
Developing Adaptive Quantified-Self Applications
Using DynaSense

Pratik Lade, Yash Upadhyay, Karthik Dantu, Steven Y. Ko

Computer Science and Engineering

University at Buffalo, The State University of New York

Buffalo, NY, USA 14260

{pratikla,yashupad,kdantu,stevko}@buffalo.edu

Abstract—There are a number of user-centric applications that
use data from sensors in a personal area network. The heavy
dependence of such applications on sensors means that if a sensor
is not available (e.g. a user forgets to carry a sensor device),
some applications might not work properly or even fail. However,
the data generated from a sensor that is unavailable can be
derived from other devices or a combination of sensors. Since it is
impractical and ineffective for application developers to track all
such scenarios, user applications generally cannot take advantage
of the sensor rich environment of a prospective user.

This paper introduces the design of DynaSense which is a
middleware system that allows user applications to be agnostic
to the data sources or sensors in use. DynaSense provides a
unified approach for accessing data from various data sources,
which can be sensors or compositions of other data sources.
The middleware dynamically decides how to acquire data from
available data sources, as well as how to deliver it to requesting
user applications. We present the APIs that allow user appli-
cations to easily express their needs. We also present four case
studies—a heart rate monitoring application, a user behavior
anomaly detection application, a calorie tracking application,
and a sleep monitoring application—to compare the development
of these applications with and without DynaSense. These case
studies show that DynaSense can effectively reduce the efforts of
developers, in terms of the lines of code written.

I. INTRODUCTION

With the advent of smartphones, wearables, and Internet

of Things (IoT) devices, sensing has become a ubiquitous

part of our daily lives. Smartphones are capable of knowing

our locations at all times; activity trackers are capable of

counting the number of steps we walk everyday; smartwatches

are capable of monitoring our heart rates; and the emerging

smart clothing promises to measure the exact stress on our

muscles at any given time. With all these devices, we are

living in an era of being able to quantify various aspects of

our daily activities at fine-grained time scales and round the

clock. Numerous mobile applications are being built around

these sensing modalities to provide us with nuanced infor-

mation to characterize and improve various aspects of our

lives. These applications are collectively called quantified-self
applications; they can identify abnormal sleep patterns, help

us reach exercise goals, remind us with to-do items based on

our locations, etc. All of these applications are possible only

because a user carries many devices equipped with various

sensors.

While there are already many such applications, we make

the following three observations on the current state-of-the-

art quantified-self applications. The first observation is that

each such application operates independently of the others

processing the same data again on its own. The second obser-

vation is that while several applications are being enabled, the

number of sensors/data sources are small, and so is the kinds of

computation being performed on them. The final observation

is that there is redundancy in the data collected; for example,

both a smartwatch and a smartphone have accelerometer

sensors which can be used to calculate the step count. But

most of the applications built are specific to sensors, rather
than sensing modalities.

Given these three observations, we have built DynaSense,

a middleware that allows rapid development and deployment

of quantified-self applications targeting sensing modalities

while automatically figuring out best sensors to use. We have

built this system on Android and demonstrate that building

quantified-self applications is easy in DynaSense since we can

leverage a large suite of libraries with common computations

built in and improve their efficiency at run-time by the reuse

of these computations. We also show that DynaSense is

highly extensible by its very design, and can be used to

build applications around novel sensing modalities such as

smartwatches, smart clothing etc.
More specifically, the contributions of DynaSense are the

following.

• Design: We propose a new design that frees quantified-

self application developers from worrying about sensor

management. Our design allows application developers

to write their application logic with data sources, instead

of specific sensors. A data source is essentially the data

itself, e.g., a step count, a number of hours of sleep,

etc., that can be acquired from either a single sensor or

multiple sensors. Our design provides APIs to define a

data source, as well as the acquisition and delivery of

data from data sources to user applications.

• Implementation: We have implemented our design on

Android as middleware that sits between data sources and

user applications. Our middleware is essentially a pub-

lish/subscribe system that consists of a naming service, a

publisher handler, and a subscriber handler.

2016 IEEE First International Conference on Internet-of-Things Design and Implementation

978-1-4673-9948-7/16 $31.00 © 2016 IEEE

DOI 10.1109/IoTDI.2015.42

61

• Case Studies: We have developed four applications with

and without DynaSense to evaluate how effective our

design is in reducing the efforts of developers. Our

studies show that in terms of the lines of code written,

DynaSense drastically reduces the lines of code written

for user applications by refactoring sensor management

from applications.

In the following sections, we will describe the design and

implementation of DynaSense. Section II motivates the need

for DynaSense. Section III discusses the design choices we

made in DynaSense as well as our overall architecture. Sec-

tion IV demonstrates the utility of DynaSense by redesigning

existing monolithic applications in DynaSense and showing

the benefits through code metrics and performance measure-

ments. Section V discusses related work. Finally, we conclude

in Section VI with our contributions and future work.

II. MOTIVATION

We first motivate our work in this section by surveying the

class of applications we are interested in, and discussing the

limitations of the state-of-the art.

A. Quantified-Self Applications

Sensing in our daily lives has enabled a new suite of

applications that were previously not possible. Tracking users

provides more context about the user for marketing and

advertising companies; a user’s location alone can be used

to suggest the nearest grocery store, coffee shop, shopping

mall, gas station, and other location-specific information for

more targeted advertising. Inference of personal context is

useful for the user as well. It is not uncommon for athletes

and surgery patients to manually track their vital statistics

like weight, diet plans, sleep, exercise regimen, etc. However,

with the advent of sensor-rich mobile devices like smartphones

and smartwatches, self-tracking is becoming easier without the

need for manual intervention. Even day-to-day activities can

benefit by better-tracking activity levels, stress levels, sleep

quality, calorie consumption, and so on. Wearable sensors

provide the means to continuously monitor user data. A high

rate of sampling of this data gives great insights into a person’s

life, and correspondingly a better quality of life in the long run.

Given these possibilities, there has been an explosion of per-

sonal monitoring applications (or sometimes called quantified-
self applications). We are particularly interested in this class

of applications that are envisioned to enhance our daily lives.

We can broadly classify them as follows:

• Daily Activity: An application can monitor calories con-

sumed and spent, sleep quality and duration, stress levels,

moods, etc. Most calorie expenditure applications typ-

ically rely on the accelerometer sensor on the wearable

device, and uses that data to compute the various activities

of interest.

• Overall Health: An application can track features like

heart rates while exercising, asthma and diabetes lev-

els. These applications use specialized sensors (e.g., for

asthma), or customized algorithms (e.g., one can use the

camera for measuring heart rate).

• Context: An application can maintain the user’s location

(e.g., work, home, playground) and the activity the user

engages in (e.g., watching TV, sleeping, or exercising),

and use this to trigger other measurement. Typically, such

sensing uses a combination of the GPS, inertial sensors,

and external information (such as WiFi hotspot, cellular

location).

The takeaway from this classification is that most of these

applications use a small subset of sensors. Typically these are,

a way to infer location (GPS, WiFi, cellular radio), means

to infer activities (accelerometers, gyroscope), and a modality

to obtain a richer context (camera). Therefore, an efficient

system would be able to provide data from these sensors to the

appropriate algorithms and re-use them as and when required.

B. Observations for Quantified-Self Applications

Given this class of quantified-self applications, we make

the following observations. First, While the quantified-self

movement dates back to the 1970’s, miniaturization of sensing

and computing has made them ubiquitous today. A smartphone

for example is equipped with an accelerometer, light and

pressure sensors, a compass, a camera, and a microphone,

each of which can be used to measure and/or compute context

of an individual. We also expect a smartphone to be carried

around by the owner throughout her day. Similarly, wearable

gadgets like smartwatches and smart clothes (that are closer to

our bodies) add complex sensors like galvanic skin response

sensors, heart rate monitors, VO2 sensors and others to the

above list. Finally external sensors that can be plugged into

our personal area network (PAN) like blood pressure monitor

or a weighing scale are also flooding the market at a rapid rate.

Smartphones serve as a hub where the data from all PAN scale

sensors can be collated and accessible for various applications.

This demonstrates the abundance of sensing modalities.

However, there is another observation we would like to make,

which is the redundancy of many sensing modalities. A

microphone for example, is potentially present in a user’s

smartphone, laptop, smartwatch and intercom. Similarly, an

accelerometer is present in a smartphone as well as a smart-

watch. Ideally, quantified-self applications should be able to

access the sensor data they require without hardwiring that to

the particular sensor allowing them to have the flexibility to

use any/all data available at any given moment. For example,

a user going for a run might have forgotten to take his

smartphone but is wearing his smartwatch. A calorie counting

application should switch its input accelerometer data to use

the data coming from the smartwatch, and not be tied to

work with the accelerometer from the smart phone only.

This example highlights the importance of inferring context

(unavailability of the smartphone), and the ability of a runtime

to appropriately switch the sensor data source as an important

feature of future quantified-self applications.

Finally, like we mentioned earlier, the number of sensor

values of interest is limited. This also limits the potential

62

Fig. 1. DynaSense Architecture

information that we can infer from this data. However, each

inferred piece of information (sometimes referred to as soft

sensors) can be used in multiple ways by different applications.

For example, a step counter can be used to calculate the

number of calories burnt by the individual as well as to infer

her activity level for the day. Both these applications however

do not need to re-calculate the step count. An efficient system

would allow re-use of such computation across applications to

minimize the amount of redundant computing done.

C. Summary of Our Motivation

Sensing and computing is becoming both ubiquitous as well

as cheap. This has enabled a new class of personal monitoring

or quantified-self applications that have the potential to revo-

lutionize our daily lives. However, most such applications are

being built monolithically without any overarching architec-

ture. There are several features that would be desirable that

do not exist currently because of this. Some of them are as

follows:

• Sensor Multiplexing: The same sensor values are available

from various devices. We should be able to use the best

source for a given type of data at any given point without

hardwiring an application to a particular sensing source

• Reuse Sensor Computation: Several computations we per-

form on sensed data is common across various applica-

tions. The programming model and runtime should allow

for efficient re-use of computation across applications

• Code Reuse: Given that there is a lot of computation

that is repeated across applications, a framework should

provide the commonly used computations to simplify

programming for the developers

Given these goals, we have built DynaSense, a framework

that simplifies the programming of quantified-self applications

in modern mobile systems.

III. DYNASENSE: DESIGN AND IMPLEMENTATION

As discussed in Section II, we have two primary design

objectives. We would like to allow applications to access

sensor data without tying them down to a particular sensor. The

second design objective is for the programming framework

to allow efficient code re-use across applications for rapid

application development. And finally, the third objective is for

efficient re-use of computation at run time across applications.

Figure 1 shows the architecture of DynaSense. It consists

of three main components—user applications, data sources,

and the DynaSense middleware. Data sources, as the name

suggests, are sources of data. These could be physical sensors

in devices (such as accelerometers or gyros in smartphones

and smart watches), or soft sensors that process data from

sensors to produce data (such as step count or calories burnt

from accelerometer data) for other applications. Both of them

can act as producers of data. Applications are consumers

of data. They take as input one or more types of data and

produce useful information for the user (e.g., an application

can take heart rate and step count to produce the person’s

stress level). The DynaSense middleware sits in between the

applications and data sources, and connects the two at run

time. The primary reason for this design is to be able to re-wire

the connection between producers and consumers at runtime.

The middleware tracks the user context, sensors available, and

other relevant information at run time to make this happen.

In the rest of the section, we describe our DynaSense

ecosystem in detail. It consists of APIs to interface applications

to sensed information, and wire an application together. It also

consists of a run time that runs as a service on the smartphone

to track context and assist currently active applications. Fi-

nally, we will discuss how DynaSense meets all of our design

goals.

63

Fig. 2. Developer’s Interaction with DynaSense

A. DynaSense Usage

Our envisioned scenario for DynaSense is that there would

be regular application developers that write user applications,

and data source developers that implement personal data

analytics algorithms (e.g., a new step count algorithm). All

of these would be available in an online application store

(e.g., Google Play) so that end users can benefit from latest

algorithm implementations by downloading new data source

libraries similar to applications. The DynaSense middleware

would be an application downloadable from an online applica-

tion store as well, and is expected to run without any system

privileges on the smartphone.

B. DynaSense APIs for User Applications and Data Sources

As has been described in our design goals, we would like

the applications to compute with sensed information, and not

be directly tied to the sensors themselves. In order to achieve

this, DynaSense uses a publish-subscribe system to connect

the data sources to the applications. The publish-subscribe

system is ideally suited for our purpose as the connection

between publishers and subscribers is done at run time. The

DynaSense framework provides APIs for user applications

and data sources so that they can publish data, subscribe to

data sources, or do both. The goal of the user application

APIs is ease of programming; it simplifies how an application

accesses sensor data by hiding low-level details about sensors

such as where they are located and how they should be

accessed. The goal for our data source APIs is composability,

so that data source developers can provide new types of data

easily. Table I lists our APIs. As seen in Figure 2, our APIs

allow hierarchical structure for publishers and subscribers

where a publisher can also subscribe to lower level data.

The blue boxes represent user applications and the green

boxes show data sources. The Heart Rate user application

requests a heart rate from DynaSense which results in a call

to HeartRateAlgo. HeartRateAlgo can use DynaSense to get

camera frames with parameters like duration and number of

frames. Thus HeartRateAlgo uses the Camera sensor as an

input and produces a soft sensor value. When HeartRateAlgo

is unavailable, DynaSense can call an alternate data source

application that provides a heart rate.

The data source interface also comes with a naming con-

vention to specify the type of data being published/subscribed.

This is analogous to the mime types in a browser to recognize

the particular file type. Further, the interface is also parame-

terized allowing the publisher to specify particular features of

the data being published (such as resolution of the image or

rate of the accelerometer data) and the subscriber to specify the

application requirements (e.g., image resolution and data rate).

As will be described later, the runtime resolves the publisher

and subscriber parameters to ensure that the data publisher

satisfies the application requirements efficiently (e.g., a sensor

is sampled at a rate that meets all applications subscribing to

that data will not exceeding them).

1) Publishing: A data source is an application that pub-

lishes a specific type of data. To illustrate, let us consider

the example of the data source ‘Calories Consumed’. As part

of the initialization, the application registers a data source

of type ‘Calories Consumed’ with DynaSense. Our design

assumes that both the developer of the publisher and subscriber

application are aware of our data type name convention, and

that it is consistent across applications.

Publishers can also specify parameters that describe char-

acteristics of the publisher through this interface. Parameters

for the publishing can be set by invoking the Parameters

APIs. Once the parameters are specified, they are passed as

an argument to the data source initialization.

DataSource ds = new DataSource("Audio");
Byte[] samples = getSamples(int samplingRate);
Bundle audioDetails = new Bundle();
audioDetails.putByteArray

64

TABLE I
DYNASENSE’S APIS FOR DEVELOPERS

DataSource
dataSourceName:String
appName: String
appPackageName: String
addNewDataSource()
addParams(params: Parameter) subscribe(endTime: Calendar)
publish(details: Bundle)

Parameter
parameters: Map〈String, String〉
get(param:String)
set(param:String, value:String)

("AudioData", samples);
ds.publish(getApplicationContext(),

audioDetails);

The above code declares to DynaSense a data source that

provides audio data. Adding a new data source is functionally

equivalent in DynaSense to declaring a new publisher. This

information is captured by the DynaSense runtime, and kept

track of. Data sources can be one-shot, periodic, or aperiodic.

One shot, like the name suggests, publishes one reading.

Periodic publishers publish data at a time interval specified by

the subscribing application. Aperiodic data sources like step

count are published at irregular intervals. This is mainly for

data that might be triggered by an event, potentially external

to the system, something that might not be of periodic nature

or whose period cannot be determined by the runtime.

Publish requests are dispatched to the DynaSense runtime.

Our current prototype is built in Android, and employs An-

droid intents for this communication. However, this can be

easily re-implemented through any other messaging service

depending on the target platform.

The data source starts publishing data once it receives a

request from DynaSense. To receive requests, a data source

needs to maintain a list of applications requesting this data. In

our current implementation, this is accomplished by extending

BroadcastReceiver. The onReceive method of a data source

parses the data source requested, and then starts further

processing required to publish that data.

Applications can publish multiple data sources, but needs to

declare each one of them to DynaSense. Hence it becomes im-

portant to parse the incoming request to identify the requested

data source. The incoming request also includes parameters

that were sent by the data user in a bundle.

DataSource ds = new DataSource
("CaloriesConsumed");

String[] fDetails = new String[]
{foodName, calories, servings};

Bundle details = new Bundle();
details.putStringArray

("BundleValue", fDetails);
ds.publish(

getApplicationContext(),
details);

2) Subscription: A data user is an application that is in

need of a specific type of data. In the case of a calorie tracker,

an example of this is ‘calories consumed.’ To send a request

to DynaSense, the applications subscribes to the data type

“CaloriesConsumed.”

DataSource calCon = new DataSource
("CaloriesConsumed");

calCon.subscribe(endTime);

Similarly, an application can subscribe to audio data and

get data periodically. It specifies the duration for which the

data is required and adds parameters like “SamplingRate” and

“Channel” which are predefined by the publishing application.

DataSource audioDs=new DataSource(Audio);
Calendar endTime = Calendar.getInstance();
endTime.add(Calendar.SECOND,10);

Parameter audioParams=new Parameters();
audioParams.add(SamplingRate, 44100);
audioParams.add("Channel", "MONO");

audioDs.addParams(audioParams);
audioDs.subscribe(this.getApplicationContext(),
endTime);

C. DynaSense Middleware

The DynaSense middleware is an application-level service

that runs in the background. Its main job is to bridge user

applications and data sources. In order to accomplish this, the

middleware needs to perform four tasks as follows:

• Tracking what data sources are available

• Tracking the types of data the available data sources can

produce

• Tracking applications and the requested data types re-

spectively

• Delivering data to appropriate user applications when

available

Below, we first describe the meta data that the middleware

maintains to perform these tasks. We then describe how the

middleware accomplishes the above objectives.

65

1) Middleware Runtime Bookkeeping: The DynaSense mid-

dleware maintains three types of information. First, it main-

tains the list of user applications and data sources. These are

dynamically registered and the middleware monitors them for

their availability. Second, the middleware maintains the list of

available data types. For example if the data type ‘StepCount’

can be published by three applications, then the middleware

maintains information about all three applications available

to produce step counts along with the data sources that can

produce it. Third, the runtime maintains a list of subscriptions.

Note that each of the data types will potentially have multiple

subscribers making it a one-many mapping. These are stored

in a SQLite database in our implementation.

2) Middleware Operations: As mentioned earlier, there are

four tasks that the middleware performs—maintaining the list

of user applications, the list of data sources, the list of data

types, and delivering data. For the first task (maintaining the

list of user applications), the middleware responds to subscribe
requests from user applications. This triggers a query in the

DynaSense database for all matching data sources. If multiple

data sources are found, the DynaSense runtime has the ability

to pick a suitable one based on a prior policy (such as

best resolution or most energy efficient). Currently, the first

available data source is picked. If that data source returns

bad values or times out, DynaSense marks it as unavailable

and chooses another data source if available. If no other data

sources are available, it sends a notification to the application

that the data source is unavailable.

To maintain the list of data sources, the middleware re-

sponds to registration messages that a data source application

sends to register itself. However, after the registration, since

our system relies on data sources that connect to sensors in

the personal area network, it is possible for some sensors to

be unavailable. For example, a person forgetting to wear a

smart watch when she steps out would result in an application

exception for applications that connect to data sources on

the smart watch. Such data sources could be temporarily out

of service but may become a part of the system after some

time. Also, it is possible to have data sources that always

return bad values. This would be the case with data sources

that are developed incorrectly or are malicious. We need to

make a note of such data sources and mark whether they

are temporarily or permanently out of order. The DynaSense

service keeps track of such things by being the central point

for all communication. All requests for context monitoring

go to the service first so that it chooses the best data source

to be contacted. Similarly, all data source values go to the

service first so that if they are not received within a certain

timeout period, the service can mark them unavailable and

choose the next available data source. Additionally, this allows

us to enforce policies for choice of data sources when more

than one data sources can publish the same data.

To maintain the list of data types, the middleware first

receives the information about what data types are provided

by a data source in the registration process. However, if there

are multiple data sources that provide the same data type, we

need to keep the information and select one source when

the data type is requested by a user application. In such

cases, some policy of data source selection is required in the

middleware. For example, consider a person who normally

wears a personal fitness tracker that monitors step count. If at

some point the person forgets to wear it, DynaSense should

detect failure in fetching step count data from the fitness

tracker, and automatically switch to the step counter data

source that collects data from the smartphone instead of the

fitness tracker. Our middleware currently uses a first-encounter

policy, where the first data source registered for a data type is

used to provide data.

Finally, to deliver data, a data source application uses the

publish() method of the library to send it to the mid-

dleware. This triggers the receiveFromDataSource()
method which queries the table UserApp to find all sub-

scribers for that data source and forwards the data to each of

them using the notifySubscribers() method. Thus, the

DynaSense itself does not store any data.

To illustrate the working of the implementation of Dy-

naSense, we revisit the example of a user forgetting to carry

a smartphone on the user’s daily run. In this case, we are

assuming that the subscribing application, the middleware

service and the publishing application that ultimately sends

the step count to the subscriber all exist on the smartphone.

In a typical scenario, the subscribing application monitors

the step count of the user at frequent intervals throughout

the day. In this situation, while the user is out for a run

and both devices are not communicating with each other, the

smartphone keeps reporting that there has been no increase

in number of steps taken since morning. As soon as they get

connected, the publishing application detects the smartwatch

and fetches the latest step count. Since this functionality is

built in the publishing application, the subscribing application

on the smartphone did not need extra code to take into account

the availability or lack thereof of the smartwatch at any point

throughout its processing.

IV. EVALUATION

The primary goal for DynaSense is to simplify application

development, and better enable better code and computation

re-use. To demonstrate these features, we have implemented

four applications— a heart rate monitor, a user behavior

anomaly detector, a calorie tracker, and a sleep monitor. For

each application, we have implemented two separate versions;

one using the DynaSense framework and the other in Android

without DynaSense. This section will compare these two

versions to evaluate the usefulness of DynaSense. For each

application, we compare the total lines of code written with

and without DynaSense. We also demonstrate that running

DynaSense does not add significant overheads to application

run time making it feasible for most if not all quantified-self

applications.

66

TABLE II
LOC (LINES OF CODE) COMPARISON OVER DIFFERENT APPLICATIONS

Heart Rate Sleep Detection User Anomaly Calometer
Monitoring Detection

Without DynaSense 276 477 181 519
With DynaSense 160 196 153 119
Data Source application 131 183 81 403

A. Case Studies

We have developed four applications with and without

DynaSense, and compared the numbers of lines written.

Table II summarizes the results from this effort. As the

results demonstrate, using DynaSense has a tangible benefit

in reducing the lines of code that need to be written. The

use of DynaSense results in a high degree of code reuse by

separating sensing from computing. The DynaSense library

has 114 lines of code and the DynaSense service has 298 lines

of code. In implementing our applications with DynaSense,

we observed that a substantial amount could be reused. For

the heart rate application, around 40 percent of the code was

reusable after the camera data source was separated from the

heart rate algorithm. For the anomaly detection application, the

algorithm has been implemented in 315 lines, but the degree

of code reuse is variable. In the current implementation a file

is used as the data source, and the sensing component had

81 lines of code. However, a rough implementation of a sleep

detection application has around 400 lines which means that

while sensing actual real time context variables, there will

be more than a 100 percent code reuse. Below, we describe

each application and discuss what the differences are with and

without using DynaSense.

1) Heart Rate Monitoring: The first application that we

created using DynaSense uses a smartphone’s camera to record

images when a finger is placed on the camera lens [10], [7].

The idea here is that as blood flows into our capillaries, they

increase in size obstructing more light around the camera lens.

When blood flows out of the capillaries, their size reduces and

they obstruct comparatively less light. We use these frames

to calculate the average red component values or brightness

values. These brightness values are then processed to remove

outliers, smoothed over a fixed window and plotted against

time to give a reading similar to an ECG. Heart rate is

calculated using a simple formula: HR = (60 x frame rate

x no of peaks)/ no of frames.

The first version of this application uses Android’s API to

access the camera and record about 300 frames at 15 fps.

The code was divided into two parts: one for accessing the

camera and the other to process brightness values. The latter

part consisted of 160 lines of code but required a longer time

for research and troubleshooting. The former mostly consists

of code that can be used by other applications that use camera

frames, such as face recognition. Thus, it is a good candidate

as a data source application that produces camera frames.

With DynaSense, the implementation consists of a data

source (CamDS) and a user application (HRCam). CamDS

gives camera data. HRCam uses DynaSense to subscribe for

data source “Camera.” In CamDS, we first register it as a

publisher:

DataSource camDS=new DataSource("Camera");
addDataSource(camDS,

DataSource.STREAMING);

When HRCam needs to calculate the heart rate, it subscribes

for “Camera” data source as follows:

DataSource cam=new DataSource("Camera");
Parameters camParams=new Parameters();
camParams.add("FPS",15);
camParams.add("TotalFrames","300");
cam.addParams(camParams);
cam.subscribe();

With this setup, a third party developer can create an applica-

tion to record camera frames from the laptop and send them

to the smartphone over Bluetooth/WiFi.

DynaSense can then choose to procure images from dif-

ferent sources without affecting HRCam which is unaware

of the source of data. We were able to reduce the number

of lines written from 276 lines to 160 lines in the user

application. The data source application has 131 lines of code,

that is reusable for other user applications. This simplifies

development also by cleanly separating the data manipulation

from sensor initialization and data acquisition.

2) User Behavior Anomaly Detection Using DynaSense:
This application is a re-creation of previously published work

on user behavior anomaly detection [4]. It is intended to

demonstrate the benefits of DynaSense in an application that

has already been developed. The application is intended to be

useful for children or older people whose activities need to

be monitored remotely. In the implementation, the following

user activities are tracked: sleeping, meal preparation, washing

dishes, entering, and leaving home and working. The current

implementation uses a dataset of a resident living in a smart

home for six months [1]. This application learns the normal

behavior of a user for specific days of the week and uses

it to detect anomalous behavior [4]. The idea is to learn the

occurrences of different activities by creating multiple models

for each activity.

To track a user’s behavior, we need to track each activity

of the user, the time it occurs, its duration and observe

its relationships with other activities. To model individual

activities, we use these features along with the total number of

occurrences in a day and cluster them using DBSCAN which

67

is a density based clustering algorithm. After clustering, each

activity occurrence is either classified into a cluster or noise.

The clusters that are close to each other are merged to create

a second layer of clusters that represent relationships between

activities. Each new activity can now be classified as routine

behavior or an anomaly.

To implement this application on Android, we created a

module for the DBSCAN algorithm using existing libraries.

Further, we created a class that represents activity instances

and classifies them based on existing clusters. The dataset

is saved as a file and so to get data, we need implement

standard file operations. To develop this application for real

world use, we need to gather data from several sources to

find the user’s current context. One of the activities that this

application monitors is sleep. As described in the next section,

a rough implementation of a sleep monitoring application has

400 lines of code. This tells us how large this user anomaly

detection application would be if it implemented its own

logic to monitor user’s location, sleep and current activity.

The contextual information that this application needs can be

used by other similar applications too and so this is a classic

example of code reuse.

The idea of using a dataset for such an application is to

verify the design and correctness of the anomaly detection

algorithm which is the most important part for the success

of such an application. However, for real world use, this

application would require a very high degree of sensing. As

mentioned in the motivation for this thesis, the application

developer would have to proceed in a depth first manner to

track individual activities. For example, starting with sleep de-

tection the developer would have to interface with all sources

of data that a sleep detection algorithm needs. Similarly, to

detect leaving and entering home, exercising or preparing meal

the user would have to have create a lot of sensing modules. If

DynaSense is used, the application can register for any number

of activities that it wants to track and focus only on improving

the anomaly detection algorithm.

To implement this application with DynaSense, we create

an application called User Behavior which implements the

DBSCAN algorithm. This application registers for data source

“User Context.” The data is provided from an application

called “User Data” which reads data from a file and sends it to

DynaSense. In a practical implementation of User Behavior,

a host of applications monitoring the user’s context would be

created to publish data like “At work,” “Driving,” “Sleeping,”

etc. This would result in the application being very small as

compared to its sensing components. Also, as new sensing

components are developed, the granularity of context moni-

toring can be refined without changing the application logic

of User Behavior.

3) Calorie Tracking: One of the major motivations for

quantified-self applications is personal health. A major chal-

lenge in personal health has been to track the number of calo-

ries consumed by an individual. This application aggregates

several techniques towards this goal.

Automating the measurement of daily calorie intake has not

been perfected yet and smartphones do not have the capability

to accurately measure the calories a person ingests. Hence

external sources need to be relied on to monitor the intake

of calories depending on food consumption. Services such as

MyFitnessPal and Nutritionix store large databases of nutrition

information online. This information is accessible through

their APIs and allow us to look up the calories consumed (with

detailed breakdown) given the product code of the item eaten.

Nutrition information is also based on manual input if the food

being eaten does not come with a product code. Finally, there

are novel devices such as Vessyl1 that allow for automatic

calorie measurement of liquids, and can be interfaced with

through Bluetooth.

The application also measures daily activity or expenditure

of calories for which the user needs to manually log a workout

session. The calorie lost for each activity such as walking,

running, biking, etc. is then estimated.

As a standalone application, we provided calorie consump-

tion tracking in three ways: using a barcode scanner to scan

barcodes from food products, NFC tag identifiers to specify

frequently consumed known quantity of food, or manual entry

for everything else. We also added a feature to measure the

number of steps walked taken daily.

To develop this application, we created a user interface

which gives user the option of adding a new item using

barcode scanning, by tapping an NFC tag or by manually

entering data. This application can be separated into two parts

where one part which includes the user interface registers for

data sources “CaloriesConsumed” and “CaloriesSpent.” This

part of the application would fetch data from DynaSense and

decide how to use it (for example, store it in a database).

Data sources can be created that provide barcode scanning,

interfacing with Vessyl or logging workouts that publish data

source “CaloriesConsumed” or “CaloriesSpent.”

With DynaSense, we separated the data collection from

the data assimilation and analysis splitting the calorie intake

and expenditure into several applications. We implemented an

application for barcode scanning that searches an open health

database for the product code scanned. It publishes the product

information to DynaSense as the data source Calories
Consumed. Similarly, we developed an application that can

add new NFC tags and define what they signify(for example,

a cup of coffee with 250 calories). Each of the features can

be individually developed, tested and added to the ecosystem

at any time with little to no changes to the application that

does the analysis. This reduced the size of the application for

calorie tracking to one fourth of its size when compared to the

application without DynaSense. Such separation also allows

for independent development of novel data sources without

affecting the end application.

4) Sleep Monitoring: Toss n’ Turn[8] describes an ap-

proach to detect sleep and monitor sleep quality. A similar

approach to monitor sleep is also described in Unobtrusive

sleep monitoring[3]. We used these references to implement

1https://www.myvessyl.com/

68

a sleep monitor that uses various sensory inputs to detect

whether a person is sleeping at the moment.

To detect whether a person is sleeping, the most important

factors can be intuitively guessed, such as: when was the phone

display on, how much is the surrounding noise, what is the

ambient light level, has the phone been moving, and so on.

We used factors that were considered in Toss n’ Turn[8] and

built the sleep monitoring application.

We built a simple UI that shows whether a person is

sleeping or not at any given time. Data from ambient light

sensor, accelerometer, step counter, battery charging state and

device screen state is collected through Android’s Sensor API

and given as input to a decision tree to conclude whether

a person is sleeping. This application can be separated into

two modules: the application that users interact with which

consists of a UI that displays sleep duration and quality,

displays historic data, etc. and an application that monitors

phone sensors periodically and inputs them to a decision tree

algorithm for classification.

In the implementation in DynaSense, the sleep data source

application takes the period at which sleep should be moni-

tored as a parameter. It evaluates if the user is sleeping when

data from all sensors is received. This information is published

as a data source isSleeping. The sleep detection applica-

tion uses this data source, and stores historic sleep data to

show statistics to the user. By separating the two applications,

there is a 50% reduction in the lines of code for developing the

application without DynaSense. Also, other applications can

make use of the sleep data source for other purposes. Further,

other sources like smart watches can provide sleep data to

DynaSense dynamically without changing the user application

that needs this data.

Since the algorithm heavily relies on readings coming

directly from sensors, there is not much scope for overlapping

data sources. The device battery state and screen state are

unique sensors that cannot be replaced by anything similar.

B. Performance

Although the focus of DynaSense is the ease of program-

ming and maintenance for application developers, we present

performance results that demonstrate the fact that DynaSense

does not impose much overhead. We have measured the

performance of DynaSense in three aspects—the subscription

latency of a source or an application, the lookup latency within

the DynaSense middleware, and the end-to-end latency for

delivering data. We have used an LG Nexus 5 device running

Android 5.1. For each data point, we report the average and

the standard deviation over 10 runs.

1) Subscription: The first bar in Figure 3 shows the sub-

scription latency. This is a one time cost that incurs when

a user application first registers with DynaSense for a data

source, which takes around 15 ms on average. Although this

operation is asynchronous, a user application does not receive

any data until its subscription for a data source is completely

finished. Thus, this time lag is negligible if the user application

is requesting periodic data since this initial time gets amortized

 0
 10
 20
 30
 40
 50

Subscription

Lookup

End-to-End

La
te

nc
y

(m
s)

Fig. 3. DynaSense Microbenchmark Results

TABLE III
COMMUNICATION AMONG PROCESSES

Initial Publishing Total per
No. of Intents Subscription Transaction

One Shot 1 + 1 1 + 1 4
Periodic 1 + 1 n× (1 + 1) 2× n+ 2
Aperiodic 1 + 1 n× (1 + 1) 2× n+ 2

over time. However, for applications that request one-time

data sources frequently, this latency will contribute to the time

required for their overall data access latency.

2) Lookup: The second bar in Figure 3 shows the lookup

latency within the DynaSense middleware. When a data source

sends a data item to DynaSense, it retrieves the user applica-

tions that have subscribed for that data source. For example,

when the camera data source sends frames to the middleware

service, it retrieves Heart Rate application as one of the

subscribers. We measure the latency for this lookup, which is

around 4 ms on average. We note that this is largely dependent

on the specific implementation for lookup, hence we do not

measure it in a more thorough manner; namely, we use SQLite

that Android provides, and the lookup performance is exactly

the lookup performance of SQLite on Android.

3) End to End Performance: The last bar in Figure 3 shows

the end-to-end latency measured with a simple step count

application that we have written. The reason why we have

written a separate application is that the step count application

does not have any complicated logic, hence is simple to

measure the end-to-end latency. This step count application

fetches the number of steps walked from the start-up time of

the smartphone, whenever its user presses a button. As shown

in Figure 3, the latency from the moment the user presses

the button to the moment it receives the value averages to

29 ms over 10 runs, which is nominal for personal analytics

applications DynaSense supports. This latency includes the

latency for subscription and actual data delivery.

4) Communication Between Processes: Table III shows the

cost of communication in DynaSense. Our implementation

uses intents on Android, which is an IPC mechanism that

allows communication between different applications. We use

the number of intents as a unit to measure the cost of com-

69

munication. If a user application has a one-shot task that runs

only once for a sensor value, the number of intents exchanged

between a user application and DynaSense is four in our

implementation. On the other hand, if a user application has

a periodic or aperiodic task that runs continuously, the initial

subscription process takes a total of two intents, followed by

two intents for every time data is published. In addition to

this, each new publisher needs to send one initial registration

intent to the DynaSense service.

V. RELATED WORK

Context-awareness in mobile systems has received a fair

amount of attention in research. In particular, there is work that

focuses on efficiently allocating sensor resources in a mobile

system based on context very much in the flavor of our work.

We will describe four such systems in detail. We will also

identify the primary differences between our work and these

for clarity.

ODK Sensors [2] provides control of external sensors

through sensor drivers that are written as mobile applications.

The concept of sensor drivers is similar to our concept of

data source applications in that both are written as mobile

applications and control sensors. However, a sensor driver in

ODK Sensors is similar to a traditional device driver where

the primary job is controlling device hardware; our data source

application is designed to implement new algorithms that

synthesize multiple data sources, whether it be raw sensors

or other data source applications. Our data sources are sensor-

agnostic, and depend on the sensed data type allowing us to

use the ”best” available sensor at any given time that provides

that sensed data type.

ACE [9] is a rule-based context inference system that uses

multiple context variables to infer the values of other context

variables. For example, if the context variable atHome has

been computed recently and is true, an application requesting

other context variables such as isDriving, atWork, etc. will

automatically be returned false. Such rule-based inference is

complementary to our approach where the primary focus is

not to infer a context but to provide a general architecture

that maintains and multiplexes sensors and algorithms that can

produce high-level data such as contexts.

SeeMon [5] is an energy-efficient context monitoring system

that continuously monitors the context of a user. In doing so, it

leverages multiple sensors available within the user’s personal

area network. Similar to DynaSense, SeeMon provides an

API that an application can use to query which context its

user is currently in. The API also handles algorithms that

produce higher-level data from raw sensor data, called context

translation maps. This is roughly analogous to our data source

applications that implement personal data analytics algorithms

and produce higher-level data such as heart rate. However,

unlike DynaSense, SeeMon has two limitations. First, it does

not allow multiple data-producing algorithms to co-exist if

they produce the same type of data. Second, it does not allow

hierarchical composition of higher-level data sources from

lower-level data sources.

Orchestrator [6] extends SeeMon to relax the first limitation.

It is described as a resource orchestration framework, selects

from multiple pre-defined plans for resource use, and selec-

tively applies them based on resource availability and demands

at run-time. The primary difference between Orchestrator and

Dynasense is that the plans in orchestrator are pre-defined.

This limits the expressivity of programs and requires the

programmer/planner to know all available resources at design

time. In contrast, our programming model does not bind a

data source to a sensor, and makes this connection at run

time. This allows for more flexibility including the use of

newer sensors, and learning of context that over time for more

efficient operation. Our contribution is a novel programming

model that gets rid of the limitations in prior work by making

applications address data as opposed to sensors.

VI. CONCLUSIONS AND FUTURE WORK

The goal of this paper is to design a programming model

and runtime allows programmers to not worry about the

available sensors but focus on the sensor data for the intended

application. The DynaSense programming model achieves this

by providing an abstraction called data sources and using a

runtime to bind a data source to a sensor. By using DynaSense,

user application developers need not concern themselves with

writing tedious code to access data from individual sensors. At

the same time, applications automatically support new sensors

without changing any code in their application by just adding a

new data source. We show that the overhead of the middleware

is minimal, and our programming model is ideally suited for

quantified-self applications by designing four applications. Our

programming model also allows for greater code re-use.

In the future, we plan to explore various policies to decide

on the best data source to use when multiple sensors are

publishing the same data. We envision designing rich policies

that trade off energy, quality of service, and computation

depending on the exact application. For example, it would

be interesting to explore battery optimization policies that

can be used here to drive the choice of data source for an

accelerometer data when accelerometers are present in a smart

watch as well as the smartphone. In addition, we plan to

expand integration of external sources such as smart glasses,

pedometers and others to leverage their processing power as

well as sensors.

REFERENCES

[1] Wsu casas smart home project, January 2011.

[2] Rohit Chaudhri, Waylon Brunette, Mayank Goel, Rita Sodt, Jaylen
VanOrden, Michael Falcone, and Gaetano Borriello. Open data kit
sensors: Mobile data collection with wired and wireless sensors. In Pro-
ceedings of the 2Nd ACM Symposium on Computing for Development,
ACM DEV ’12, pages 9:1–9:10, New York, NY, USA, 2012. ACM.

[3] Zhenyu Chen, Mu Lin, Fanglin Chen, N.D. Lane, G. Cardone, Rui Wang,
Tianxing Li, Yiqiang Chen, T. Choudhury, and A.T. Campbell. Unob-
trusive sleep monitoring using smartphones. In Pervasive Computing
Technologies for Healthcare (PervasiveHealth), 2013 7th International
Conference on, pages 145–152, May 2013.

70

[4] Enamul Hoque, Robert F. Dickerson, Sarah M. Preum, Mark Hanson,
Adam Barth, and John A. Stankovic. Holmes: A comprehensive anomaly
detection system for daily in-home activities. In Distributed Computing
in Sensor Systems (DCOSS), 2015 International Conference on, pages
40–51, June 2015.

[5] Seungwoo Kang, Jinwon Lee, Hyukjae Jang, Youngki Lee, Souneil Park,
and Junehwa Song. A scalable and energy-efficient context monitoring
framework for mobile personal sensor networks. Mobile Computing,
IEEE Transactions on, 9(5):686–702, May 2010.

[6] Seungwoo Kang, Youngki Lee, Chulhong Min, Younghyun Ju, Taiwoo
Park, Jinwon Lee, Yunseok Rhee, and Junehwa Song. Orchestrator: An
active resource orchestration framework for mobile context monitoring
in sensor-rich mobile environments. In Pervasive Computing and
Communications (PerCom), 2010 IEEE International Conference on,
pages 135–144, March 2010.

[7] Sungjun Kwon, Hyunseok Kim, and Kwang Suk Park. Validation of

heart rate extraction using video imaging on a built-in camera system of
a smartphone. In Engineering in Medicine and Biology Society (EMBC),
2012 Annual International Conference of the IEEE, pages 2174–2177,
Aug 2012.

[8] Jun-Ki Min, Afsaneh Doryab, Jason Wiese, Shahriyar Amini, John
Zimmerman, and Jason I. Hong. Toss ’n’ turn: Smartphone as sleep
and sleep quality detector. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’14, pages 477–486,
New York, NY, USA, 2014. ACM.

[9] Suman Nath. Ace: Exploiting correlation for energy-efficient and
continuous context sensing. Mobile Computing, IEEE Transactions on,
12(8):1472–1486, Aug 2013.

[10] Panagiotis Pelegris, K. Banitsas, T. Orbach, and Kostas Marias. A novel
method to detect heart beat rate using a mobile phone. In Engineering
in Medicine and Biology Society (EMBC), 2010 Annual International
Conference of the IEEE, pages 5488–5491, Aug 2010.

71

