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Abstract—Carpool commuting enables multiple individual
travelers with similar schedules and itineraries to share a
common vehicle during a trip, and travelers can split travel
costs in gas, parking and tolls with each other. It emerges
as an effective way to solve traffic congestion, parking space
tension and air pollution resulting from vehicle emissions.
One of the challenges that restrict widespread adoption of
carpool commuting lies in matching carpoolers. Existing car-
pooler matching methods include building carpool lanes in
main airports and bus stops, using centralized servers to
identify carpoolers based on historical travel data or real time
travel requests. However, these methods cannot be applied
to large scale adoption or incur long matching latency. To
overcome drawbacks of existing methods, we propose VShare,
a dynamic carpool system that leverages the wireless social
network characteristic and hierarchical cloud server architec-
ture. VShare incorporates two design components: matching
through the wireless social network and a hierarchical cloud
server structure. Upon receiving a user travel request, VShare
first identifies possible carpoolers from neighbors in nearby
locations, which reduces latency of sending travel requests to
remote servers. If no carpool is found within nearby locations,
a hierarchical cloud server architecture is used to match the
travel requests. We have implemented the design of VShare
and conducted trace-driven experiments. Experimental results
show the effectiveness of VShare in substantially reducing
matching latency while providing high success rate in matching
carpollers.

Keywords-Wireless social networks; Car sharing; Carpool
commuting; Cloud servers

I. INTRODUCTION

With rapid development of automobile industry, traffic

congestion and air pollution resulting from automobile ex-

haust now become two of the greatest challenges in in-

creasingly crowded urban areas all over the world. Carpool

commuting (also known as carsharing and ridesharing),

enables multiple passengers to share a single vehicle, which

saves travelers’ costs in fuel, parking and tolls and be-

comes an effective way to mitigate traffic congestion and

pressure in parking spaces. Recently, companies like Uber

[1] and Lyft [2] offer cheap peer-to-peer taxi services, in

which a driver shares rides with other passengers mainly

for the purpose of earning taxi fare. Carpooling is getting

popularity and it represents 10% of all commute trips in

the United States in 2009 [3]. However, instead of sharing

vehicles with nearby travelers who are heading to the same

destination, the majority (over 60%) of carpoolers commute

with family members [4]. Various policies can be enforced

by the government to encourage travelers to participate in

carpooling, such as reducing the toll fares and parking fees

for carpoolers and deploying high occupancy vehicle (HOV)

lanes. For example, a vehicle carrying at least one passenger

is able to gain access to HOV lanes or reduced tolls, which

can motivate travelers with similar itineraries to share a com-

mon vehicle. Besides prompting carpooling by endowing

travels with particular benefits, we also need mediums where

travelers are easy to identify potential carpoolers who have

similar travel schedules.

One of the most straightforward ways to match carpoolers

is building carpool lanes in airports and bus stops [5]–[7],

where passengers meet each other without specific prior ar-

rangements and share taxis based on mutual agreement. For

example, a number of carpool lanes are built at designated

locations in the Washington DC area and East Bay of San

Francisco [5], [6], where travelers wait in queues and make

up informal carpools spontaneously on a first-come-first-

service basis. Applications are also developed to facilitate

carpool matching at designated locations. Bandwagon [7] is

an practical application of rideshare car service, which helps

travelers in long taxi lines at LaGuardia Airport to share

taxis. However, matching travelers in carpool lanes at des-

ignated locations is defective as travelers identify carpoolers

only when they are waiting in taxi lines, and the locations

need to have a large volume of travelers in order to provide

acceptable matching rate. Travelers are more likely to find

carpoolers when they can make arrangements beforehand,

e.g., they can schedule carpooling before coming to the

airport. Also, this strategy only works in small-scale user

population in a number of designated locations.

In large urban areas where thousands of vehicles running

hundreds of thousands of trips per day, building scattered

carpool lanes is not sufficient to greatly boost the possibility

of carpooling. The optimization of carpool assignments with

different departure and destination locations of travelers

is challenging due to the large scale of the participants.
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Figure 1: The architecture of the VShare carpooling system.

The increasing ubiquity of mobile devices provide potential

solutions to this problem, in which prior user mobility

knowledge is utilized to make potential carpools [8]–[10]. In

this theme, portable devices such as smartphones and tablets

are used to collect individual trips automatically without

any explicit user involvement. Travel routes and mobility

models are generated for each user, that is, we can infer

the itineraries and travel schedules based on past observa-

tions. Potential carpoolers can be identified by using these

travel routes and mobility models. However, this carpooler

matching theme works in a static manner and can not be

adaptive to real time scenario where users upload their travel

requests on demand. Also, it cannot be used for a person’s

travel (e.g., business trip, unplanned shopping) that is not in

his/her routine mobility.

To match carpoolers with real-time travel requests, some

works propose using a centralized server to gather all real-

time travel requests sent from users, and then calculate

carpooling schedules that reduce users’ travel costs and at

the same time minimize total travel time [11]–[15]. In these

dynamic carpooling systems, both riders and drivers provide

preferred travel information including desired departure time

window, location and maximum travel distance. A number

of predefined objectives in determining carpool matches are

also specified by the systems, such as minimizing total

travel time and trip costs. The carpool matching problems is

typically formed into a linear programming problem, where

objectives are optimized subject to a set of constraints. The

problem is then solved and carpool assignments are returned

to the travelers.

Using a centralized server to match carpoolers requires

long computation latency. Also, it takes long transmission

latency since user travel requests are sent from portable

devices to the remote server. To reduce the matching latency,

we propose VShare, a dynamic carpool system that leverages

the wireless social network characteristic and hierarchical

cloud server architecture. Figure 1 shows the architecture of

the VShare carpooling system, which is formed by utilizing

the wireless social network and the cloud servers. When

a user sends out a travel request, VShare aims to identify

carpoolers through the wireless social network in the first

step. It broadcasts this request to a number of the requester’s

neighbors in his/her neighborhood. A neighbor heading

to the same destination will respond to the request with

a matching score towards the request that measures the

similarity of their itineraries and travel times. After receiving

a number of responses from the requester’s neighbors, a car-

pool of multiple passengers is formed and all carpoolers are

notified of the travel schedule. If no carpoolers are identified

within a neighborhood, VShare then sends this request to

cloud servers. As the cloud has proved to be an effective

platform to host a variety of applications [16]–[18], it is used

to store and match travel requests. In VShare, a hierarchical

cloud server architecture is used to store all travel requests

with the same departure location and destination in the same

server. The server responsible for the target request will then

identify potential carpoolers by calculating the matching

scores between existing requests and target request. Finally,

this server then returns the schedule of carpooling to all

passengers involved when matches are found. In VShare, the

carpool matching latency is substantially shortened by first

looking for carpoolers within nearby neighbors. Also, the

hierarchical cloud server architecture is effective in matching

travel requests with short latency. VShare can be used for

different vehicles including taxis, personal vehicles, rented

vehicles.

We summarize the contribution of this paper as follows:

• We have proposed VShare, a wireless social network

aided vehicle sharing system using hierarchical cloud

architecture. In VShare, carpoolers are matched by

broadcasting messages to neighbors and using a hier-

archical cloud server architecture.

• We have designed algorithms to calculate a matching

score between two travel requests that measures the

similarity of their itineraries and travel times, we then

identify potential carpoolers by refering to the mathcing

scores.

• We have conducted trace-driven experiments by using

a PlanetLab node to simulate cloud servers. We have

presented the experimental results in a number of

performance metrics, which show the effectiveness of

VShare in matching carpoolers with short latency.

The remainder of the paper is organized as follows.

Section II presents an overview on the related work. Section

III-A describes the detailed design of VShare with descrip-

tion of each step. Section IV presents the performance

evaluation. Section V concludes this paper with remarks on

our future work.
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II. RELATED WORK

Carpooling aims to match travelers with similar itineraries

and traveling schedules, and it provides both economical

and environmental benefits by increasing the number of

passenger on taxis [19]–[25]. Existing works on matching

carpoolers can be broadly grouped into three categories.

The first type of carpooling systems are matching at

designated locations, where drivers and a larger number of

travelers line up in queues and establish carpoolings to save

taxi and toll fares [5]–[7], [26]. For example, the Washington

DC area and East Bay of San Francisco have developed

a number of carpool lanes at designated locations [5], [6].

Applications such as Bandwagon have been developed to

enable carpool commuting at major airports [7], campuses

[27] and large companies [28]. The main disadvantage of

spontaneous matching is that it does not allow to make

carpool arrangements beforehand. Also, this strategy only

works in a number of designated locations where high den-

sity of travelers are waiting in lines, which limits widespread

adoption of this carpooling systems.

The second type of carpooling systems are static match-

ing, where itineraries, routes and travel schedules are col-

lected based on historical records [29]–[31]. These systems

take advantage of the fact that a user’s travel routes and

locations can be predicted based on some mobility context

such as time and positions [32]. MobiCrowd [8] leverages

smartphones to collect trip information for users without

any explicit effort from them. This scheme generates daily

trips and mobility models for each user, and then makes

carpooling schedules using these mobility models. Naoum

et al. [33] proposed a stochastic mixed integer programming

model to optimize the carpool assignment of employees

in large organizations such as companies and government

offices. In this model, employees’ home locations are de-

noted by vertices on the graph, which are then clustered

based on proximity from each vertex to a specific company.

All vertices in the same cluster share a common vehicle.

Some works applied optimization models to identify the

most suitable locations to build carsharing stations [34], [35],

with the objective of improving system performance like the

average number of rides per day.

The third type of carpooling systems are dynamic match-

ing, where carpooling schedules are made based on real-

time user requests. Ma et al. [11] used a spatio-temporal

index to retrieve candidate taxis that matches a user’s travel

schedule; they then selected a taxi with minimum additional

incurred travel distance if this user shares the taxi with

existing passengers. Huang et al. [36] proposed kinetic tree

algorithms which can efficiently schedule dynamic travel

requests and adjust travel routes on demand. Zhang et al.
[22] proposed a carpool service system named coRide,

which aims to reduce total travel mileage for less gas

consumption in a large-scale taxicab network. coRide uses
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Figure 2: An overview of matching carpoolers in the VShare

carpooling system.

the linear programming to solve the route selection problem

under different practical constraints. As users call for taxis

on demand and this dynamic ride-sharing problem is a

NP-hard optimization problem [37]. Some works [38]–[41]

propose heuristic approaches to solve the car sharing and

route planning problem with reduced computational com-

plexity. BlueNet [17], [42] is a cloud-based carpool match-

ing module, which uses a genetic algorithm to accurately

find the optimum carpool schedule and matching results

by simulating natural evolution. Simulation methodologies

[43]–[46] are also used to assist the decision makers in

selecting optimal carpool scheduling strategies, with the

objectives of maximizing the participants’ satisfaction level

and minimizing the number of vehicles used. This strategy

requires long computation latency as all user travel requests

are processed by centralized servers which may be far away

from the travelers.

To reduce the matching latency, in VShare, when a user

sends out a travel request, this request will be broadcasted

to a number of neighbors in nearby locations. A neighbor

heading to the same destination will respond to the request

and a carpool is formed. If no carpool is identified within

neighborhood, this request is then sent to a cloud. A hier-

archical cloud server architecture is used to match the new

request with existing requests, it then returns the schedule

of carpooling when matches are found. The carpool match-

ing latency is substantially shortened by first looking for

carpoolers within nearby neighbors. Also, the hierarchical

cloud server architecture is effective to match travel requests

with short latency.

III. SYSTEM DESIGN OF VSHARE

Matching carpoolers is challenging as users’ travel re-

quests and positions are highly dynamic and difficult to

predict. The goal of a ride sharing system is to increase

the carpooler matching success rate and at the same time

minimize the matching latency. VShare achieves this goal

by leveraging the wireless social network and hierarchical

cloud server architecture to help the matching of carpoolers.
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We will describe the detailed design of each component in

this section. Important notations used in this paper are listed

in Table I. Note that we use “predefined” to indicate that

the parameter is predefined by the vehicle sharing service

provider.

Table I: Table of major notations.

pi passenger i
ri the travel request for passenger pi
P the list of passengers
R the list of candidate travel requests
ti the travel time for passenger pi
wi the maximum wait time for passenger pi
mij the matching score between ri and rj
C a carpool
t(C) travel time for carpool C
S vehicle capacity, i.e., number of passenger seats
φ predefined max # of neighbors to forward a request

T̃ predefined latency threshold of matching with neighbors

A. Overview of VShare

Our proposed VShare carpooling system incorporates two-

step operations: matching via the wireless social network

and matching using a hierarchical cloud server architecture.

Figure 2 shows an overview of the VShare carpooling

system. When a user sends out a travel request from its

mobile app, this request will be transformed into a request

numerical string.

To reduce the matching latency, in the first step, VShare
tries to match carpoolers within nearby locations instead

of forwarding the request to the remote cloud. The travel

request is broadcasted to a number of neighbors in nearby

locations. Each neighbor user’s mobile app receiving the

request will then check its travel schedule. If its user is

heading to the same destination at a close time, it will

respond to the request. Based on the responses, a carpool is

formed. The detailed description of the first step is presented

in Section III-D.

If no carpoolers are returned, in the second step, this

request numerical string will be sent to the cloud. Through

a hierarchical cloud server architecture, this request will be

forwarded to the host server where travel requests with the

same departure location and destination location are stored.

This server will match the departure time and maximum

wait time between the new request and existing ones, and

then returns the matching carpooler results to all users in

the carpool. The detailed description of the second step is

presented in Section III-E.

Before we present the matching process, we first introduce

how to transform a request to a string for easy matching

operations in Section III-B. Then, we introduce how to find

carpoolers for a given travel request in Section III-C2.

Travel�request

Dep ID Dest ID Time Max�wait�time
002 001 0930 30
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…
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001

002

003
…

Departure
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Travel�time

Max�wait�time

Numerical�string

Figure 3: The process of the travel request transformation.

B. Transformation of Travel Requests

In the VShare carpooling system, it is critical to match

potential carpoolers who have similar itineraries and travel

schedules. For this purpose, VShare needs to compare the

similarity of the travel requests. For the ease of the com-

parison, in this section, we introduce how to transform

a user travel request to a numerical string. Compared to

text representation, numerical strings are more effective in

fast storage and information retrieval and quick comparison.

Each user travel request is first represented by a number

of attribute values, which indicate the travel schedule. The

travel request can be entered by a user through the VShare
mobile phone app, where each request is represented by four

attributes, i.e., departure location, destination, travel time and

maximum wait time. For example, a user is traveling from

the John F. Kennedy (JFK) airport to the 5th AVE at 9:30am

and his/her maximum wait time is 30 minutes. This travel

request is then presented with four attribute values “JFK

airport; 5th AVE; 9:30am; 30min”. Note that these attributes

are determined by users’ travel preferences. Actually, the

attributes used in the system can be flexible based on the

requirements from carpool service providers.

The carpool service provider defines a table of address

codes that use a number of digits to represent each address.

An address code is generated in a similar way as using a

zipcode to represent an area. An example of such an address

code table is shown on top right of Figure 3. Each mobile

phone installed with the VShare app stores the address code

table. We then transform each user request into a numerical

string. As the attributes of departure location and destination

are important in travel requests, we set them as primary keys

and transform them into IDs. We use Dep ID and Dest ID
as abbreviations for the departure ID and destination ID.

The mapping process is conducted by applying the address

code. For instance, location “JFK airport” is denoted by code

“002” (i.e., a number of digits) and “5th AVE” is denoted

by “001”. Thus, the Dep ID and Dest ID in our example

are “002” and “001”, respectively. We also represent the

travel time and maximum wait time as numerical values.
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Figure 4: Process of matching two travel requests.

For example, “9:30am” is represented by “930” and “30min”

is represented by “30”. We then combine the digits of all

attribute values together and get an n-digit numerical string.

Figure 3 shows the process of transforming a travel

request into a numerical string. The top left row lists all

travel schedule attributes in the system. When a user sends

out a travel request with attribute values “JFK airport; 5th

AVE; 9:30am; 30min”. After we infer the address codes for

Dep ID and Dest ID, the travel request is transformed to

a numerical string “00200193030”. This numerical string is

used to match users who have similar travel schedules and

are likely to share the same vehicle.

C. Matching of Potential Carpoolers

In this section, we first discuss how to match two travel

requests by comparing the corresponding numerical strings

of these travel requests, which can help identify two potential

carpoolers. We then extend the method to form carpools with

more than two passengers.

1) Matching of Two Travel Requests: In VShare, we

define a matching score to measure the likelihood that

passenger pi is able to share vehicle with passenger pj . The

matching score is measured by the similarity between these

two passenger’s travel numerical strings ri and rj . When

VShare identifies potential carpoolers for a given request via

using the wireless social network or the cloud, it needs to

calculate the matching score between two passengers. Figure

4 shows the process of matching two travel requests, which

includes 3 step operations. We first compare the values of

Dep ID and Dest ID sequentially in the first two steps. If two

travel requests have different Dep ID or Dest ID, the process

stops and these two requests are not matched. Otherwise, we

continue to examine the values of Travel time and Maximum
wait time (denoted by t and w, respectively).

Given two travel requests ri and rj that are initiated by

passengers pi and pj , rj has an earlier travel time than ri
(i.e., ti > tj). We use (ti − tj) to calculate the travel time

gap between ri and rj in minutes. When (ti − tj) > wj ,

i.e., pj’s waiting time is not long enough to share vehicle

with pi, pj will not respond to the pi. When (ti− tj) < wj ,

i.e., the travel time gap is less than the maximum wait time

of pj and pj is able to share vehicle with pi, we calculate

the matching score mij between them by:

mij = 1− (ti − tj)/wj , (1)

mij represents the degree of satisfaction in waiting for

possible carpoolers. A large value of mij means that one

traveler does not need to wait long for another traveler to

share a common vehicle.

Algorithm 1 Matching of two travel requests.

1: Input: travel numerical strings of ri and rj ;
2: Output: matching result;
3: if Dep ID(ri)�=Dep ID(ri) then //Departure locations are un-

matched
4: return false
5: end if
6: if Dest ID(ri)�=Dest ID(ri) then //Destinations are unmatched
7: return false
8: end if
9: if (ti − tj) > wj then //Travel time gap exceeds maximum wait

time
10: return false
11: end if
12: calculate mij by mij = 1− (ti − tj)/wj

13: return mij

Algorithm 1 shows the pseudocode of matching two travel

requests. The algorithm first matches these requests by their

departure locations (Lines 3-5). It then matches requests by

traveling destinations (Lines 6-8). It continues to check if

the travel time gap between two requests is less than the

maximum wait time (Lines 9-11). It finally calculates the

matching score based on travel time and maximum wait time

and returns the matching result (Lines 12-13). Two potential

carpoolers are identified when mij > 0, and this matching

result will be return to both pi and pj .
2) Matching of Multiple Travel Requests: Given travel

request ri, and a list of candidate travel requests R =
(r1, r2, ...ru) initiated by a list of passengers P =
(p1, p2, ..pu). All requests in R are order by their matching

scores towards ri in descending order. When pi carpools

with p1, these two passengers can travel earlier compared

to carpoolers of pi and p2. Our strategy to form a carpool

(denoted by C) is adding one candidate from R at a time and

check if all passengers in the carpool are satisfied with the

carpool travel schedule, i.e., the wait time of each passenger

is within its maximum wait time. If the carpool’s travel time

is beyond a passenger’s maximum wait time, we then remove

the newly added passenger and return the current carpool

schedule.
When adding a travel request to the carpool, we select

requests from R in order. Assume that carpool C is built

when we add rj to the carpool. We use t(C) to denote

carpool C’s travel time, which is the latest travel time of

all passengers in C, i.e., t(C) = max(t1, t2, ..tj). For each

travel request rk in C, we sequentially calculate t(C)−tk as

wait time of pk in minutes. C is invalid if t(C)− tk > wk,

i.e., pk does not agree with the travel time of carpool C.
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In this case, we remove rj from C and return current

carpool schedule to all passenger involved. Otherwise, we

continue this process until the number of passengers in

current carpool reaches the capacity S of the vehicle. S is

determined as the number of passenger seats on a vehicle.

Algorithm 2 Matching of multiple travel requests.

1: Input: travel request ri and candidate list R = (r1, r2, ...ru);
2: Output: carpool C;
3: for rj ∈ R do
4: if size of C equals S then //Vehicle capacity is reached
5: return C
6: end if
7: add rj to carpool C //Increase the size of the carpool
8: calculate C’s travel time t(C) = max(t1, t2, ..tj)
9: for rk ∈ C do

10: if t(C)− tk is greater than wk then
11: remove rj from carpool C
12: return C
13: end if
14: end for
15: end for

Algorithm 2 shows the pseudocode of matching multiple

travel requests. When we input a target travel request and

a list of candidate requests R, Algorithm 2 aims to identify

multiple carpoolers from R to share a vehicle with the

requester. The algorithm first examines if the number of

passengers in current carpool reaches the capacity of a ve-

hicle (Lines 4-6). When |Cj | = S, the algorithm returns the

current carpool schedule. Otherwise, it adds rj to the carpool

and calculates the travel time of this carpool (Lines 7-8).

For each travel request in the new carpool, the algorithm

continues to check if the carpool’s travel time satisfies all

passengers’ maximum wait time (Lines 9-14). If one of the

passenger does not agree with the carpool’s travel time, the

algorithm removes rj from the carpool and returns the result.

D. Matching Via the Wireless Social Network

A passenger pi’s wireless social network consists of

users in pi’s neighborhood in the same area. We consider

a passenger’s wireless social network first in forming a

carpool for the passenger because these users tend to have

the same departure location and similar travel time. The

local carpooler matching rather than the global matching can

expedite the speed for finding carpoolers for the passenger.

When a user sends out a travel request, he/she is required

to enter travel information, this information is then broad-

casted to a number of neighbors in the area. VShare defines

a time-to-live (TTL) value, which is the maximal number of

hops that a travel request can be forwarded to. In our paper,

we set TTL to 2 hops for all travel requests. VShare defines

a constant φ, which is the largest number of neighbors to

forward a user travel request in each hop. After a user pi
submits a travel request, the VShare app will transform the

request into a numerical string ri and forward ri to φ random

Travel�
request1 Request�

transform

Wireless�social���
network

2
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Figure 5: Demonstration of matching via the wireless social

network.

neighbors. A neighbor pj receiving this request will apply

Algorithm 1 to check if its travel request is matched with

pi’s. If the matching score mij is greater than 0, pj replies

to pi with the value of mij . Also, pj will forward the travel

request to φ neighbors in its own neighbor list and reduce the

travel request’s TTL by 1. The request is forwarded along

wireless social links until TTL=0.

From this process, we can see that a problem needs to

be resolved is how to determine carpoolers for pi when it

receives a number of replies from its neighbors. pi’s VShare
app first puts all received responses from pi’s neighbors

in a list R = (r1, r2, ...ru) so that elements in R are

ordered in decreasing order of their matching scores with

ri. The app then uses Algorithm 2 to make a carpool

of multiple passengers. When a number of passengers are

identified as potential carpoolers for pi, the app then starts

an instant conversation with these passengers to confirm the

plan of sharing vehicles. Figure 5 demonstrates the steps

of matching via the wireless social network with TTL=2.

VShare aims to identify carpoolers through the wireless

social network in step 1 and step 2. After receiving all

responses from neighbors in step 3, VShare makes a carpool

of multiple passengers among all received responses and

notifies all passengers in step 4.

If the travel requester pi has not received a response after

a certain latency threshold T̃ that is specified corresponding

to TTL (e.g., 5 minutes), this travel request is forwarded

to the cloud, where the request is matched with existing

requests by the hierarchical cloud.

In the wireless social network, neighbors may not be

acquainted with each other in real life, so they may have

concern about their safety and privacy when sharing a

vehicle with strangers. This issue will prevent users from

actively participating in the vehicle sharing activities. In

order to provide trust among ridesharing travelers, we may
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integrate VShare with some existing social networks (e.g.,

Facebook and LinkedIn), so that participants can acquire

more personal information of their travel partners. However,

this issue is beyond the scope of this paper and it is our

assumption that users are honest and reliable when using

the VShare system.

E. Matching Via Hierarchical Cloud Architecture

If no carpool is identified within a requester’s wireless

social network, this request is then sent to cloud servers,

where carpoolers are matched. In a cloud data center, there

are a larger number of servers and each server stores and

processes a large amount of user requests. A fundamental

challenge in the cloud datercenter is to efficiently identify

potential carpoolers in the complex environment character-

ized by distributed requesters and large scale data volume.

In such an environment, thousands or even millions of user

travel requests are scattered across distributed servers inside

cloud datacenters. Thus, matching carpoolers requires the

communication between different servers when they need

to calculate matching scores between travel requests. In

order to match travel requests efficiently, we need to reduce

the number of communications between different servers.

To achieve this goal, we organize the cloud servers in a

hierarchical structure.

Figure 6 shows the three-level hierarchical cloud server

architecture. Specifically, the cloud servers are formed into

a three-level hierarchy from the top to the bottom: a cen-

tralized server (CServer), departure managers (DepM) and

destination managers (DesM). The first level is a centralized

server and it is responsible for distributing travel requests to

different departure managers in the second level based on

the departure IDs of the requests. Each departure manager

is responsible for travel requests with a specific departure ID

and distributes the requests to different destination managers

in the bottom level based on the destination IDs of the

requests. Each destination manager receives, handles and

stores user travel requests with the same departure ID

and destination ID. For this purpose, the centralized server

maintains an index of departure IDs and their responsible

departure managers, and each departure manager maintains

an index of destination IDs and their responsible destination

managers.

We then describe the function of each level by using

Figure 6 as an example. All requests received by the cloud

are assigned to the centralized server. Upon receiving a

travel request, the centralized server passes this request to

the departure manager that is responsible for the request’s

departure ID. The departure manager then forwards the

request to the destination manager that is responsible for

the request’s destination ID. From this process, we can see

that the travel requests with the same departure ID and

destination ID will go to the same destination manager. To

find potential carpoolers for a newly received request, each
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Manager

Destination�
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…request�1
request�2
request�3

…

request�10
request�11
request�12

…

request�20
request�21
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request�32

…

Dep 001:�DepM 5������Dep 003:�DepM 8
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…

DepM 5 DepM 6 DepM 8 DepM 9
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Dest 002:�DesM 11

…
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…

DesM 11 DesM 20 DesM 21

Centralized�
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Figure 6: An example of three-level hierarchical cloud server

structure.

destination manager only needs to match the travel time and

maximum wait time of the request with the requests stored

in itself. If no potential carpoolers are found, it stores the

new request in order to match it with subsequently received

requests. After a destination manager stores a request for a

time period, it notifies the requester that carpoolers cannot be

found. This time period can be specified by the users or the

system based on the departure time of users. Thus, VShare
does not need to involve multiple servers when matching

potential carpoolers, which reduces the matching latency.

The servers in the second and third levels are independently

scalable, i.e., the carpool service provider can adjust the

number of servers dynamically according to the data size

of user requests.

For example, after the centralized server receives a travel

request ri represented by numerical string “00200193030”,

it dispatches ri to DepM 6 which is responsible for requests

with departure ID “002”. DepM 6 then forwards ri to

DesM 20, which is responsible for travel requests with both

departure ID “002” destination ID “001”. DesM 20 has all

requests with the same departure ID “002” and destination

ID “001”. Inside each destination manager, all travel requests

are ordered sequentially by their travel times. The destination

manager will then selects a number of u existing travel

requests that have the closest travel time to that of ri, and

puts them in a list R = (r1, r2, ...ru). All travel requests

in R are ordered in decreasing order of their closeness of

travel time with ri. Next, the destination manager matches

carpoolers for travel request ri using Algorithm 2 described

in Section III-C2.

After a number of carpoolers are identified for ri, if

none of the carpoolers drive a car, the destination manager

randomly assigns an available vehicle (like taxi) currently

in the departure location to these carpoolers and sends the

travel schedule to them. The VShare app will start an instant

conversation for these carpoolers to confirm the plan of

sharing vehicles.
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IV. PERFORMANCE EVALUATION

We conducted trace-driven experiments using the Cab

mobility trace dataset [47].

A. Experimental Settings

The Cab mobility trace contains mobility traces of taxi

cabs in San Francisco, USA. It contains GPS coordinates

of approximately 500 taxis collected over 30 days in the

San Francisco Bay Area. We used the DBSCAN clustering

algorithm [48] to identify 338 locations in this trace. We

generated user requests from the Cab mobility dataset using

the following process: 1) at a specific time ti, if a cab

turns from vacant to occupied in location A, we assume

that this cab picks up one passenger in location A at time

ti; 2) at next time point tj , this cab turns from occupied

to vacant in location B, we assume that this passenger gets

off in location B at time tj ; 3) when a cab is occupied, we

assume that there is only one passenger in the cab. Thus,

a user travel request was generated as “a passenger wants

to travel from A to B at time ti”. We then assigned this

travel request to a random node and set its maximum wait

time randomly in [5,30] minutes. Before a user gets on a

cab in location A, we assumed that this user has stayed in a

location for 10 minutes, and users stay in the same location

form a wireless social network. We used the number of cabs

in the Cab mobility trace dataset as the default number of

cabs, which is 536; and we used an approximate value of

the average number of travel requests per day in this dataset

as the default number of nodes, which is 14000. In order to

vary the number of users, we also created additional users

and randomly assign requests to these uses. We assumed

that each user is a single traveler, i.e., originally, it does not

travel with any other users. Each cab’s capacity is 4, i.e., it

accommodates at most 4 passengers at one time.

In our proposed VShare system, when a user sends out

a travel request including its departure time, location and

destination, this request is broadcasted to 10 neighbors in

this location. We set TTL=2, i.e., each neighbor will forward

this request to its neighbors before the forwarding procedure

halts. A neighbor heading to the same destination at close

departure time will respond to the request and a carpool is

formed. If no responses are returned after 5 minutes (i.e.,

T̃ =5 minutes), this request is then sent to the central

processor in the cloud, where the request is matched with

all other requests and possible carpoolers are identified. The

cloud then selects a vehicle in this area and allocates to

the carpoolers. We compared VShare with Cloud and No-
Sharing. In the Cloud system, all user travel requests are

gathered and processed by the cloud. It uses a hierarchical

cloud server architecture introduced in Section III-E to store

travel requests and match potential carpoolers. We also

implemented the Cloud system without using a hierarchical

cloud server architecture (denoted by Cloud-D). In Cloud-
D, a user request is stored in a random cloud server. To

match potential carpoolers for a target travel request, each

server first selects 4 travel requests from its storage that

have the same departure ID, the same destination ID and

closest travel time to the target request. It then sends them

to a centralized server. The centralized server collects all

similar travel requests and matches potential carpoolers for

the target request. In the No-Sharing system, there is no

carpool commuting, and each user occupies a single cab.

Each user will wait in a queueing line of the location, when

there are available cabs, these users will be picked up on a

first-come-first-serve (FCFS) manner. If a user cannot get on

a cab within its maximum wait time, it will leave the queue

and we regard it a failure in catching a cab.

We used a PlanetLab [49] node to simulate cloud servers,

which is with IP 128.112.139.43 in Princeton University.

The experiment simulates a 7 day scenario. Each user takes

one or two cabs per day with equal probability, we recorded

the experimental results for each day and report the average

values during the 7 day period. In our experiment, each

user will get on an available cab if he/she cannot find any

carpooler, otherwise, all carpoolers share one available cab.

If there is only one passenger on the cab, he/she pays all

travel fare; otherwise, the travel fare is evenly split between

all passengers in the carpool. We are interested in the

following metrics:

• The number of carpools. The number of cabs that

carry more than one travelers at the same time. This

metric indicates the effectiveness of the proposed sys-

tem in matching users to carpools.

• Average travel expense. Users can find travelers who

are willing to share rides with in carpool commuting.

The travel expense is reduced as travelers split the travel

fare and users are motivated to use the VShare system

to find carpoolers.

• Average matching latency. It is the latency in identify-

ing a user that can share a ride with another user, which

is the time span from when a user submits a travel

request until the time he/she receives the carpooler and

cab information. This metric is used to show that using

the wireless social network based matching can quickly

identify a user that can share rides.

• Success rate of catching a cab. It is the probability that

a user can catch a cab within its maximum wait time,

which is calculated as the ratio of travel requests that

can travel within its maximum wait time over all travel

requests. By sharing cabs, more cabs will be available

and users are easier to catch a cab.

• The number of cabs needed. Assume we have un-

limited number of cabs and we need to transport all

users within their maximum wait times, we record the

minimum number of cabs needed to use. When users

can share cabs with each other, a smaller number of

cabs are needed to transport a specific number of users,
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Figure 8: Average matching latency.

which mitigates the traffic load in urban areas.

B. Experimental Results

We present the experimental results with respect to all

metrics introduced above.

1) The Number of Carpools: If a user shares a cab with

at least one passenger, we regarded it as a carpool, i.e., a cab

carries more than one user. Figure 7(a) shows the number

of carpools with different number of users in the system.

We see that the number of carpools in VShare increases

steadily when the user population gets larger. This is due to

the reason that as user density becomes higher in a location,

a user is easier to find carpoolers. In No-Sharing, each user

occupies a single cab, so the number of carpools in this

system remains 0. Figure 7(a) shows that VShare is effective

in identifying potential carpoolers for users.

2) Average Travel Expense: One of the potential benefits

of sharing vehicles for users is reducing the travel expense.

In this experiment, we assume that the travel fare for a single

trip costs f dollar regardless of the travel distance, and f
was randomly selected in [20,40]. We also define a travel

fare increment factor α, which is the ratio of increase in

travel fare when the number of passenger is increased by

one. We set the travel fare increment factor α defined to

0.1. Therefore, if there are n carpoolers sharing the same

vehicle, the total travel fare that the driver receives from

all passengers is (1 + α)n−1f , and the travel fare is evenly

split between all passengers in the cab. Figure 7(b) shows the

average travel expense of all users with different number of

users in the system. We see that compared to No-Sharing, the

proposed VShare system is effective in saving users’ travel

fares as users can find carpoolers who can share payment to

the taxi service. We also see that the average travel expense

drops as the number of user increases in the system. This

is due to the reason that users are more likely to potential

carpoolers when user density is high. Figure 7(a) and Figure

7(b) show that VShare can effectively match travel requests

and identify carpoolers, thus save travel expense for users.
3) Average Matching Latency: Next, we plot the average

matching latency with different number of users and various

number of cabs in Figure 8(a) and Figure 8(b), respectively.

These metrics are important in that users are generally

reluctant to wait long in the queue and they prefer to

find carpoolers quickly. We see that the proposed VShare
system generates substantially lower matching latency than

the Cloud system. As VShare first matches a user’s travel

request with nearby users using the wireless social network,

and a user is likely to identify carpoolers within a short

latency. On the other hand, Cloud processes all user requests

by using remote cloud servers, which incurs a relatively long

transmission delay from the user mobile device to the cloud.

Also, the matching results need to travel long distance back

to the users. Cloud-D generates longer matching latency than

Cloud due to the reason that the centralize server needs

to collect similar travel requests from all servers before

it matches potential carpoolers for the target request. On
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the other hand, Cloud uses a hierarchical server structure

to quickly locate the destination manager that stores all

travel request with the same departure ID and destination

ID as the target request, and this destination manager then

matches potential carpoolers for the target request with short

latency. By comparing the matching latency of Cloud-D and

Cloud, we can see that the hierarchical cloud architecture

is advantageous in storing and matching travel request

efficiently. Figure 8(a) and Figure 8(b) show that VShare is

able to provide satisfactory carpool matching service with

relatively short latency.

4) Success Rate of Catching a Cab: Figure 9(a) shows

the success rate of catching a cab with different number of

users. We see that VShare produce higher success rate than

No-Sharing. In the No-Sharing strategy, each cab is occupied

by only one passenger, given a limited number of cabs and a

large number of travelers during peak hours, some travelers

may not ba able to catch a cab as all cabs are generally

busy. While in VShare, multiple users heading to the same

destination can identify each other and share one cab, thus,

more passengers are transported with the same amount of

cabs. As a result, users in VShare are easier to catch a cab

when more empty vehicles are available to use. The success

rate drops slightly as the number of users increase due to

the reason that the capacities of cabs are fully utilized with

larger number of users, so some users are not able to get an

available cab.

Figure 9(b) shows the success rate of catching a cab with

various number of cabs. We see that the success rate rises

substantially when the number of cabs increase due to the

reason that more passengers can be accommodated with

larger number of cabs in service. We also see that VShare
produce higher success rate than No-Sharing due to the same

reason explained in Figure 9(a). That is to say, VShare aims

to let multiple users heading to the same destination share

rides with each other. From Figure 9(a) and Figure 9(b),

we infer that VShare can effectively mitigate the tension in

catching taxis during rush hours by enabling travelers to

share rides with each other.

5) The Number of Cabs Needed: Figure 10(a) shows

the number of cabs needed to transport different number

of users. We see that more cabs are needed when the user

population increases from 4,000 to 14,000 due to the same

reason explained in Figure 9(a) and Figure 9(b). Also, given

the same amount of users, VShare uses smaller number of

cabs than No-Sharing. This is due to the reason that each

user in No-Sharing takes one cab, while users in VShare
are able to identify carpoolers nearby and share cabs with

each other, the number of cabs needed to transport all users

are thus reduced. When the number of cabs on the road

are decreased in urban areas, some problems emerging in

the process of urbanization can be mitigated, e.g., traffic

congestion and air pollution. Figure 10(a) shows that VShare
is an environment-friendly carsharing system that can be

applied to improve transportation system.
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V. CONCLUSIONS

Dynamic carpool commuting systems are getting popular

and provide promising benefits to both the society and

environment protection. To promote carpool commuting by

effectively matching carpoolers, one solution is to build

carpool lanes in main airports and bus stops where travelers

are crowded, but this method works in designated locations

and cannot be widely adopted. Another solution is using

centralized servers to identify carpoolers based on historical

travel data or on demand travel requests, but this method

incurs long matching latency. To overcome the drawbacks of

these methods, we propose VShare, a dynamic carpool sys-

tem that leverages the wireless social network characteristic

and hierarchical cloud server architecture. Upon receiving a

user travel request, VShare first utilizes the wireless social

network to match possible carpoolers from nearby neigh-

bors. If no carpools are matched through the wireless social

network, VShare then matches potential carpoolers through

a hierarchical cloud server architecture. VShare is able to

identify carpoolers with short latency due to its usage of

the wireless social network and the hierarchical architecture

in the cloud for carpooler matching. We evaluated the

performance of VShare using a cab mobility dataset. Experi-

mental results show the effectiveness of VShare in matching

carpoolers, reducing user travel expense, minimizing carpool

matching latency, increasing users’ success rate of catching

a cab and minimizing the number of cabs needed to transport

a specific number of users. In our future work, we will

improve the design of VShare so that traveler with different

destinations can also be identified as carpoolers. Also, we

aim to develop a real application of VShare that can deploy

on mobile phones.
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[13] M. Rigby, A. Krüger, and S. Winter, “An opportunistic client
user interface to support centralized ride share planning,” in
Proc. of ACM SIGSPATIAL, 2013.

[14] H. Yotsutsuji, K. Sasaki, and M. Yamamoto, “Availability
of volunteer-based dynamic ridesharing with bipartite group
in a low-density small community in japan,” Journal of the
Eastern Asia Society for Transportation Studies, vol. 10,
no. 0, pp. 1009–1024, 2013.

[15] S. D. Martino, R. Galiero, C. Giorio, F. Ferrucci, and F. Sarro,
“A matching-algorithm based on the cloud and positioning
systems to improve carpooling.” in Proc. of DMS, 2011.

[16] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica
et al., “A view of cloud computing,” Communications of the
ACM, vol. 53, no. 4, pp. 50–58, 2010.

[17] S. Huang, M. Jiau, and C. Lin, “A genetic-algorithm-based
approach to solve carpool service problems in cloud comput-
ing,” TITS, vol. 16, no. 1, pp. 352–364, 2015.

[18] Y. Lin and H. Shen, “Autotune: game-based adaptive bitrate
streaming in p2p-assisted cloud-based vod systems,” in Proc.
of P2P, 2015.

[19] C. Morency, “The ambivalence of ridesharing,” Transporta-
tion, vol. 34, no. 2, pp. 239–253, 2007.

47



[20] T. Teubner and C. Flath, “The economics of multi-hop
ride sharing,” Business & Information Systems Engineering,
vol. 57, no. 5, pp. 311–324, 2015.

[21] N. Bicocchi and M. Mamei, “Investigating ride sharing oppor-
tunities through mobility data analysis,” Pervasive and Mobile
Computing, vol. 14, pp. 83–94, 2014.

[22] D. Zhang, Y. Li, F. Zhang, M. Lu, Y. Liu, and T. He, “coride:
carpool service with a win-win fare model for large-scale
taxicab networks,” in Proc. of SenSys, 2013.
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