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Abstract—Compressive sensing (CS) is applied to enable real
time data transmission in a wireless sensor network by signif-
icantly reduce the local computation and sensor data volume
that needs to be transmitted over wireless channels to a remote
fusion center. By exploiting the sparse structure of commonly
used signals in Wireless Sensor Network (WSN) applications, a
Compressed Sensing on WSN (CS-WSN) framework is proposed.
This is accomplished by (i) random sub-sampling of data collected
at sensor node, (ii) transmitting only the sign-bit of the data
samples over wireless channels. It is shown that this CS-WSN
framework is capable of delivering similar performance as
conventional local data compression method while greatly reduce
the data volume and local computation. This proposed scheme
is validated using a prototype wireless sensor network test bed.
Preliminary experimental results clearly validate the superior
performance of this proposed scheme.

Index Terms—wireless sensor array networks, compressed
sensing, direction of arrival estimation, data compression.

I. INTRODUCTION

W IRELESS Sensor Networks (WSN) has attracted inter-

ests in many applications such as biological studies [1],

source localization [2], smart city, disaster forecast, military

target tracking [3], etc.

However, dispersed sensors are deployed over large sen-

sor fields and communicate wirelessly to the fusion center.

Remote sensor often rely on battery power and are energy

constrained. Data samples at remote sensor arrays thus need

to be compressed before transmitting to the fusion center to

conserve energy consumed for wireless communication. More-

over, executing sophisticated data compression algorithms on

remote sensor node will also consume considerable on-board

energy. Therefore, the conflict between high-rate, long term

WSN application and source constrained sensor node is the

key problem remains to be solved.

Generally, WSN platforms are low cost hardware for large

scale deployment. The performance of calculation, memory

and energy are limited so that only lightweight compression

techniques can be applied. On the other hand, the consumption

and delay grows exponentially with the data volume since

data is transmitted to the center via several hops. Thus the

compression ratio should be high to reduce the transmission.

The newly emerged Compressive Sensing (CS) [4] [5]

technology exploits the natural sparse property of almost all

types of signal and reconstructs it from greatly reduced random
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measurement of high dimensional raw signal with high prob-

ability. In such case, signal collected with sampling rate much

lower than Nyquist rate also works, and the corresponding data

volume can be greatly reduced. For the advantage of sampling

rate as well as data volume reduction, CS has many application

in MRI [6], camera photograph [7], signal acquisition [8],

event detection [9], data transmission and other relevant signal

processing terms.

(a) (b)

Fig. 1. Spectrogram of (a) Porsche engine and (b) bird chirping.

Fig.1 shows the spectrograms of two types of acoustic

sources: engine sound of a Porsche vehicle as well as bird

chirping [19]. It is easy to observe that these broadband acous-

tic sources are dominated by multiple harmonics, with additive

background noise. The frequency domain sparse structure [20]

illustrated in these figures hence may be leveraged to realize

compressive sensing.

With the potential benefit of CS technology, someone have

tried to introduce CS to WSN framework to eliminate the

bottleneck of source restraint on WSN platform. However, the

implementation of CS on resource constrained WSN platform

is a challenging task. This is because the realization of random

measurement also requires digital projection calculation or

special hardware design of random projector.

In this paper, we select the typical source localization

application using distributed wireless sensor nodes. Instead

of transmitting every sensor data to the fusion center, CS

technology is utilized to greatly reduce the data volume that

need to be transmitted to the remote fusion center wirelessly.

Also, the implementation of random measurement of the raw

signal in energy constrained sensor nodes are taken into

account. We design random sampling and deep quantization

scheme [10] [11] that are performed to significantly reduce the

amount of data as well as the local processing delay caused by

the random measurement scheme. Contrary to traditional data

compression algorithm, CS-WSN places computation burden
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Fig. 2. Compressed Sensing on Wireless Sensor Array networks framework

at the decoder side and requires little or no computation at the

encoder side. Thus, it is very appealing to applications where

the sensors are resource constrained. A prototype wireless

microphone array platform has been implemented with off-

the-shelf devices. Exciting experiment results are presented

that convincingly validate the performance advantage of CS-

WSN over the state of art alternative algorithms.

The main contributions of this paper can be summarized

as follows:

a) A random compressed sampling and a newly emerged

1-bit compressive sensing method are employed.

b) Leveraging the high correlation of acoustic signals among

array elements, a collaborative reconstruction scheme is

presented to drastically reduce computation cost and delay.

c) Numerical simulation and real experiment on off-the-

shelf wireless sensor node validates the feasibility of the

implementation on WSN platform.

This paper is organized as follows: Backgrounds of DoA

estimation, compressive sensing and 1-bit compressive sensing

are reviewed in section 2. CoSCoR framework is presented

with details in section 3 and 4. Experiment and simulation

results are reported in section 5 along with some analysis.

And conclusion is presented in section 6.

II. BACKGROUND

A. DoA Based Array Processing

Assume there are Q sources in the far field that emit plane

wave signal sq(t) consisting of some harmonics. Then the

digitized signal received at the jth sensor is

xj(tn) =

Q∑
q=1

sq,0(
n

fs
− τq,j) + vj(

n

fs
), n = 1, 2, ..., N, (1)

where sq,0(tn) is the qth acoustic source signal received at

a reference sensor node, τq,j is the relative difference of

propagation delay from the qth source to the jth sensor and

from the same source to a reference sensor node, vj is the

additive Gaussian white noise at the jth sensor with zero-

mean and variance σ2. With above far field assumption, all

sensors in the same array should share the same incidence

angle θ. It’s easy to verify that the relative time delay of the

qth source between the jth sensor and the array centroid is

τq,j=
1

c
(uj cos(θq)+yj sin(θq)), (2)

where ρj = [uj , yj ]
T is the position of the jth sensor in the

Cartesian coordinate system.

If we represent xj = [xj(t1), xj(t2), · · · , xj(tN )]T in the

discrete Fourier basis Ψ, the corresponding Fourier coeffi-

cients can be given by

xj = Ψα, (3)

where α = [xj(k1), xj(k2), · · · , xj(kN )]T , xj(k) =∑Q
q=1 Sq,0e

−j 2πk
N τq,j + Vj(k). Consider all the J sensors, the

array data spectrum x(k) = [x1(k), x2(k), · · · , xJ(k)]
T at the

kth frequency is given by

x(k) =

Q∑
q=1

Sq,0a(k) +V(k), (4)

where a(k) = [e−j2πkτq,1/N , e−j2πkτq,2/N , · · · , e−j2πkτq,J/N ]T

is defined as the steering vector corresponding to the qth

sources at the kth frequency.

With traditional high resolution DoA spectral estimation,

the sample covariance matrix of array data spectrum x(k) is

computed. That is

R=x(k)x(k)T=

Q∑
q=1

S2
q,0a(k)a(k)

H
+Nσ2I. (5)

Exploiting the low rank structure of the signal covariance

matrix R−Nσ2I , numerous DoA methods, such as ESPRIT,

MUSIC [12], have been proposed. With the MUSIC method,

the DoA of targets are estimated as the peaks of the following

function:

PMUSIC(θ) =
1

aH(θ)UNUH
N a(θ)

, (6)

where UN is the noise sub-space after eigenvalue decomposi-

tion of R, a(θ) is the steering vector of source.

B. Compressive Sensing and 1-bit Compressive Sensing

Compressive sensing theory [4] [5] states that a sparse

signal may be randomly sampled at sub-Nyquist rate and

be reconstructed perfectly. Denote α to be a sparse vector

representing the sparse signal, x = Ψα(x ∈ RN ) to be

the original signal, and y = Φx to be the observed signal.

According to compressive sensing theory, the observation

matrix Φ can be chosen to be a Gaussian random matrix

or Bernoulli random matrix. Given y, the CS reconstruction

problem is formulated as a constrained optimization problem:

argmin ||α||1, s.t.||y −Φx|| < η, (7)

where η is a preset threshold, and ||α||1 is the �1 norm of

α. The above problem formulation leads to various CS recon-

struction algorithms, such as Compressive Sensing Matching

Pursuit (CoSaMP) , Orthogonal Matching Pursuit(OMP) , �1-

magic , Lasso and others.

Unlike conventional CS, 1-bit compressive sensing only

conserves the sign bit of measurements and discards the

magnitude information [10]. In matrix form it is:

y = sign(Φx). (8)
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The 1-bit CS reconstruction optimization problem can be

expressed as follows:

argmin ||α||1 s.t. YΦΨx ≥ 0, ||α||2 = 1. (9)

The �1 norm is used as a cost function that enforces the

sparseness of α under the sign constraints. Since the amplitude

information is discarded in 1-bit sampling, a unit sphere

constraint is introduced to avoid getting the obvious wrong

solution of α = 0.

C. Lossy transmission

In this work, the lossy nature of wireless channel will

be exploited by modeling the packet loss during wireless

transmission over noisy channel as a form of (involumtary)

random data sub-sampling.

Both the random sampling matrix and the random selection

matrix will be incorporated as a combined measurement

matrix that requires no computation on the sensor nodes while

achieving desired data reduction. Denote the random sampling

matrix as Φ, and the random selection matrix over the wireless

channel between the sensor node and the fusion center as L.

The combined measurement matrix may then be obtained as

Φl = L ·Φ. (10)

III. COLLABORATIVE RECONSTRUCTION

Conventional CS confirms stable signal recovery with the

prior information of sparsity. However the sparsity is not

the only prior information that helps to recovery signal in

sensor array. For spatially neighboring nodes in an array,

they receive highly correlated signals, which displays in their

similarity in spectrum and difference in phase shift (they share

the same support in frequency domain). Thus independent

reconstruction of signal at individual sensor seems redundant.

A. Collaborative Reconstruction for Random Measurement

In the fusion center, the received samples of J sensors can

be jointly formulated as:

Y = ΘA, (11)

where Y = [y1,y2, · · · ,yJ ] ,X = [xT
1 , x

T
2 , · · · ,xT

J ]
T , Θ =

diag(Φl
1Ψ,Φl

2Ψ, · · · ,Φl
JΨ), A = [αT

1 ,α
T
2 , · · · ,αT

J ]
T .

Note that each xj is a summation of different delay versions

of sources signal, αj has the same sparse pattern. Based on

such joint sparsity, the signal reconstruction problem is

arg min
A

‖d‖1
s.t. ‖Y −ΘA‖2 ≤ σ,

d(n) =
J∑

j=1

α2
j (n).

(12)

Under this joint reconstruction (JoR) model, the theoretical

measurement of random CS is LK+log(N/K) [13] while the

normal CS requires cJK log(N/K) [4]. The computational

complexity of above joint reconstruction is O(J3N3) [14].

B. Collaborative Reconstruction for 1 bit quantization

Similar to the MMV-prox approach for random measure-

ment, 1 bit quantization also works for joint reconstruction

and the joint reconstruction problem can be formulated as:

arg min
A

‖d‖1
s.t. diag(Y)ΘA ≥ 0,

Y = sign(ΘA)

d(n) =
J∑

j=1

α2
j (n),

|αj |1 = 1, j = 1, 2, · · · , J,

(13)

where Y = [y1,y2, · · · ,yJ ], A = [αT
1 ,α

T
2 , · · · ,αT

J ]
T , Θ =

diag(Φl
1Ψ,Φl

2Ψ, · · · ,Φl
JΨ).

IV. COMPRESSIVE SENSING ON WSN

The large data volume of array signal is a bottleneck that

enables WSAN. Compared with traditional data compression

methods, CS performs dimension reduction with projection

calculation. In this section, we provide two schemes designed

for low-power compressed sampling system. They achieve

dimension reduction while requires no extra hardware design

or local computation.

A. Random compressed sampling

Realizing random projection in low-power wireless nodes

isn’t an easy task. Both the random number generator and

projection calculation raises energy consumption and hardware

requirement. Inspired by non-uniform sampling method, we

combine it with CS framework and model the non-uniform

sampling process as a measurement matrix. It is easy to

implement and no other computation is needed on nodes.

We design the measurement matrix corresponding to com-

pressive sensing theory as below: The M × N measurement

matrix Φ represents the measurement process, each row has

only one nonzero component 1 in the (m, tm) position. The

physical nature of the ADC is such that we take samples at

tm. Let a sequence u = {u(1), u(1), · · · , u(M)} be such that

u(1) = 1, and

u(m) = u(m− 1) + [τm], 2 ≤ m ≤M, (14)

where τm ∈ N(N
M , M2K2

N2 ) is the random sampling interval

between adjacent sample instance. Then the (m,n)th element

of this proposed random sampling matrix is given by

Φ(m,n) =

{
1 1 ≤ n = u(m) ≤ N ;
0 otherwise.

(15)

As such, no random projection calculation is required in our

sensor nodes. This is important to the sensor nodes, because

both random matrix generation and random projection requires

large computational and energy resource. Sensor works at fs,

then randomly selects subset of samples and transmits them

via wireless links.

B. 1-bit Compressive sensing

On condition that the sampling rate and energy consumption

can be support in sensor node, 1-bit CS is an appealing
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solution to the data volume reduction problem mentioned

above. And there are two means of realization:

a) Using hardware of random number generators and com-

parator. After random projection of raw signal, a comparator

to zero is utilized to quantize the measurement. In fact,

comparator to zero is an extremely cheap and fast device.

b) Perform random projection in software. ADC samples

at the Nyquist rate, and then the sign of projected raw signal

is conserve. Such method has been used in 1-bit Sigma-Delta

converters, at the expense of high sampling rate [15].

V. SYSTEM OVERVIEW

In this section, a detailed description of the hardware sys-

tem is provided. We take REXENSE STM32W108 hardware

testbed as the sensor node prototype system, as shown in

Fig. 3. An IEEE 802.15.4 based wireless module is integrated

into the chip, and a serial port for data stream input. Some

parameters are described in Table I.

Fig. 3. Wireless sensor prototype system

TABLE I
SYSTEM CONFIGUREATION

Features Value

Clock Speed 24MHz

RAM 12kB

ROM 128kB

Wireless Protocol IEEE 802.15.4

Power of Wireless Module 100mW

For general 16bit 2kHz audio signal, the data rate is 4kB/s.

However, the theoretical maximum data rate of IEEE 802.15.4

is 250kbps, which is too slow for audio signal transmission.

When deploy the audio sensor nodes in large scale, the

network will be very congested and the delay will increase

sharply. To solve the problem, we propose a compressive

sensing based data compression application layer for WSAN

to reduce the data transmission volume.

The first step is to generate a sampling matrix and store

it into the memory of the MCU. However, the widely used

Gaussian random sampling matrix occupies too much space

that cannot be stored in the RAM or ROM. In addition, it is

impossible to generate the matrix dynamically either because

the calculation consumption is too large. Consider the limi-

tation of local computational and local storage, conventional

data compression algorithm such as MP3, LZW, Huffman can

not be implemented in low power SOC chips.

Compared to Gaussian matrix, the Bernoulli matrix saves

more space since each element of it is a boolean value rather

than a float in Gaussian matrix.

A better choice of sampling matrix is the random subsam-

pling matrix. In this matrix, there is only one non-zero element

in each row. Thus we can record the position of the non-zero

element and the space consumption is equal to the number of

row. Moreover, the projection process takes little time since

there is no add and multiply operation in random subsampling.

Based on random subsampling, we proposed a novel one-

bit random subsampling method for further reducing the

transmission volume.

VI. PERFORMANCE EVALUATION

In this section, extensive simulations are carried out to

compare the proposed CS-WSN framework against traditional

array processing approach. A hardware prototype is developed

to validate the practical application of the CS-WSN approach

through outdoor experiments.

A. Experiment and Simulation Settings

Theoretically, our schemes work for any array formation

when it satisfies the array spacing requirements. A uniform

linear array with 6 nodes and a −90◦ to 90◦ target space is

chosen for both simulation and experiment. Considering that

the acoustic signal of cars, trucks or helicopters is usually

dominated by a few harmonics, the source signal is assumed

to be summation of harmonic at 500Hz, 600Hz, 700Hz and

800Hz. Accordingly, a 0.2m spacing is adopted to satisfy the

half-wavelength requirements of array. We choose the MUSIC

algorithm for DoA estimation. The dimension of original

signal (also reconstructed signal) in a snapshot is assumed to

be 512, and the system sampling rate is set to be 2048Hz. In

this section, we denote RSS as random subsampling, RBS as

random Bernoulli measurement, 1BS as 1 bit Sampling, and

RSSJR, RBSJR, 1BSJR are corresponding joint sparse based

reconstructions. To have fair comparison, we formulate the

random compressive sensing and 1 bit CS based approach as

an SOCP problem and solve them using Sedumi toolbox [16].

B. Parameters setting

The first issue of CS in real application is the number of

random measurement. Although some theoretic bounds has

been proposed, it is still not clear that how many samples

will bring maximum benefit. Therefore the SNR of recon-

structed signal is chosen as criteria. For 1 bit CS that only

reconstruct the waveform. the coherence between raw signal

and reconstructed signal is used as criterion that indicates the

similarity between raw signal and reconstructed signal. Fig.

4 and Fig. 5 show the relationship between the reconstructed

SNR and the corresponding measurements M . Table. II shows

the measurement number that reaches original 10dB.

Table II shows the optimal measurement number for all

kinds of CS-based approaches proposed in this paper. The

optimal measurement number is the threshold that confirm

a stable signal reconstruction. It is easy to observe the joint
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Fig. 4. M comparison of 1 bit quantization based approach

Fig. 5. M comparison of random measurement based approach

sparsity model using a MMV-prox formulation enables stable

reconstruction performance with greatly reduced measurement

number. Here rdc is defined as the data reduction ration

between compressed sampled data and raw data.

C. Experiments description

In this experiment, we use 7 testbeds to evaluate the Multi-

Point-to-Point (MP2P) performance of the CS based sampling

techniques. We mainly focus on the multi-hop delay without

packet loss and reconstruction accuracy with packet loss.

Fig. 6. Experiment Scenario and Network Topology

Six testbeds work as sensor node to form an acoustic sensor

array. One testbed works as router for packet relay, and another

testbed works as sink for packet collection. Two acoustic

sources are placed 20 meters away from the sensor nodes.

The Angles of acoustic sources to center of sensor array are

−5.5◦ and 31◦. The data length of a data frame is 64B in hop-

1. The router collects the packets from nodes, regroups the data

and sends to the sink. The packet length is different in hop-2.

For directly sending method, the length is 64B. For Bernoulli

sampling and sub-sampling, it is 48B. For 1-bit Sampling, it

is 6B. The network works in TDMA mode.

Fig. 7 shows the MP2P delay comparison of different

sampling methods. In multi-hop network, the delay increase

extremely (560ms) without compression due to the large data

volume, but a little with CS based methods. The main reason is

that the data volume is deeply reduced with CS based sampling

method. Using Bernoulli Sampling technique, the delay is

TABLE II
NUMBER OF MEASUREMENT

single M rdc Joint scheme M rdc
RBS 150 0.29 RBSJR 70 0.14

RSS 130 0.25 RSSJR 60 0.12

1BS 320bit 0.04 1BSJR 120 bit 0.015

Fig. 7. Delay Comparison

Fig. 8. Signal reconstruction accuracy with different measurement number
(a) Bernoulli and sub-sampling method (b) 1-bit Sampling

reduced to 170ms. It takes less time using sub-sampling and

1-bit sampling.

The impact of measurement number of three CS-based ap-

proach are studied in experiment. We change the measurement

number from 10 to 120 (interval = 10) of RB-mmv and RS-

mmv and from 40 to 360 (interval = 40) of 1BSJR to test the

performance. From Fig. 8 we can see that with the increase

of measurement number, compressive sensing methods have

a better performance of signal reconstruction accuracy. The

RSSJR works better than RBSJR at most measurement num-

bers, and 160 bit confirms a stable reconstruction for 1BSJR.

Fig. 9. DoA estimation error with different measurement number (a) Source
1 (b) Source 2

The DoA estimations using reconstructed signals are com-

pared in 9 and 10. It is easy to observe that RSSJR and
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Fig. 10. DoA estimation error of 1 bit CS with different measurement number
(a) Source 1 (b) Source 2

Fig. 11. Signal Reconstruction Accuracy over Lossy Link

RBSJR work has the same DOA performance under the same

data volume. The 1BSJR achieve acceptable performance

with deepest data reduction. This is because the magnitude

information lost in the 1 bit quantization procedure does

not violate the DOA estimation, the reconstructed waveform

provides enough information for array processing.

We conduct another experiment to evaluate the influence

over lossy link. Six sensor nodes are placed near the router,

while the sink is placed far from the router so that the link

between the router and sink can be considered as lossy link in

which packet loss happens randomly. We change the distance

between router and sink to obtain different packet loss rate.

Fig. 11 illustrates the reconstruction accuracy and SNR of

different CS based sampling method over lossy link. When

using CS based sampling techniques, the signal can be recon-

structed precisely even in low packet received rate scenarios.

The accuracy of Bernoulli sampling and sub-sampling decline

in a higher ratio than 1-bit sampling, since 1bcs-mmv has the

deepest data reduction ratio.

Fig. 12 shows the DOA Estimation Error of CS based

Fig. 12. DoA estimation error over lossy link (a) Source 1 (b) Source 2

sampling methods over lossy link. For source 1, the DoA

estimation error remains low with the PRR more than 0.7.

As PRR decreases, the DoA estimation error varies sharply

and randomly. At the same time, the DoA estimation error of

source 2 remains low even in low PRR. The Bernoulli sam-

pling gives the best performance of DoA estimation accuracy.

VII. CONCLUSION

In this paper, a CS-WSN framework is proposed. By ex-

ploiting the sparse nature of source signal, random compressed

sampling and 1-bit sampling could sample much less data

while retaining acceptable performance. By exploiting the high

correlation among array signal, collaborative reconstruction

effectively reconstruct array signal as well as further reduce

the number of samples required for non-reference nodes.
Both experiments on hardware and numerical simulation are

presented to validate the usefulness of the proposed CS-WSN

framework. It is shown that CS-WSN works well especially

under harsh data limitations. Considering the convenience of

implementation on hardware, CS-WSN would be an excellent

choice on low-cost, low-power wireless array network.
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