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Abstract—Smart environments such as smart grid, smart
transportation, smart buildings are upon us because of major
advances in sensor, communication, cloud and other cyber-
physical system technologies. The collective name for intercon-
nected sensors, placed on “things” within fixed cyber-physical
infrastructures, is Internet of Things (IoT). IoT enables cities
and rural areas to become smarter and to offer new digital
services and functions to diverse groups of users. However, IoT
often represents interconnection of static things, which are built-
in into the physical infrastructures of users’ homes, offices, roads
and other physical and critical infrastructures. In this paper, we
analyze things that are mobile, and explore the space of Internet
of Mobile Things (IoMT). Mobility of digital devices such as
phones and vehicles has been with us for some time, but as the
number of sensors in mobile devices increases, the density of
mobile devices increases, and users’ reliance on mobile devices
increases, mobile things become very much an integral fabric
of our smart environment. In this paper, our goal is to discuss
challenges, selective designs and implementations of IoMT. We
show the impact of mobility and the care we collectively have to
take when designing the next generation of smart environments
with mobile things in them.

I. INTRODUCTION

Smart environments such as smart buildings, smart health,

smart grid, and smart transportation are upon us because of

the advances in sensor technologies, their communication, and

their interconnectivity to advanced cyber-physical infrastruc-

tures. The interconnected sensors, placed within fixed cyber-

physical infrastructures, are collectively named Internet of

Things (IoT). IoT represents interconnected static things such

as smart meters in smart grid, smart sensors in advanced

water systems, RFID and motion sensors in smart buildings, or

traffic cameras at road intersections. But in addition to static

IoT, mobility of things is coming forward as mobile phones

and vehicles are equipped with more and more advanced

sensors. The mobile devices with their sensors are then able to

communicate with each other, with surrounding cyber-physical

infrastructures, and represent the Internet of Mobile Things

(IoMT).

The difference between IoT and IoMT is that when con-

sidering mobility of things, major changes occur in terms of

(a) context, e.g., where the mobile device is located, in what

hands it is now, (b) Internet access and connectivity, e.g., if

the mobile device is connected at all, and when connected

to what wireless or wired network, at what bandwidth level,

and with what security, (c) energy availability, e.g., where

can the mobile device charge again, how much energy does

the mobile app need, (d) security and privacy, e.g., what kind

of security infrastructure the mobile device encounters when

moving among different locations, and what private informa-

tion do service providers have about user using a mobile

device. Hence, when considering IoMT, mobility becomes a

first class object and one has to look at the IoMT separately

from IoT. It is important to note that mobility of devices

such as mobile phones and vehicles has been investigated

for many years [1]–[5], especially the design of individual

devices and their dealings with mobility and usage by users in

mobile environments. But what changes now is the increased

number of sensors per mobile device, the increased density of

mobile devices in users’ environments, and most importantly,

the increased interconnectivity and the increased reliance of

users on mobile devices, making mobile devices and their

interconnectivity an integral part of users’ daily routines and

smart environments.

The goal of this paper is to discuss the IoMT challenges,

and systems and protocols design and implementation, where

mobility impact on interconnected sensors in mobile devices is

the center of consideration. With mobility we get dynamism,

unpredictability, faults, hand-offs, disruptions when sensing,

communicating, analyzing data, and providing energy, secu-

rity, and privacy-aware mobile services. To achieve the goal,

we will elaborate on IoMT challenges, design and implemen-

tation issues with respect to an integrated data cycle, starting

from sensory data collection, continuing with data forwarding

and delivery, to finishing with data analysis. The data cycle

operations will take into account the context issues as well

as the Internet access and connectivity to other cyber-physical

infrastructures. Over the data cycle operations, we will con-

sider the cross-cutting energy, security and privacy properties.

In Fig. 1 we illustrate the interpreted data cycle impacted by

mobility, energy, security, and privacy considerations.

The contributions of the paper are (a) the characterization of

Internet of Mobile Things, their challenges and opportunities

to explore new problem spaces, (b) directions to solve these

challenges based on the related work and our own work, pro-

viding selective design methodologies and implementations,

and (c) principles that one needs to consider and adhere to in

order to have successful interactions among mobile things.

The paper is outlined as follows. In Section II, we outline

the mobility challenges and opportunities that we see when

considering mobile sensory data collection, exchange and

analysis, as well as the energy, security and privacy challenges

one has when things are moving. Section III discusses data

collection from mobile devices, the design methodology and
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Fig. 1: Illustration of the interpreted data cycle impacted by

mobility, energy, security, and privacy considerations.

implementation insights that we gained from our UIM system

and experiments. Section IV presents data analysis and ex-

change when mobile data are collected and discusses the usage

of mobile data analytics for user activity, people mobility

patterns and social relation detections. Within Section V, we

concentrate on one specific issue of energy management and

that is the placement of energy sources for IoMT, especially

in case of electric vehicles (EVs), which are our representative

entities of ”Mobile Things”. Security, especially, the real-time

authentication for EVs is discussed in Section VI, and we

conclude in Section VII with lessons learned.

II. CHALLENGES

Within the interpreted data cycle, mobility brings challenges

to the mobile sensory data collection, to the exchange of

data among mobile things and computing platforms, and to

the analysis of sensory data, i.e., what can the analysis help

us with. Cross-cutting concerns across the entire data cycle

are provisioning of energy for mobile things and security and

privacy protection.

A. Mobile Data Collection

Mobile phones and vehicles nowadays come equipped

with advanced sensing and communication capabilities. These

sensors can capture a wide range of information, including

physical, personal, and social contextual information that can

be used in data analysis and data management. However,

how to leverage and manage these sensors efficiently re-

mains challenging since each of these sensors employs a

different technology with distinct tradeoffs in terms of energy

consumption, connectivity, and sensing capability [6]. More

importantly, the collected sensing traces are only useful if they

are clean, complete, and privacy-preserved. Data collection in

the context of Internet of Mobile Things (IoMT) thus become

highly challenging since: (1) the wireless communication

technology employed by these sensors is unreliable and error-

prone, (2) continuous sensing requires a persistent supply of

energy and an extensive amount of data storage. On one hand,

designing a good data collection system requires extensive

knowledge in sensor selection, energy management, sensing

application implementation, and privacy management. On the

other hand, if data collection of mobile things is done properly

and effectively, it provides the fundamental building block for

the success of IoMT.

In the context of IoMT, we face several challenges in

the design and implementation of robust and efficient data

collection systems. These challenges include:

• Selecting the right set of sensors

• Managing energy usage of sensors

• Developing sensing applications

• Preserving privacy of collected data

• Understanding people mobility and context

First, selecting the right set of sensors among all device’s

sensors is critical. If too many sensors are used, device’s

storage may run out shortly and device’s power drains quickly.

In contrast, if few sensors are used, the collected data might

not be sufficient for data analysis. Second, managing the

energy usage of sensors is highly important. In particular,

setting the right scanning period to collect sufficient sensing

data while preserving device’s energy plays a crucial role

in the design of data collection systems for IoMT. Third,

developing robust sensing applications significantly impacts

the quality of collected traces. Since a sensing application

is essentially a software program, it competes for device’s

resources and its performance may be heavily influenced by

other applications on the device. Implementing the sensing

application so that it runs transparently and resiliently to

collect prolonged data traces thus becomes fundamental for

data collection. Fourth, privacy of collected data needs to be

kept once the data collection system starts gathering sensing

traces. How to preserve data privacy while data is processed by

various components in such an universal and open environment

like IoMT is critical. Finally, people mobility and context need

to be well understood in the design of efficient data collection

systems. In Section III, we will discuss the above mentioned

challenges and selective design and implementation issues in

details.

B. Mobile Data Analytics

As sensing data are collected from mobile devices, they can

be transferred to a centralized server for storage and analysis.

Different from analyzing data of static sensor networks, the

analysis of data from mobile devices poses a number of

challenges that are centered around the mobility of devices:

• Mobility characterization: How to characterize the mo-

bility of devices?

• Exploiting mobility models: How to leverage the mobility

models of IoMT devices to improve the effectiveness of

data analysis tasks.
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We will study the challenges and selective

design/implementation issues in Section IV. Here, we

focus on summary of challenging issues for mobile data

analysis.

The challenges with mobility characterization include defin-

ing the right metrics (i.e., representation of mobility) and

analyzing the collected traces to characterize the mobility by

those metrics. This is non-trivial because the collected data

might be noisy and incomplete, and sometimes, lack important

context information, such as location (e.g., because location

sensor is turned off to save energy, or the device is indoor).

In addition, the characteristics should be able to capture the

realistic behaviors of people movements, which exhibit a high

degree of repetition [1].

With the mobility patterns learned from characterization,

the challenge becomes how to leverage those patterns to

improve data analysis tasks. This requires the ability to draw

the connection between the objective of each analysis task

with different mobility metrics, so that the appropriate metrics

are chosen as part of the analytical model for that task. For

example, for the task of sensor selection, to maximize the

sensing coverage, we would be interested in the mobility

metrics that represent group mobility. That is because devices

in the same group tend to produce highly overlapped data,

and thus low collective sensing coverage. In another example,

for the task of data forwarding in Delay Tolerance Networks,

we would be interested in the metrics that capture contact and

location regularity, since the regular contact between devices

at the same location is important to design an efficient data

forwarding protocol [7] [8].

C. Energy Management

Energy management for mobile devices is a critical issue

in order to accommodate the large amount of mobile things

as well as the various types of mobile things. Compared to

conventional energy management strategies, energy manage-

ment for mobile things such as phones and electric vehicles

has several distinct features including

• Energy source placement

• Energy exchange

• Cross-device energy management and monitoring

We will study the first feature in more detail in Section V.

Section III includes an extensive study on energy management

issues in mobile phones when performing data collection,

therefore, in the rest of this section, we will focus on dis-

cussing the energy exchange challenges.

One critical challenge of energy management is to allow

direct energy exchange between different devices of different

users. Today it is commonly seen in airports that one charges

their smartphone via a USB cable connected to their laptop. As

both devices belong to the same user, there is no accounting or

billing issues involved. However, with each user having access

to multiple IoMT devices with different battery storage, it is

likely that one sells energy directly to another in a device-to-

device manner. Imagine the case where an electric vehicle runs

out of battery and there is no charging station nearby. With

proper support of accounting and billing protocols, the vehicle

can buy electricity directly from another electric vehicle by

connecting their batteries via a charging cable.

An EV can give energy not only to another EV, but also

to the power grid, which is the so-called Vehicle-to-Grid

(V2G) technology and has been a major research area [9],

[10]. One major advantage of V2G is to smooth the load

by using a collection of EVs’ battery as emergency energy

source orchestrated by an aggregator [11], [12]. Essentially,

EVs can be viewed as mobile energy sources and part of the

IoMT ecosystem. They can be used to compliment the fixed

energy source placement design as we discuss in section V. In

the future there might be other devices in addition to electric

vehicles that can act as mobile energy sources, and we believe

the current research in V2G can bring valuable lessons to the

general energy exchange problem in IoMT.

D. Security and Privacy

As an essential feature of IoMT, the devices may move

and change their location. The device mobility brings unique

challenges to security and privacy for IoMT compared to

conventional IoT scenarios, including

• Recognizing and authenticating new devices.

• Adapting to different contexts and environments.

• Preserving location privacy.

Let us consider a typical IoT scenario of smart home ap-

pliances (TV, air-conditioner, thermometer, etc.). The smart

appliances generally do not move and obtain fixed location.

The appliance authentication needs to be configured only

once during the initial setup. From a networking point of

view, the smart home appliances constitute a static wireless

network with little node churns. Now let us compare this to

an IoMT scenario, where a user drives a smart vehicle on

the road that communicates wirelessly with other vehicles and

roadside units for collision avoidance, route suggestion, etc.

The vehicle needs to constantly authenticate other vehicles

as they meet on the road, which requires efficient real-time

authentication as opposed to one-time initial configuration.

As the vehicle moves to different areas, the environmental

context may vary, e.g., wireless interference may occur when

there are many other vehicles nearby communicating at the

same time. The communication protocol thus needs to adapt

to such changes in the context, whereas in the smart home

appliance scenario the context remains mostly unchanged.

The mobility of vehicles also brings location privacy into the

question. The communication and authentication protocol must

preserve the driver’s location privacy, e.g., PKI authentication

with vehicle’s long-term public key will allow anyone to infer

the trajectory of the vehicle by tracing the usage of the public

key.

III. MOBILE DATA COLLECTION

In this section, we first discuss the design methodology in

the implementation of data collection systems. We then present

our implementation of a data collection system named UIM
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that collected movement traces from cell phone users for six

months at the University of Illinois campus.

A. Design Methodology

How to leverage a variety of sensors to collect high quality

sensing traces remains highly difficult to achieve. A collected

trace is only useful if knowledge or patterns can be extracted

from it. That is, the trace must be collected for an extended

period of time so that data analysts can find and explain

patterns derived from it. In this section, we present the design

methodology of data collection systems as follows:

a) Sensor Selection: Selecting right sensors for the sens-

ing task is the most critical factor [2], [13], [14]. A good

sensing system should include sensors that complement each

other in terms of collected data forms and formats. For exam-

ple, a scanning system on the phone may not include a WiFi

scanner and a GPS coordinate scanner since they both only

provide location information. Further, we need to understand

the tradeoff between the quality of the sensing traces one

sensor collects and the amount of energy it consumes. Some

sensors capture high quality sensing data but might consume

too much energy for a prolonged sensing task. As a result,

we may have to use sensors that provide less quality data in

order to capture longer sensing traces. Although vehicles might

be equipped with large storage, sensor selection still impacts

the use of storage space. For example, continuous use of the

camera to record video and photos on the road may fill up the

vehicle’s storage space quickly.

b) Energy Management: Once sensors are selected, the

next step is to decide how frequently each sensor collects its

sensing data [15]. This is crucial since it directly impacts (1)

the quality of collected traces and (2) energy usage of the

devices. A typical mobile phone without sensing applications

may need to be recharged every two or three days. In order

to obtain prolonged non-broken traces, phone carriers must

remember to recharge their phones. We have learned from our

real deployment, if a phone carrier does not use the phone

as her daily phone, she would likely forget to recharge it.

To make the phones usable for carriers, we need to ensure

that sensing applications do not unreasonably drain the phones

with short scanning periods. On the other hand, if we set

too long scanning periods, the collected sensing data may

not provide the needed granularity of information to extract

adequate resource usage or people movement. At the first

glance, energy consumption of sensors is not an issue with

vehicles. However, since a large number of sensors is running

continuously, a well-defined energy management scheme for

sensors can significantly save cars power and gas.

c) Sensing Software Development: There are two chal-

lenges in developing sensing software on phones and vehicles.

First, collecting sensing data on mobile phones and vehicles

is a “best-effort” task and we always have to be prepared for

the worst case scenario, i.e., implemented sensing applications

may fail due to unanticipated reasons. A sensing application

essentially is a software, which coexists and competes with

other applications on the phones or vehicles for resources, and
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Fig. 2: UIM data collection system

thus it may crash or halt at anytime. If we bundle all sensing

applications of all sensors into one single sensing application,

and one of sensing components crashes or one sensor fails,

then it is likely that sensing applications fail altogether. If this

happens, no sensing data is collected. So, sensing applications

should be decoupled. Second, cell phone users or drivers install

many applications on their phones and vehicles. For example,

gaming and entertaining applications are favorites on phones

and cars. A well-designed sensing application should incur

little interference on other applications and should not interrupt

the usage of users. In other words, a sensing application

must: (1) start by itself whenever the device reboots for

any reasons (robustness) (i.e., a phone may reboot or the

dashboard in a car may reboot after a software update), (2)

run in the background and not display messages on the graphic

user interface (transparency), (3) keep running even if other

applications halt or crash (resilience).

d) Privacy: In the context of IoMT, privacy issue may

arise because of the widespread use of mobile phones and

vehicles since identities and locations of mobile phones and

vehicles are associated with their human owners. Phones and

vehicles become entities to uniquely identify their owners and

their locations. As a result, identity theft becomes a major issue

and identity mismatch may cause significant consequences.

e) Mobility: The mobility patterns and characteristics

of cell phone users or vehicles can significantly impact data

collection. For example, a shorter scanning period can be set to

collect sensing traces if the vehicles move faster. Meanwhile,

a longer scanning period can be set if the phone user performs

stationary activities [16]. More importantly, since the mobility

of cell phone users and vehicles is usually not known in

advance, data collection in the context of IoMT is very oppor-

tunistic. That is, regardless how the sensors are selected and

energy is managed, the amount of collected data depends fully

on people mobility. So, the knowledge of people movement

behavior can be useful in the design of data collection systems.

In the next section, we present an implementation of a

mobile data collection system on Google Android phones.

B. Implementation of Data Collection System

In this section, we present our implementation of a data

collection system on Google Android phones named UIM,

which stands for University of Illinois Movement. UIM ad-

dresses several challenges presented in previous section. As

discussed above, the first step is to choose the sensors and we
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choose to implement a WiFi scanner and a Bluetooth scanner,

since WiFi scans can be used to infer location while Bluetooth

scans can be used to infer social contact. These two pieces

of information can be used to understand people movement

behavior. Due to space limitation, we present the overview of

our system here, detailed discussions and results can be found

in our previous papers [17]–[20]. Figure 2 shows our system

architecture, which has a WiFi scanner, a Bluetooth scanner, a

database server for sensing data storage, and a Status Reporter

for sensing status update. In following sections, we present the

WiFi scanner and the Bluetooth scanner in detail.

1) WiFi scanner: The WiFi scanner has three decoupled

components: a booter, a WiFi inquirer, and a WiFi receiver.

Each component runs as a separate process and interacts with

each other via the message passing mechanism within the

Google Android phone operating system (OS). WiFi scanner

runs as a background service, anytime the phone restarts, the

phone OS triggers the booter, which starts the WiFi inquirer

and the WiFi receiver. This design achieves robustness since

anytime the phone reboots, the WiFi scanner can start its

scanning work automatically. The inquirer and the receiver

work in an asynchronous fashion in which the inquirer uses

a request timer to periodically (i.e., every 30 minutes) issue a

WiFi scanning request to the phone OS. After sending the

request, the inquirer goes to sleep, and wakes up for the

next request when the request timer expires. On the other

hand, the receiver always sleeps and is only waken up by

the phone OS whenever the WiFi scans are available for

collection. Upon receiving a WiFi scan that includes a set of

MACs of WiFi access points in proximity of the experiment

phone, the receiver writes the WiFi scan and a timestamp to

a log file, and then goes to sleep. Our design also allows the

receiver to opportunistically receive WiFi scans, which result

from other usages of WiFi connectivity, since each time the

WiFi connection is initiated, a WiFi scan is performed by the

phone OS. Note that keeping WiFi connection up and issuing

WiFi scanning requests is much more energy-consuming than

receiving WiFi scans. In order to conserve phone battery, we

configure the WiFi inquirer so that it only issues scanning

requests from 7AM of a day to 1AM of the next day. As a

result, we can collect most of people movement while saving

phone energy.

There are two reasons the WiFi scanning period is set

to 30(min). First, our scanning system was deployed at a

university campus where people usually stay in one location

inside buildings for a long period (e.g., a class session is

usually 50 minutes). Second, a higher WiFi scanning period

may drain the phones quickly and make them unusable as

daily phones for phone carriers.

2) Bluetooth scanner: The Bluetooth scanner has three

decoupled components: a booter, a Bluetooth inquirer, and

a Bluetooth receiver. Each component runs as a separate

process and interacts with each other via the message passing

mechanism within the Google Android phone OS. Similar to

the WiFi scanner, the Bluetooth scanner is implemented as a

background service. When the phone restarts, the phone OS

triggers the booter, which starts the Bluetooth inquirer and

the Bluetooth receiver. The inquirer and receiver work in an

asynchronous fashion in which the inquirer uses a request

timer to periodically (i.e., every 60(s)) issue a Bluetooth

scanning request to the phone OS. After sending the request,

the inquirer makes the phone discoverable by other experiment

phones (so that experiment phones can scan each other), goes

to sleep, and wakes up for the next request when the request

timer expires. The receiver, on the other hand, sleeps and is

only waken up whenever a Bluetooth scan is returned by the

phone OS and ready for collection. Upon receiving a Bluetooth

scan that includes a set of MACs of Bluetooth-enabled devices

in proximity of the experiment phone, the receiver writes the

Bluetooth scan and a timestamp to a log file, and then goes

to sleep. To conserve phone energy, the inquirer is configured

to only issue scanning requests from 7AM of a day to 1AM

of the next day. As a result, we can collect most of people

movement while saving phone energy.
3) Collected Sensing Traces: Table I summarizes major

statistics of the sensing traces collected by the UIM system.

Specifically, from March 2010 to August 2010, we conducted

three rounds of experiments with 123 participants at the

University of Illinois campus. Our participants included grads,

undergrads, faculties, and staffs. The first experiment lasted

19 days, the second was 38 days, and the third was 85 days.

The number of scanned WiFi MACs and Bluetooth MACs of

the third experiment were fewer than the second experiment

(although the third experiment was much longer) since the

third experiment was conducted during the summer break with

fewer classes and students on campus. Our traces were the

most detailed traces collected in the university campus [20].

Overall Characteristics

Number of phones (participants) 28 79 16
Length of experiment (day) 19 38 85
Bluetooth Scanning Period (s) 60 60 60
WiFi Scanning Period (m) 30 20 30
Number of Scanned BT MACs 8508 17080 7360
Number of Scanned WiFi MACs 7004 29324 6822

TABLE I: Overall characteristics of our collected traces

4) Impact of Energy Usage on Amount of Collected Data:

In this section, we investigate the impact of energy usage on

data collection. Specifically, we study changes in the number

of collected WiFi MACs when we vary the scanning period (or

scanning frequency) of the WiFi scanner. We have a participant

carry the phone with an implemented WiFi scanner for a

week (or seven days) and the scanning frequency is set to

5 minutes. After one week, we receive the dataset D5 of

the 5 minute scanning frequency. This is the largest dataset

and then we create smaller datasets with longer “artificial”

scanning frequencies of 15, 30, 60, 120 minutes from D5.

For example, the dataset D15 of the scanning frequency of 15

minutes is created by taking the ith, (i+ 3)th, and (i+ 6)th,

and so on scanning records of D5, since records in D15 is
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15 minutes apart while records in D5 is five minutes apart.

The dataset D120 is the smallest dataset since it is derived

from the longest frequency. We use D120 as the baseline and

for each day (of seven days), we calculate the ratios of Dk

D300

,

with k ∈ {5, 15, 30, 60, 120} and plot these ratios in Figure 3.

The x-axis of the figure is the index of day in the one week

experiment and the y-axis is the ratio Dk

D300

. This figure shows a

clear tradeoff between the scanning frequency and the amount

of collected sensing data. A shorter scanning period will

collect bigger traces. In other words, if more energy is used for

scanning, we will collect larger traces. So, the scanning period

should be set carefully so that phones can perform prolonged

experiment while collecting acceptable traces.

IV. MOBILE DATA ANALYSIS

In this section, we present our design methodology and im-

plementations of mobility characterization, and our approach

to leverage mobility to improve mobile data analysis tasks.

A. Mobility Characterization

1) Design Methodology: The main challenges in mobility

characterization are to define the right metrics and to analyze

the collected traces towards mobility characterization by those

metrics.

In terms of the metrics, we focus on the contextual infor-

mation that help define the movement of mobile device users,

including temporal, spatial, and social context. By capturing

those contexts, we will be able to answer questions about the

mobility patterns of mobile devices: Where does the device

move over time?, What are the most regular visit locations?,

or Which devices it interacts with most frequently? Among

those information, location is the required information that a

characterization study must obtain, since knowledge of where

people visit is fundamental to obtain movement patterns. In

case location information is not available (e.g., GPS sensor

is turned off to save energy, or when the device is indoor),

we need to infer the locations of devices based on other non-

spatial information, or location profiling.

In terms of mobility characterization, we believe a good

characterization study should be able to capture contact pat-

terns, stay duration at a location, and grouping behavior of

people movement. Knowledge of who a person meets at a

certain time (i.e., contact) allows us to understand the social
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interactions and contact patterns, which can be a key factor

in social science studies and the design of efficient message

forwarding schemes for mobile networks [7]. Given the stay

duration at locations, we can estimate the arrival and departure

time at locations, which is essential for many applications such

as traffic monitoring, social network analysis, urban planning.

Characteristics of contact group formed by co-located people,

if available, could be used to enrich collected sensing data

(e.g., inferring missing contacts), or infer new knowledge for

sensor selection.

2) Implementation of Mobility Characterization on UIM

Traces: In this section, we first present our implementation

on acquiring location information from non-spatial data, and

then, describe our findings on mobility characterization for

in-door environments.

In terms of location profiling, from the collected traces

of Bluetooth and WiFi scans, we infer location information

by clustering the WiFi records (i.e., records of WiFi access

point SSID detected by mobile devices overtime) [17], [18].

Specifically, we define location as a unique set of WiFi access

points, or a WiFi record. Since the WiFi scan results from

different devices are not always consistent, even at the same

location, we first construct a similarity graph of WiFi scan

records (the more overlap between two records, the more

similar they are) and then perform clustering over the records.

Each cluster in the final result represents a physical location.

Figure 4 presents the accuracy of our results on inferring

locations by clustering WiFi scan records for different users

using different similarity thresholds.

In terms of mobility characterization, by analyzing collected

traces of Bluetooth contacts and aggregating them over time,

we are able to identify distinctive contact patterns of users

[14]. Figure 5a shows the first contact pattern in which people

usually have a considerably higher number of contacts during

the weekdays than the weekends. This is the most common

contact pattern found in our sensing traces since most people

perform the casual routines at work for the weekdays when

they make contacts with many more people. In contrast,

Figure 5b shows an opposite (and less popular) contact pattern

in which people make more contacts during the weekends than

the weekdays.

In terms of stay duration and location regularity, our analysis
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Fig. 5: Distinctive contact patterns.
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Fig. 6: Location regularity by different frequency thresholds.

[14] helps answer the question: Do people visit locations

regularly for their daily activities? A location is regular if the

number of people at that location during a time period exceeds

a certain regularity threshold. Figure 6 shows the regularity of

locations with time period of 6 hours and different regularity

threshold. The results show that most people have at least two

regular locations. This is consistent with the results of previous

work, which have shown that people spend most of their time

at a few places, such as their home and work locations [1] [3].

For contact group behavior, our results (Figure 7) show

that people rarely form large contact groups during their daily

activities (i.e., 90% of groups have the size of 6 or smaller).

This should take into account that the collected data [20] are

from a university campus. Algorithms in multi-casting, content

distribution, or DTNs could benefit greatly from these results.

B. Exploiting Mobility Models

1) Design Methodology: The results of mobility charac-

terization help us improve the performance of various data

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  2  4  6  8  10  12  14  16  18  20

C
D

F
 o

f C
lu

st
er

 s
iz

e 
(%

)

Cluster size

CDF of Cluster size

Fig. 7: Contact groups.

 0

 20

 40

 60

 80

 100

10 30

P
re

d
ic

ti
o

n
 A

c
c
u

ra
c
y
 (

%
)

Percentage of Sensing Nodes (%)

SVM-C
SVM-CL

(a) Impact of number of
sensors.

 0

 20

 40

 60

 80

 100

30 60 120

P
re

d
ic

ti
o

n
 A

c
c
u

ra
c
y
 (

%
)

Time Interval (minute)

SVM-C
SVM-CL

(b) Impact of time
interval.

Fig. 8: Predicting missing contacts.

analysis tasks.

First, to improve the completeness of collected data, we

leverage the contact patterns and group mobility behaviors to

recover the contacts that have been missing from the collected

traces [14] (i.e., due to sensing errors or limited number of

sensing devices).

Second, with more complete traces and the understanding

of people mobility, we are able to predict people’s future

movements [17], [18].

Third, our understanding of mobility patterns helps us to

improve sensor selection to maximize the sensing coverage

[21], and improve message delivery in mobile peer-to-peer

networks [8].

2) Implementation: Usage of Mobility Models:

a) Predicting missing contacts: To improve the com-

pleteness of collected traces, we leverage contact patterns,

location information of devices, and the observed contacts to

build binary classifiers (using Support Vector Machine (SVM))

and to classify whether a contact between two devices exists

or not. The results (Figure 8) show that the model that uses

mobility patterns (i.e., SVM-CL) outperforms the model that

only uses the contact statistics (i.e., SVM-C) for different

sensing intervals and different number of sensing devices.

b) Predictive models of future movement: We exploit the

regular patterns of people movement learned from mobility

characterization to predict the future movements [17], [18].

Particularly, we train three supervised machine learning based

predictive models using Naive Bayesian technique, including

location predictor, stay duration predictor, and contact pre-

dictor. We then evaluate these predictors with three different

datasets. The experiment results (Figure 9) show that our

predictors perform well and provide accurate prediction on

location (i.e., Figure 9a), stay duration (i.e., Figure 9b), and

social contacts (i.e., Figure 9c).

c) Sensing devices selection: From the insights of the

contact group and location popularity characteristics, we im-

plement a context-aware sensing devices selections [21] to

maximize collective sensing coverage in opportunistic mobile

social networks. Our results (Figure 10) show that, by lever-

aging spatio-temporal contexts from the observed mobile data

traces, our approach (denoted as HCONTEXT) is able to as-

sign the sensing tasks to the group of devices to achieve better

collective sensing coverage, compared with other optimization

approaches (i.e., GREEDY for greedy coverage selection, and

RANDOM for random selection of sensing devices). Details
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Fig. 9: Future movements prediction results.
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Fig. 11: Comparison of 3R with Epidemic and Prophet routing

protocols.

of our approach can be found in [21].

d) Content Distribution: Mobility characteristics and

models, learned from characterization studies, can be used to

improve message delivery in mobile peer-to-peer networks [8]

[22] [7] [23]. Specifically, we first analyze UIM traces and then

design an efficient routing protocol named 3R that exploits

regular contact patterns found in the mobility traces for

message delivery. Figure 11 compares 3R and two other state

of the art message forwarding protocols, named Prophet [7]

and Epidemic [22]. Our evaluation shows that 3R outperforms

Prophet in successful message delivery ratio while minimizing

message overhead. Details of our protocol design can be found

in [8].

V. ENERGY MANAGEMENT

Since IoMT devices are powered by electricity, the first

challenge of energy management for IoMT is to deliver energy

to the device. One crucial problem of energy delivery is the

energy source placement. For example, today users might

experience difficulty in finding energy sources in an airport to

charge their smartphones. As users use more and more IoMT

devices that need charging, the placement of energy sources

has increased impact on the usability of mobile devices.

The most notable mobile devices that can be affected by

the placement of energy sources are electric vehicles (EVs).

Compared to conventional combustion engine vehicles, elec-

tric vehicles have much shorter range, and typically require

daily charging. In this section, we focus on discussing the

energy source placement issues for electric vehicles.

A. Charging Facilities

Charging station is one type of widely adopted charging

facilities for electric vehicles. Charging stations charge electric

vehicles similarly to gas stations in the way that vehicles come

into the stations to get served and stay for a certain amount

of time to get their batteries charged to a satisfactory level.

However, major concerns about charging stations are electro-

cution and charging stations becoming frozen on vehicles in

extreme weather [24]. This facilitates the development of static

and dynamic wireless charging pads. And the placement of

charging stations and wireless charging pads has an important

impact on both the driver’s convenience and the traffic flow.

Since the wireless charging pads are not widely deployed

yet, despite the major concerns of charging stations, charging

stations are the most widely adopted charging facilities on the

road network for electric vehicles. The charging stations must

be placed not too far away from each other to ensure good

coverage, and not too close to each other to avoid causing

traffic congestion in case many electric vehicles choose to

charge in the same area. The charging stations are placed

normally at intersections of road networks or points of interests

in cities. These locations are typically modeled as nodes of a

network graph. When planning charging stations, the design

issues and considerations are

• Determining the locations for placing charging stations.
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• Determining the number of charging servers at each

charging station. Note that charging servers are the access

handles for electric vehicles to connect to the energy

source. Charging servers work similarly to the refueling

pumps at gas stations in the way that each electric vehicle

needs to obtain a charging server to get charged. And

each charging station could have several charging servers

in order to minimize the waiting time of electric vehicles

by charging multiple electric vehicles at the same time.

• The workload of charging stations also needs to be taken

consideration and a load balancing strategy is needed in

order to balance the energy load across the power grid.

B. Wireless Charging

As described in the previous subsection, wireless charging

pads are another type of charging facilities for electric vehi-

cles. Electric vehicles can get charged by parking over a static

wireless charging pad. They can also get charged dynamically

by driving over the wireless charging pads. Dynamic charging,

using wireless charging pads, has been studied in recent

years [25]–[29]. In dynamic charging of electric vehicles, the

magnetic induction between the charging pads installed under

the road and the receiving coils attached to the EV’s battery

automatically charges the EV as it moves over the charging

pads. Each charging pad is typically short (e.g., 30-50 cm),

and a charging section of several kilometers consists of a

series of charging pads placed close to each other (e.g., 50 cm

away). The advances of dynamic charging allow EV’s battery

to be charged while moving over wireless charging pads. But

the advances of dynamic charging also complicate the energy

source placement problem.

The placement of charging pads depends on the models of

electric vehicles. Different models share various features such

as battery capacity, max charging rate and miles of charging

per hour. And these features lead to different maximum driving

distances, required charging times, etc. It also heavily depends

on the traffic flow densities on the road network. Traffic

flow density is defined as the number of electric vehicles per

unit length of the road link. Placing charging pads along the

road links that have heavy traffic flows helps to maximize

the amount of electric vehicles traveling on the roads. We

also need to consider the impact of the traffic flow patterns.

For example, for traffic flows during peak hours, turning the

charging pads on during the peak hours while keeping them

off for the rest of the day may help saving energy compared

to turning the pads on for the whole day.

The placement of static wireless charging pads is similar

to the placement of charging stations which is discussed in

Section V-A. Static wireless charging pads are normally placed

at points of interests and each service area (i.e. charging spot)

includes several charging pads to support charging multiple

electric vehicles at the same time. However, dynamic wireless

charging pads are placed under the roadbed and require that

EVs travel a certain distance to get charged. The design issues

for dynamic wireless charging pads include

TABLE II: Maximum flow charged under various situations

# pad # station Configuration Volume (veh/hr)
3 0 L4, L5, L10 3515.1
2 1 L4, L5, N1 2309.1
1 2 N1, N2, L5 2726.9
0 3 N1, N2, N4 1692.2

• Determining which road links to equip with the dynamic

wireless charging pads.

• Deciding how many charging pads should be placed on

a certain road link.

• Determining when to turn on and off the charging pads.

C. Implementation of Energy Source Placement Model

In this subsection we describe our initial design and simula-

tion towards solving the source placement for charging stations

and wireless dynamic charging pads for electric vehicles.

The design in [30] focuses on placement of both charging

stations and charging pads. Several assumptions are made to

simplify the implementation:

• We assume that charging pads are always turned on.

• Every road link is treated as one entity and is not further

segmented into smaller sections. It means that a road link

gets charging pads or it gets none.

• We assume that after traveling on the road links which

have charging pads, vehicles will be charged to full

battery status.1

When considering allocating charging stations, we adopt the

Flow Refueling Location Model (FRLM) proposed in [31].

FRLM is a flow-based location-allocation model which aims

at finding optimal locations for refueling stations.

The placement of energy charging stations and wireless pads

for electric vehicles problem is formulated as an optimization

problem and we simulate the model on a 9-node center-formed

sample network as depicted in Figure 12 of which the feature

of traffic flows is similar to the city Berlin in Germany. It

means that the center node/district attracts and generates the

largest amount of traffic flows that travel between the center

node and its surrounding nodes.

We test our allocation model given different charging fa-

cilities and the evaluation results are shown in Table II. For

example, when allocating 2 charging stations and 1 road link

with charging pad, the maximum amount of traffic flows we

are able to charge is 2309.1 (veh/hr). The evaluation results

indicate that placing charging pads on 3 road links doubles the

amount of vehicles being charged in comparison to placing 3

charging stations only. The bold lines in Figure 12 indicate the

selected links for placing charging pads. The selected links are

the links that have the top amount of traffic flows of the road

network and assigning charging pads to these links helps to

satisfy the charging needs of these traffic flows first.

1This assumption requires very long road links, which is not very realistic.
In our future work we will investigate pratial charging with energy source
placement.
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Fig. 12: Sample network with 9 nodes, where nodes (e.g.,

N1, N2) represent road intersections, and lines (e.g., L1, L2)

represent road links. Bold lines indicate that 3 links are

selected to place dynamic wireless charging pads.

VI. SECURITY AND PRIVACY

In Section II-D, we have briefly discussed the security and

privacy challenges brought by the concept of IoMT. In this

section we use authentication as an example, discuss various

challenges of authentication for IoMT devices, and review a

recent authentication protocol for dynamic charging of electric

vehicles to illustrate the impact of mobility on protocol design

and implementation.

A. Challenges for Authentication of IoMT devices

Authenticating the identity of devices is by no means a new

problem in security research. Consider an IoT scenario, where

the doorbell has a camera that connects to the living room TV

through the in-house WiFi router. Since neither the doorbell

nor the TV are likely to move, the wireless connection and

the authentication between the doorbell and the TV only need

to be configured once during the initial setup. What makes

mobile device authentication a new challenge is the fact that

(i) the device changes its location as the user moves; and (ii) it

constantly meets new other IoMT-enabled devices, as opposed

to having a fixed list of neighbors which it has learned during

its pre-configuration.

While authentication in vehicular network has been ex-

tensively studied in the research community [32]–[37], we

want to emphasize that they constitute only a small subset of

applications of IoMT. In particular, most V2V authentication

approaches focus on authenticating the safety message that

has a fixed content (location and speed) and fixed broadcast

frequency (every 100 milliseconds) according to the IEEE

802.11p standard, and most Vehicle-to-Infrastructure (V2I)

authentication solutions focus on authentication between ve-

hicles and roadside units. It is easy to imagine an IoMT

scenario that goes beyond the current focus of V2V and V2I

authentication: the vehicle may communicate with street-side

stores to receive price information, share multimedia content

with other vehicles, or communicate with pedestrians carrying

IoMT-enabled devices for collision avoidance. Apparently ve-

hicles, pedestrians, and streetside stores have different mobility

patterns, and an authentication framework for IoMT is needed

that is able to authenticate different types of devices with

different mobility patterns.

Let us consider an example from vehicule-to-vehicle (V2V)

communication, where vehicles periodically broadcast their

own speed and location to help avoid collision with other

vehicles. When a vehicle receives a message containing the

speed and location information, it must verify that the message

is indeed generated by another vehicle nearby, instead of a

fake message generated by an attacker trying to mislead the

driver into changing its speed. In this V2V authentication

scenario, the challenge is that a vehicle needs to constantly

authenticate new vehicles, and depending on the speed of the

traffic flow, the contact time with a new vehicle is small and

the authentication must be completed within milliseconds.

Another challenge for authentication in IoMT scenario is

that the mobile device may need to authenticate with other

mobile devices very frequently. Recall the dynamic charging

scenario for electric vehicles (EVs) introduced in Section V-A.

When the EV is moving at high speed (e.g., 70 mph), it

encounters and authenticates with a new charging pad around

every 20 milliseconds, and the authentication must complete

within the first few of the 20 milliseconds so that the rest

can be used to charge the EV’s battery. This makes it very

challenging to design the authentication protocol.

B. Design of Portunes+ Authentication Protocol

We have designed a solution for the dynamic charging

authentication problem [38]. Our authentication design, called

Portunes, adopts a key-predistribution approach where session

keys are generated and pre-distributed to charging pads prior

to the actual authentication. We have further improved our

design and proposed Portunes+ by including an implicit au-

thentication protocol that allows the charging pads to share

authentication results with each other and effectively reduce

the required authentication frequency [39].

Portunes+ involves three different entities: the Charging

Service Provider (CSP) that the EV subscribes to, the Pad

Owner (PO) that operates the dynamic charging section, and

the EV. The intuition behind dividing the authentication into

two phases also comes from an observation of the mobility

pattern of vehicles: statistics have shown that most vehicles

(except for trucks) are parked during the night (e.g., between

1 am and 6 am). From the authentication protocol’s point of

view, when the EV is parked, it is idle in that it will not

interact with the charging pads under the road to charge its

battery. This idle period thus provides an opportunity where

cryptographic operations can be performed in preparation for

future use.

In Fig. 13 we illustrate the major steps in Portunes+. In

the key pre-distribution phase, the CSPs generate the key sets

and send them to the POs, which in turn disseminate the key
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Fig. 13: Overview of Portunes+ authentication

sets to each charging pad. In the authentication step, the CSPs

allocate keys and pseudonyms to EVs before they enter the

charging section, and the EVs authenticate with each charging

pad encountered using the assigned key. The true identity

of the EV is not revealed to the charging pads during the

authentication. Since the session key assigned to the EV has

already been pre-distributed to the charging pads, the EV can

immediately start using the assigned session key for mutual

authentication with the charging pads without additional key

negotiation.

C. Implementation and Results

We have implemented Portunes+ in C++ using Crypto++

5.6.2 library, and evaluated its performance on Raspberry

Pi 2 Model B platform. Raspberry Pi is a portable general

computing platform featuring a 900 MHz Quad-core CPU and

1 GB RAM, and costs $35 (USD) at the time of writing.

We choose to evaluate Portunes+ on Raspberry Pi because

we think future EVs will be equipped with equivalent or

better computational resources. As shown in Fig. 14, the au-

thentication message generation and verification of Portunes+

are orders of magnitude faster compared to Elliptic Curve

Digital Signature Algorithm (ECDSA) currently suggested by

the IEEE 802.11p standard.

One important lesson we learned is that the mobility pat-

tern of the IoMT devices in question plays an important

role in designing the protocol. The reason why Portunes+

outperforms ECDSA in real-time authentication speed is that

Portunes+ utilizes the idle period during which the EV is

parked to perform computationally intensive operations, and

only uses lightweight cryptographic operation during real-time

authentication. This two-phase design choice comes from the

observation on the vehicle’s mobility pattern, i.e., most sedan

vehicles are parked during the night.

VII. CONCLUSION

In this paper, we have discussed Internet of Mobile Things

with variety of themes ranging from data collection, analysis,

exchange to energy management and security and privacy of

mobile things. In each of these themes, one can draw many

lessons learned. We want to highlight some of them.
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Fig. 14: Generation and verification time of authentication

message using Portunes+ and ECDSA vs. message size. Error
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First, in data collection, mobility of things such as phones

and vehicles impacts several important relations: (a) relation

between number of sensors used during data collection, energy

usage, and storage usage, i.e., if number of sensors goes up

in a mobile device, energy usage goes up and data collec-

tion requires more storage space; (b) relation between data

collection, energy management and data analysis, i.e., if one

collects more data, more energy is being spent, but also better

data analysis can be done learning more detailed patterns such

as mobility patterns, usage patterns, social context patterns,

and other patterns of mobile devices; (c) relation between

data collection and privacy; i.e., if one collects private data,

one needs to provide privacy-preserving algorithms for mobile

devices; (d) relation between data collection and data quality,

i.e., since mobile data collection is opportunistic, how much

data one collects (duration and frequency of data collection)

impacts the data quality implicitly.

Second, during data analysis and delivery, one has to pay

attention to the following issues: (a) relation between data

selection for analysis and mobility, i.e., mobility will impact

the data selection for analysis since if one chooses data that is

erronous during high mobility speeds, analysis will be highly

erronous as well. (b) relation between data analysis, security,

privacy and energy; i.e., the accuracy of analysis and the

level of security/privacy very much depend on the energy

availability on a mobile phone and vice versa.

Third, in our energy management considerations, two

lessons learned came out: (a) strong assumptions on the

mobility of devices make the modeling and analysis of energy

placement easier, but one needs to relax the strong assumptions

to encompass more realistic scenarios; (b) relation between

energy placement, mobility patterns, and data collection and

analysis is of importance since if one understands mobility

patterns of devices, one can better design placement of energy

sources, and in order to gain accurate mobility patterns, one

needs to do data collection and analysis from devices to get
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their individual locations and energy usage.

Fourth, security is very much impacted by the mobility

since (a) mobility means adaptation and adaptation means

design of security protocols that accept continuous changes

in key management, exchange of credentials, authentication

algorithms and other parts of the security and privacy frame-

works; (b) relation between data analysis and security will

impact predictions in mobility patterns which again can yield

better key management and stronger authentication via a two-

factor authentication.

In summary, even though research around Internet of Mobile

Things may happen along the above discussed themes sepa-

rately, it is very important to stress that all of these themes,

i.e., data collection, analysis, exchange, energy management,

and security and privacy, must be considered together. Only

an integrated approach towards IoMT will be successful if we

want to see Internet of Mobile Things developed and deployed

broadly.
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