal is for students to learn to 
predict what a given piece of code, involving assignment 
and control statements, will do on arbitrary inputs without 
actually running the code. The tool is supported in the back 
by the RESOLVE verifier to give feedback to students and 
to give feedback to instructors regarding where students 
face obstacles in reasoning. 

B. Software Engineering 
The software engineering course at Clemson uses the 

RESOLVE specification and implementation language, and 
students develop code according to given contract 
specifications. Moreover, they use a web-integrated and 
automated RESOLVE verification system, available through 
a web IDE to verify that their code satisfies formal contracts 
[18]. Different sections of the software engineering course 
introduce and use RESOLVE and its supporting tools to 
varying degrees.  Given below is the summary of some of 
the activities in one recent offering. 

One of the simplest exercises students do in this course 
is to develop code for the secondary Queue Rotate 
operation. (See Listing 4.) In the ensures clause, Prt_Btwn is 

a mathematical string notation, and it is the substring 
between the given positions. The verification system checks 
that the code (procedure) satisfies the contracts for the 
operations it calls (requires clauses of Dequeue and 
Enqueue) and that the code ensures the contract of the 
operation it implements (ensures clause of Rotate). The 
verification, of course, assumes the requires clause of 
Rotate, because it is the responsibility of Rotate’s caller. 
Any errors are reported and students iterate the process until 
the code is verified. 

Operation Rotate(updates Q: Queue);
   requires 1 <= |Q|; 
   ensures Q = Prt_Btwn(1, |#Q|, #Q) o 
               Prt_Btwn(0, 1, #Q); 
Procedure 
   Var E: Integer; 
   Dequeue(E, Q); 
   Enqueue(E, Q); 
end Rotate;  

Listing 4: The Rotate Operation 

A more complex activity involves implementing one 
component using another. For example, implementation of a 
Set component was discussed in Section II. Listing 5 
contains part of an implementation of Queue_Template 
using List_Template in RESOLVE. The key idea in 
implementing data abstraction is the use of internal 
contracts asserting a convention (to capture the 
representation invariant) and a correspondence (which 
captures the abstraction function or relation between the 
abstraction in the specification and the representation in the 
implementation). Students are given the interface 
specifications of components and the internal contracts that 
must be satisfied. 

In the List_Template, a list is modeled mathematically 
as an ordered pair of strings of entries: a preceding string of 
entries, and a remaining string of entries. This 
conceptualization allows one to think of a list as having a 
cursor position in between the two strings. When an element 
is inserted into the list, it is added to the front of the 
remaining string. The remove operation has the opposite 
effect, so that an insertion followed by an immediate 
removal leaves the list unaffected. There is also an operation 
Advance that allows the cursor position to be moved so that 
insertions can occur at different places in the list. The Reset 
operation has the effect of moving the cursor position to the 
front and Advance_to_End has the effect of moving it to the 
rear. 

For the assignment given in Listing 5, the representation 
invariant is that the preceding string is always empty. The 
correspondence is that the abstract queue is what is in the 
remaining string. This is why the code for Dequeue can 
simply call the list Remove operation. But the Enqueue code 
needs to move the cursor position to the end before 
insertion. To satisfy the representation invariant that code 
needs to reset the cursor, so that the preceding string is 
empty. 
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Realization List_Based_Realiz for Queue_Template;
    -- not shown: declaration of an instance 
    -- of list of entries, named LF.List 
    Type Queue = Record 
        Contents: LF.List; 
        ... 
    end; 
       convention Q.Contents.Prec = Empty_String;
       correspondence Conc.Q = Q.Contents.Rem; 
     
    Procedure Enqueue(alters E: Entry;  
                      updates Q: Queue); 
        Advance_to_End(Q.Contents); 
        Insert(E,Q.Contents); 
        Reset(Q.Contents); 
    end Enqueue; 
 
    Procedure Dequeue(replaces R: Entry;  
                      updates Q: Queue); 
        Remove(R,Q.Contents); 
    end Dequeue; 
 
    -- code for other Queue operations 
    ... 
end List_Based_Realiz; 
 

Listing 5: The Enqueue and Dequeue Procedures 

V. SUMMARY OF THE SOFTWARE ENGINEERING 
COURSES AT CLEVELAND STATE AND DENISON 

At both Cleveland State and Denison universities, the 
RESOLVE notation is used in an undergraduate Software 
Engineering course, which is a four-credit-hour, overview 
course that covers all aspects of the software engineering 
life-cycle. 

At Cleveland State, the course has specific emphasis on 
the correct construction of software systems and it is 
required for all Computer Science and Computer 
Engineering students. Students spend five weeks (20 hours 
of total instructional time) working with the RESOLVE 
notation.  The first use of the notation is in the context of 
requirements specification. Students are introduced to the 
idea of specifying requirements in a formal, unambiguous 
manner. At the same time, students are also made conscious 
that rigorous formal specifications do not necessitate heavy, 
detailed, proof systems. Rather, the students are exposed to 
the modular specification method that is characteristic of 
RESOLVE—the proof obligations are embedded in the 
lower-level components, and clients of these lower-level 
components can leverage these proof guarantees in a light-
weight manner. Later in the course, when working on design 
and implementation phases in the software engineering 
lifecycle, students rely on RESOLVE-style specifications to 
reason about correctness of implementations. 

An example of an exercise that students work on in this 
course is the detailed specification of software for a portion 
of an air-traffic control (ATC) system. In particular, students 
describe how the ATC system can manage a number of 
aircraft in a given sector of airspace at a particular time, 
with the following constraints: (a) the airspace may include 
a number of aircraft, each with a unique identifier, (b) all 

aircraft must be separated by at least 300 meters in height, 
(c) a controller may create a new sector, (d) aircraft may 
enter, leave, and move in the sector, and (e) a controller may 
look up a particular aircraft, and check if a particular region 
is occupied. The students go through an iterative design 
process, writing specifications for the abstract state of the 
sector, and each of the operations. Over the course of the 
iterations, the students use specifications for modeling the 
Set, PartialMap, and eventually, 
BijectivePartialMap components. The students then 
work through a reasoning exercise to construct a correctness 
argument for the Sector component. 

The catalog description for the elective software 
engineering course at Denison emphasizes the importance of 
making connections between theory and practice, and it 
states that students will apply their theoretic background, 
together with current research ideas to solve real problems 
and that they will draw from their entire computer science 
curriculum, noting how theoretic results apply to real 
problems. 

This course covers all aspects of software engineering 
even as students seek to apply the principles to a real-world 
problem. For example, in one offering, students completed a 
webpage that allowed local taxpayers to look at the tax 
reports of the school system and make predictions according 
to what level of taxation the village had.  

Students learn to design software that is based on the 
principles that the RESOLVE system promotes:  Each 
software component should be carefully specified so that 
reasoning about the design can be done abstractly. The 
overall design must be modular so each component can be 
checked for correctness based only on its abstract 
specification. It should be implemented efficiently. Students 
have access to the RESOLVE web interface provided by 
Clemson University where they see examples of software 
specified, implemented, and verified using that system. 
Before their introduction to RESOLVE, the students 
examine specifications of library components in C++ to 
critique those specifications and figure out why they are not 
adequate for making choices about using those components. 
Then they examine RESOLVE specifications for stacks and 
queues and are introduced to the concept of formal, 
mathematical specifications. They write one or more 
enhancements of stacks or queues to see the importance of, 
and ease of building new components using existing 
components that are formally specified and that have been 
verified. 

Students at Denison have a strong mathematical 
foundation and so we examine and apply some basic proof 
rules for RESOLVE constructs so students get a glimpse of 
what it means to use automated verification. Then they use 
the RESOLVE web IDE to verify the enhancements they 
have written. Although students are not RESOLVE experts 
upon completing CS349, they have gained a sense of how 
software might be done in the future and they have not only 
some practical experience in doing their own project, but 
they have developed and mastered many principles that they 
can carry over into their graduate programs or jobs. 
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VI. RELATED WORK 
The importance of mathematical thinking in computer 

science is widely recognized, and there are many 
approaches for teaching it as part of undergraduate curricula 
[19, 20]. Educators have explored a variety of ways to teach 
formal methods, in particular, at the undergraduate level 
[21, 22, 23, 24, 25]. The assessment of these approaches is 
typically done in the context of a single institution, and 
often a single course.  In contrast, we have considered how a 
single approach, one using RESOLVE for formal reasoning, 
has succeeded at a variety of institutions and at a variety of 
levels of courses. 

Design-by-contract, in a general sense, is naturally part 
of any specification and reasoning methodology.  One 
language often associated with this style is Eiffel, which has 
found use in education, as illustrated in [26]. While 
languages such as Eiffel enjoy significant tool support, the 
focus is typically on the specification rather than on the 
analytical reasoning involved in verification.  In contrast, 
the RESOLVE approach supports both specification and 
mathematical reasoning through verification conditions, 
while at the same time including tool support for rapid 
feedback to students. 

One idea that frequently appears in the context of 
teaching formal methods is that of run-time checking for 
violations of assertions or contracts.  Unfortunately, 
executable specs can easily blur the distinction between 
mathematical model and concrete implementation.  For 
example, in [27], the author provides a set of exercises that 
require students to implement an instructor-created ADT 
that has been specified axiomatically. The students begin by 
synthesizing a Java class interface based on the provided 
axioms and annotate this class with object-oriented 
assertions translated from the axioms. A third-party open-
source tool is used, which processes the assertion-annotated 
Java source code and generates instrumented code for 
checking the assertions at run time. Inheritance is used in 
the Java-class implementations.  In contrast, specifications 
in our approach are model-based and they employ types 
from mathematical theories as models for object (and 
variable) values.  Feldman points out that, in the context of 
axiomatic specifications, “it is difficult to express in this 
formalism the fact that the values corresponding to all other 
keys [in a map] have remained the same” after the call of a 
put method.  It is an important advantage that, using model-
based specification, expressing this fact (and all others 
we’ve encountered) is easy.  While Feldman mentions 
“class invariants” several times, describing important 
technical aspects relating to them, the paper provides no 
specific example as it might appear in an exercise.  Hence, 
there is no example of using: an internal contract that 
specifies how a variable’s internal representation maps to its 
external abstract value, or an internal contract for specifying 
the representation invariant. These internal contracts are 
central to the assignments given at Clemson or Ohio State, 
for example, which ask students to implement a given 
component using model-based specifications of all the 
involved components. 

In [28], the authors describe teaching students how to 
develop contracts for operations (pre- and post-conditions) 

using their tool called ProVIDE. The student is asked to 
provide a post-condition for an operation and the tool aids 
the student with constructing an appropriate precondition. 
We are not asking our students to develop contracts; our 
course materials provide the contracts, and students evaluate 
and use these contracts.  

VII. SUMMARY 
In principle, any formal specification language, such as 

those summarized in [29] could be used to describe 
contracts.  Some of these languages are tailored to particular 
programming languages (e.g., JML) and some others (e.g., 
Z) are more general.  However, few specification languages 
have been designed for specifications to be used in 
mechanical reasoning about code correctness.  Even fewer 
have been conceived and developed to teach component-
based software engineering for undergraduate computing 
students.  Almost none has received multiple decades of 
undergraduate educational experimentation and tuning as 
has RESOLVE.  This paper illustrates how it can serve as an 
ideal vehicle in a range of computing courses, starting from 
introductory courses to advanced software engineering 
courses with or without using any popular programming 
language in conjunction.  It also shows that the language is 
conducive to presenting software engineering and reasoning 
concepts in a few lectures to a few weeks at a variety of 
educational institutions with differing curricular constraints.  
The plethora of materials, exercises, activities, and 
assignments available make it easy for educators to adapt 
and customize. 
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