
A Modular Approach to Context-Aware IoT Applications 

Jagannathan Venkatesh, Christine Chan, Alper Sinan Akyurek, Tajana Simunic Rosing 
Computer Science and Engineering 
University of California, San Diego 

La Jolla, CA, USA 
{jvenkate, csc019, aakyurek, tajana}@eng.ucsd.edu 

Abstract—The Internet of Things (IoT) refers to an 
environment of ubiquitous sensing and actuation, where 
devices are connected to a distributed backend infrastructure. 
It offers the opportunity to access a large amount of input data, 
and process it into contextual information about different 
system entities for reasoning and actuation. State-of-the-art 
IoT applications are generally black-box, end-to-end 
application-specific implementations, and cannot keep up with 
timely resolution of all this live, continually updated, 
heterogeneous data. In this work, we propose a modular 
approach to these context-aware applications, breaking down 
monolithic applications into an equivalent set of functional 
units, or context engines. By exploiting the characteristics of 
context-aware applications, context engines can reduce 
compute redundancy and computational complexity. In 
conjunction with formal data specifications, or ontologies, we 
can replace application-specific implementations with a 
composition of context engines that use common statistical 
learning to generate output, thus improving context reuse. We 
implement interconnected context-aware applications using 
our approach, extracting both user activity and location 
context from wearable sensors. We compare our infrastructure 
to single-stage monolithic implementations, demonstrating a 
reduction in application latency by up to 65% and execution 
overhead by up to 50% with only a 3% reduction in accuracy. 

Keywords – contextf-aware computing; internet of things 

I. INTRODUCTION

Sensor networks and ubiquitous sensing are evolving 
into the Internet of Things (IoT) – the collection of sensing 
and actuation backed by the existing and growing Internet 
infrastructure [1]. This invalidates many re-IoT assumptions 
about this area – that compatibility and control over the 
sensors in the system can be assumed [2], or that 
applications use a manageable amount of raw data. The 
number of available sensing and actuation devices has 
grown rapidly in the last few years [3], for a truly pervasive 
sensing/actuation environment. In addition, ubiquitous 
connectivity and cloud storage have largely mitigated the 
primary research issues in the pervasive sensing fields. 
Communication and storage reliability issues focus on the 
application layer: IoT applications operate on changing 
inputs and available compute nodes as sensors and devices 
move through an application’s domain.

IoT applications drive automated actuation, such as in 
smart environments, distributed microgrids, or user-centric 
automation. These context-aware applications operate on 
dynamically changing, ontologically-defined data called 
context – data whose type, range, and sources are specified 

in an interface. The current state of the art tailors end-to-end 
implementations of each application to their initial 
infrastructure and platforms, which hampers adaptation to 
the evolving number and types of sensing devices in 
deployment`. Smaller, simpler functional units fulfilling 
intermediate steps towards an overall application can 
alleviate scalability issues. Additionally, the state of the art 
[4] [5] places the burden of data processing on every 
individual application. This is inefficient when multiple 
applications process the same data using similar 
computation (e.g. both workplace and home automation 
process a user’s GPS-based location and occupancy). 
Reliance on application-specific code also squanders the 
potential for designing and reusing general-purpose machine 
learning for multiple applications. In this work, we identify 
a novel approach to context-aware IoT applications: a 
general-purpose functional unit (context engine) which 
drives data processing for a single output context variable. 
We identify the theoretical advantages of modular 
applications for complexity and reduction of compute 
redundancy, and exploit the specification of data through 
ontologies and the single-output design of context engine to 
drive general-purpose machine learning. The context 
engines, implemented in middleware, each translate one 
level of heterogeneous input data into a single higher-level 
usable context, and are composed to form an equivalent 
application. We apply this approach and the context engine 
implementation to a case study: location monitoring and 
user activity using wearable sensors. We show 62% 
reduction in execution overhead and 50% reduction in high-
order operations. 

II. RELATED WORK

In the IoT, data collected through various devices goes
through several levels of abstraction, combination, or 
distillation to produce context in discrete semantic states. 
This higher level context is used for visualization (e.g. 
quantified self [4], vehicular safety [6]) and actuation (smart 
spaces [7], ubiquitous computing [8], medicine [9], e-
learning [5] [10]). In exchange for raw data precision, 
discretized context enables reasoning and data reuse. State of 
the art IoT development approach is end-to-end, not allowing 
data sharing and hence resulting in a disorganized data space.
This necessitates the use of ontologies, or formal data 
representations, to maintain a unified, regulated data 
representation [11]. Ontologies are already in use in IoT 
systems such as smart spaces [7] [12] and semantic services 

2016 IEEE First International Conference on Internet-of-Things Design and Implementation

978-1-4673-9948-7/16 $31.00 © 2016 IEEE

DOI 10.1109/IoTDI.2015.13

235



[11] [13]. Ontologies focused on context representation 
include the Context Modeling Language (CML) [14], which 
attributes context to physical or virtual entities (objects) and 
provides domains associated with them (roles). It allows for 
dynamically changing input data by partitioning the input 
space into dimensions that can be used for reasoning. 

 Machine learning facilitates transforming input data into 
output actuation. K-means clustering is a prevalent way to 
automatically relate low-level data into high-level context 
[4]. Reinforcement learning (RL) allows users to reinforce 
and guide the system towards better accuracy. Madhu et al. 
[5] use constraint reasoning to and RL to find optimal 
custom reminders for impaired users. Rashidi et al. [15] 
perform unsupervised learning over low-level sensor event 
sequences to extract patterns for high-level activities. They 
focus on specific cases for the smart home over a known set 
of activities, but in a highly domain-specific manner. 

Our takeaways from the related work are 1) IoT 
applications provide a multi-input multi-output (MIMO) 
interface between sensing and actuation, 2) applications 
operate in a dynamic sensor space: mobile sensing devices 
(e.g. wearables) and compute units (e.g. mobile phones) 
enter and leave the domain of a particular application [16],
3) ontologies are leveraged to provide platform independent 
data organization [12]. 

We identify two major challenges with the current view 
which we address in this paper: 1) Significant processing 
redundancy: applications using the same input may repeat 
the same computation. For example, user occupancy serves 
both home security and grid automation applications, and
may be independently computed by both. Our approach 
aims to expose this computation for reuse. 2) Increase in 
complexity with input and output spaces: As application 
data grows, so does the computational cost of machine 
learning (ML) algorithms, whose complexity is dominated 
by inputs size. This in turn forces application-specific 
implementations. By using smaller functional unit and 
enforcing a single-output approach, our system design 
facilitates the use of ML.

III. SYSTEM DESIGN

Our main contribution is the design and implementation 
of an alternate approach to IoT applications: a hierarchy of 
multiple-input-single-output (MISO) functional units to 
improve reasoning while reducing data redundancy across 
applications and accomplishing the same functionality as 
MIMO applications. Exposing intermediate data reduces the 

complexity and redundancy of applications in the larger 
infrastructure. These improvements may come at the cost of 
accuracy, but we both quantify the additional error and 
illustrate how it can be minimized. Modularization 
generates intermediate context that can be shared among 
applications (see Figure 1.b). The smaller hierarchical 
functional units represent a simpler data translation 
compared to the overall application, facilitating the use of 
general-purpose machine learning to perform data 
transformation and reduce application-specific code. 

IoT applications consume raw, noisy data about both 
physical and virtual entities from heterogeneous sources and 
process them in applications into usable information. They 
also extract and produce context: high-level abstracted data. 
In the IoT, context tends to be human-centric interpretations 
(e.g. location) that are important to many applications [17].
Black-box application implementations mask intermediate 
processing output from other applications, which leads to 
compute redundancy. Our hierarchy of functional units in 
place of monolithic implementations trades off compactness 
for versatility. A single application is broken up into 
multiple functional units. Although this serialization can 
increase organizational complexity and latency of a highly 
compact algorithm, it can also expose intermediate output 
for reuse by other applications, thus reducing compute 
redundancy. We prove that it also decreases overall compute 
complexity and reduce input processing and functional order 
when certain conditions are met (Section III.A).

A. Context Engine Architecture 
We first specify the input space of each context engine as 

a set of context variables. We define a context variable as 
the individual input or output data unit, and leverage the 
variable’s space representation using ontologies to define 
the domain/range of the variable, and subsequently, the 
context engine. 

While current monolithic applications may have internal 
modularity and parallelism, they are hidden from the rest of 
the system. The MIMO implementation of a current IoT 
application can be explicitly broken down into several 
context engines, which decompose its internal functionality 
into smaller, MISO functional units. The composition of the 
context engines produces the same outputs as the original 
application (see Figure 1.b). This reduces the complexity of 
each context engine, as each performs less processing than 
the single-stage engine and requires fewer inputs and 
produces fewer outputs. For IoT applications, this increases 
the overall versatility, as the now-visible functional units 

Figure 1. (a) The current state-of-the-art: monolithic application implementation. (b) Our implementation: Applications publish intermediate 
context for reuse. Functional units (context engines) are multi-in-single-output performing general statistical learning.

236



Figure 2. (a) Sequential context engine applications and (b) consolidated applications for user activity and location potential detection.

(a) (b)

and the resulting dependency graph can be deterministically 
or automatically distributed and parallelized among 
available compute nodes by the IoT management system. 

This sequential hierarchical approach raises questions 
about the complexity overhead, latency, and accuracy of 
breaking down a possibly compact application. We validate 
our approach by proving that the overall computational 
complexity of the architecture is actually reduced with a 
marginal impact on output accuracy. We have previously 
demonstrated the use of matrix-based stochastic learning 
models to perform the data translation within the context 
engine [21]. We leverage TESLA, a model designed for 
forecasting, as our context engine’s ML implementation. It 

provides efficient model generation: 
p

, where  is the 
number of inputs and  is the function order of the Taylor 
expansion. The generic function of this expansion is: p

(1st order),   (2nd order) etc.  (6) 
where  represents individual coefficients learned once 

observations are determined, and  (the constant 
coefficient). The resulting equation is , where  is 
the row matrix of input observations;  is a column vector 
of coefficients, and  is a column vector of output 
observations correlating with the corresponding row of A, 
and solved by least squares estimation. We use TESLA to 
derive complexity and error in the theorems below. 
Theorem I. Dividing a context engine into multiple context 
engines decreases the total computational complexity of a 
nonlinear system. 
Proof. We start with a general representation of a context 
engine: N number of inputs and a computational complexity 
order  for a maximum computational overhead 

p
. We 

divide the single engine into two stages, where there are 
multiple engines with an arbitrary number of inputs of A.
The number of engines of the first step becomes . The 
second stage takes the outputs of the first stage to provide 
the final output. The total complexity overhead of this 
system is 

p
. The conditions where the two-stage 

has a lower complexity than the single engine are: p y g g
  

(1) 
Although the selection of A is arbitrary, there are two 
limiting conditions: A must be an integer and the number of 
context engines must be an integer 

g
. Thus, the minimum 

for A is 2 and the maximum is , i.e. 2 engines. We do not 
consider A=1 or A=N, as neither creates multiple context 

engines. The final inequality is the multiplication of two 
terms. The first term is minimized when 

p
 and results 

in . The second term is minimized when  and 
results in . This provides a lower bound for the 
result: 

p
. If this bound satisfies 

the inequality, the multiplication result must also satisfy it. q y p y
(2) 

This proves that if the complexity order of the system is 
greater than 1.6 (e.g. for 2nd and greater integer function 
orders), any arbitrary division of the single engine results in 
a decrease in computational complexity. The corollary is: 

Figure 3. Breakdown of a single-step into lower-complexity equivalent 
reductions, with minimum complexity occurring with maximum division. 

Theorem II: The complexity of a system of context engines 
is minimized when each individual engine contains 2 inputs. 
Proof. Theorem I shows that dividing an engine decreases 
complexity if the system has a complexity order greater than 
1. The number of context engines is 

y
, which gets its 

maximum value at . 
While context-aware applications do not necessarily fit 
perfectly into a system of two-input engines, the more we 
reduce inputs into each CE, the greater the reduction in 
overall system complexity. 
We then study the accuracy change between sequential and 
consolidated applications. We use a general representation 
of the machine learning algorithm in a context engine (e.g. 
polynomial model [18]). While a general formulation 
depends on the functional order and application, we
illustrate the accuracy change between 2-input context 
engines and a single 4-input context engine in Figure 4. 

Figure 4. Functional comparison of sequential (left) and single-stage (right) 

237



We can compare the two implementations through their 
transformation functions. The second-order Taylor 
expansion of the data transformation (Section III.B) is : 

(3) 
where are the corresponding coefficients. The other 
context engines (  and ) have corresponding 
expansions. However, because  is composed of the outputs 
of  and , it can be represented as a function of the and 

 coefficients and the initial input variables to . This is 
directly comparable to , which is also a function of the 
initial inputs and a set of coefficients represented as (e.g. 

).  evaluates to  exactly except 
for the ratio of 

)
and , which matches two different pairs 

of coefficients of : 
,   (4) 

This means that the sequential context engine will have the 
same accuracy as the single-stage only when the ratio of 

to  matches the ratio of 
g
 to 

y
. If the ratios do not 

match, 1 out of the 4 coefficients in this ratio cannot be 
represented, though the other 3 in the ratio as well as the 
remaining 7 coefficients in the equation are all represented 
accurately. This is modeled as an error factor  in the 
coefficient, which contributes truncation error. 
We also quantify the impact of input signal noise on the 
sequential context engine compared to the single-stage 
approach. We model each input with a zero-mean additive 
white Gaussian: , a common expression of sensor 
noise [19]. The resulting noise propagates through the 
applications. In the sequential case,  and  both propagate 
the original noise to . The truncation error of the sequential 
context engine is now compounded by additional noise: g p y

.  (5) 
The first term is the truncation error we previously 

quantified; the second and the third terms are scaled 
Gaussian values due to noise; and the last term is a chi-
squared distribution also derived from noise. The 
significance of the error terms entirely depends on the 
relationship between the cross-product input terms  and .
If the output context is highly dependent on the cross 
products, the weight of the noise and truncation terms will 
pose significant error. Simply selecting highly correlated 
input terms for context engines - an intuitive choice 
nonetheless - will mitigate truncation error, as the impact of 
the missing cross-coefficient terms is minimized. 

IV. CASE STUDY: USER ACTIVITY

For our case study, we investigate applications that leverage 
user activity prediction. User activity is important across 
several domains: connected/reactive spaces, the smart grid, 
social behavior understanding, etc. all provide output 
actuation (e.g. grid demand-response, home automation).
We therefore investigate both applications that output user 
activity predictions and applications that use activity to 
provide output actuation for a particular space/domain. In 
particular, the latter application is used to determine the 
potential for a location to be used for activity or exercise. 

Input Data: We use sensor data collected from wearable 
sensors from the UCSD Personal Activity and Location 
Measurement System (PALMS) [22], which provides high-
fidelity wearable data such as from fitness trackers: hertz 
GPS and heart rate data, and 30Hz data from wrist and hip 
accelerometers for 40 individuals, with the activity 
annotated through observation of the individuals. The 
annotations fall into four categories: the activity; the posture 
of the participant; whether it constitutes social interaction; 
indoor/outdoor. The activity is chosen from a set: eating, 
TV, leisure, sports, exercise. Posture and indoor/outdoor are 
binary values associated with each activity. 

Applications: We consider two applications: one specific 
to the users wearing the devices, and one specific to the 
spaces users are moving in. The user-centric application is 
activity prediction: translating raw sensor data into high-
level activity definitions. The location-centric application is 
health potential – the potential for a particular location to 
raise the user’s heart rate. While the former application’s 
output is specific to the user, the latter can help guide users 
towards better behavior: identify the possibility of taking 
stairs or improving their daily energy expenditure. This 
forms a consolidated IoT environment – users whose sensor 
data impacts the spaces around them, and conversely, smart 
spaces that provide actuation to the users that enter them. 

Data Translation & Outputs: The state of the art data 
translation is straightforward: separate applications take in 
all the available data as input, and produce the activity 
potential and activity prediction, respectively (see Figure 
2(b)). Our approach modularizes the problem into three sets 
of context engines: generating coarse GPS location, 
detecting activities, and identifying each location’s activity 
potential. In keeping with the MISO principle, we allocate a 
separate context engine for each activity. We also have 
separate activity detection engines for each of the 40 users, 
leveraging the fact that the users’ fitness trackers are 
embedded devices that can detect personalized activity. 

As GPS information is important, but the raw GPS data is 
too fine-grained for either application, we introduce a GPS 
context engine, which outputs a coarser latitude/longitude 
reading showing a larger physical space. This intermediate 
variable is defined as a latitude/longitude pair, albeit with 
less fine-granularity. The reference data to train this context 
engine is derived by spatially clustering the raw GPS data 
and using the northwest point of each cluster. 

The output prediction is a boolean for each potential 
activity. Similarly, a location’s activity potential is a 
boolean. Both values are trained using available annotated 
data, or ground truth, from PALMS. The location’s activity 
potential is stored in the datastore (a key-value cloud 
database) with the location as the lookup key, and is fed 
back into the context engine as another input context. 

Context Engine Setup: Figure 2 illustrates the 
configurations for both the sequential context engines (a) 
and the current state of the art single-stage application (b). 
The single-stage applications, as monolithic black-boxes, 
require all the input data. The sequential approach can be 
designed more judiciously. The GPS context engine’s 
output supplants the raw GPS latitude/longitude data in both 

238



applications, though each activity’s context engine requires 
the speed and satellite count from the raw GPS data. The 
GPS context engine, with one input, has O(1) complexity. 

The second stage of the sequential activity application 
transforms the available input from the original data sources 
and the GPS engine to a boolean representation of the 
respective activity. Each of these second-stage context 
engines have n inputs and a computational complexity of 
O(na) for generating output, where a is the function order. 
The third stage is the entire location potential application, as 
it only uses intermediate data produced by the other context 
engines (including feedback from itself). As activity 
detection context engines can grow in number as more 
activities are added, the computational complexity is O(kna),
where k is the number of detectable activities.

The single-stage applications (Figure 2(b)) are used to 
compare complexity and accuracy against our approach. 
They are also run using a general data transform defined by 
a polynomial function order. Since both applications take in 
all the available inputs, their complexity is similar to the 
second-stage context engines: O(na). As each context engine 
uses different inputs and generates different outputs, we test 
each with TESLA up to 3rd-order functions, after which 
accuracy improvements are marginal. From the PALMS 
dataset, we extract contiguous time-series data, interpolating 
each as necessary to provide correlated training and test 
samples. To test the impact of the number of samples on 
functional order, we vary the number of samples up to 8,000 
(two days), and test against 4,000 (one day) samples. 

A. Results 

Figure 5. MAE of GPS context engine over function order and sample size 

Complexity: The GPS context engine is the first stage 
for both sequential applications, as its output is consumed 
by following stages. The single engine was tested across 
different functional orders of the TESLA algorithm, where it 
performs well with first-order, with marginal improvements 
for second- and third-order functions (Figure 5), for a 
complexity of O(1). The activity context engines are used 
by both applications. Since some activities are more readily 

predictable than others, their functional orders vary from 1st

(Indoor) to 2nd (Sedentary, Bike, Exercise, In Vehicle), and 
3rd (Walk, TV, Eating). Figure 6 illustrates the change in the 
mean absolute error with each change in functional order. 

Some statistical learning results were inaccurate even 
when taken up to 3rd order. For example, eating shows 
marked similarities to walking, with the exception of speed, 
and as such, reports false positives even at 3rd order. 
Walking incurs accuracy issues when indoors, due to 
reduced GPS accuracy. This is compounded by treating each 
correlated input set as an instance, whereas walking is better 
represented by a time-series. Implementing TESLA in this 
manner is outside the scope of this work, but the 
methodology can be found in [18]. 

Other activities can be determined with lower function 
order: most of the other activities are accurately predicted 
with 2nd order polynomials, and determining that the user is 
indoors can be determined with 1st order. The worst-case 
complexity for the set of activity context engines is O(kn3).
In contrast, location potential context engine can generate 
accurate output (9.2% MAE) by a 2nd order function O(n2).

Each single-stage application uses several TESLA 
algorithms on all inputs, simulating general-purpose MIMO 
learning, with a time complexity of O(kn3). Even with the 
same worst-case complexity, our approach has an advantage 
in execution overhead: All context engines recalculate the 
output whenever a new input observation is recorded, but 
the 2nd stage of our approach reacts only to changes in 
coarse location, which is much less frequent than the 
correspondingly subtle changes to the raw GPS data. Table 
1 highlights the computations performed by the single-stage 
and sequential applications over the test set. 

Table 1. Execution overhead based on iteration count for the context 
engines associated with the In-Vehicle activity. 

In Vehicle 
Prediction

Number of computations Total Latency1st Stage 2nd Stage 
Sequential 3670 1823 0.24 sec
Single-Stage -- 3670 0.37 sec

The sequential application naturally performs more total 
computations than the single-stage approach. Still, it 
exhibits only 65% of the single-stage latency. This is in part 
because of distributed computing: the first stage consists of 
data-independent context engines that can be parallelized. 
More importantly, because of the modularized functional 
units, the sequential context engine offloads the processing 
of raw GPS to the low-overhead GPS context engine. The 
single-stage context engine has no choice but to perform 
over 3000 O(n3) computations. The sequential application 

Figure 6. Mean absolute error (MAE) for each activity context engine 
across different function orders.

Figure 7. Accuracy comparison between the sequential and the single-stage activity 
applications (bar graph) with the delta in accuracy (line graph).

239



requires fewer than 50% of the time- and compute-intensive 
O(n3) computations, and consequently, can complete the 
work 35% faster. This difference in latency carries over to 
all other activity context engines, with a speedup of up to 
2.6x for the Indoor activity engine, which has only a 1st

order function. Table 2 compares the latency of the context-
engine-based applications normalized against single-stage. 
Table 2. Latency of the sequential applications grouped by function order  

Function Order (Context Engine) Norm. Latency
1st      (Indoor) 0.38
2nd     (Sedentary, Bike, Exercise, In Vehicle) 0.49
3rd     (Walk, TV, Eating) 0.65

Accuracy: Figure 7 compares the accuracy of each of the 
individual activity context engines against the consolidated 
activity application. The application sets have very similar 
accuracy numbers, with the highest error difference between 
them being 3.3% (for eating). This is explained by the high 
similarity in their input sets, with the only difference being 
the use of the intermediate output of the GPS context 
engine. Since only a small number of the original cross-
coefficients in the statistical learning algorithm are missing, 
the resulting difference in error is low. The consolidated 
location potential application is significantly different from 
the equivalent context engine. This is an ideal example for 
comparison, as instead of the raw input data, the context 
engine relies on only intermediate data – the outputs of the 
activity and GPS engines. Table 3 quantifies the accuracy 
comparison of sequential and single-stage applications. 
Table 3. Output accuracy comparison for Location Potential between the 
sequential context engine and the single-stage application 

Application Output Prediction Accuracy
Sequential 79.9%
Single-Stage 74.2%

Despite using only intermediate data, there is only a 5.7% 
reduction in output accuracy. This reduction illustrates one 
of the conclusions from Section III.A: organizing inputs and 
outputs of the modular application appropriately reduces 
truncation error. Intuitively, the location’s activity potential 
is related to the activities that are performed in that location, 
and as such, using the existing intermediate output provides 
reasonable accuracy compared to reusing the original data. 
Application Extension: The location potential application 
shows the extensibility of our approach. The single-stage 
approach (Figure 2(b)) needed an entirely new O(n3)
application with n=5 to produce the same output as a O(n2)
application with n=3 using already-generated output in the 
sequential approach (Figure 2(a)). Growing an ecosystem 
that makes use of existing intermediate output reduces the 
computation needed for new applications. 

V. CONCLUSION

We motivate and design a novel approach to IoT 
applications. State of the art implementations are monolithic 
[1], with computational redundancy between applications 
and increased aggregate compute complexity. Our modular 
framework exploits common computational processes 
between applications to expose shareable intermediate 
context. Decomposing a single-stage functional unit into a 

sequence of smaller ones increases reusability, reduces 
complexity at a minor cost in accuracy, and facilitates 
general data transformation. We implement a statistical 
learning technique that exploits ontological data to construct 
and train a model. A case study using our approach in 
different context-aware applications demonstrates the 
versatility and efficient data reuse of the context engine, and 
up to 65% latency improvement with minimal accuracy loss. 

ACKNOWLEDGEMENTES

This work was supported by STARnet, a Semiconductor 
Research Corporation program sponsored by MARCO and 
DARPA, through TerraSwarm center and NSF grant CNS-
1446912. The DIAL data was collected with funding from 
National Cancer Institute Grant # 1U54CA155435. 

REFERENCES

[1] C. Perera et al, "Context Aware Computing for the Internet of Things: 
A Survey," IEEE Communications, Surveys, & Tutorials, 2013. 

[2] M. Friedewald and O. Raabe, "Ubiquitous computing: an overview of 
technology impacts," Telematics and Informatics, 2011. 

[3] J. Hammer and T. Yan, "Poster: A virtual Sensing Framework for 
Mobile Phones," in Proceedings of MobiSys, 2014. 

[4] J.-H. Hong et al, "Conamsn: A context-aware messenger using 
dynamic bayesian networks with wearable sensors," Expert Systems 
with Applications, 2010. 

[5] S. K. Madhu et al, "An Ontology-based Framework for Context-Aware 
Adaptive E-Learning System," in ICCI, 2013. 

[6] Lee and K. et al., "AMC: Verifying User Interface Properties for 
Vehicular Applications," in Proceedings of MobiSys, 2013. 

[7] H. Chen et al, "An Ontology for Context-Aware Pervasive 
Environments," The Knowledge Engineering Review, 2004. 

[8] S. Lee and K. C. Lee, "Context-prediction performance by a dynamic 
bayesian network: Emphasis on location prediction in ubiquitous 
decision support environment," Expert Systems w. Applications, 2012. 

[9] M. Rudary et al, "Adaptive cognitive orthotics: combining 
reinforcement learning and constraint-based temporal reasoning," in 
ICML, 2004. 

[10] Google, "Google Now," Google, 2014. [Online]. Available: 
http://www.google.com/landing/now/. [Accessed 10 November 2014].

[11] S. Staab and R. Studer, Handbook of Ontologies, Springer Science and 
Busines, 2010. 

[12] T. Gu et al, "An Ontology-based Context Model in Intelligent 
Environments," in CNDS, 2004. 

[13] W. e. a. Wang, "A comprehensive ontology for knowledge 
representation in the internet of things," in IEEE TrustCom, 2012. 

[14] M. Nebeling et al, "XCML: providing context-aware language 
extensions for the specification of multi-device web applications,"
WWW, 2012. 

[15] P. Rashidi et al, "Discovering activities to recognize and track in a 
smart environment," IEEE TKDE, 2011. 

[16] S. Bandyopadhyay, et al, "A Survey of Middleware for Internet of 
Things," Recent Trends in Wireless and Mobile Networks, 2011. 

[17] C. Perera et al, "Context Aware Sensor Configuration Model for 
Internet of Things," in ISWC, 2013. 

[18] B. O. Akyurek et al, "TESLA: Taylor expanded solar analog 
forecasting," in SmartGridComm, 2014. 

[19] S. Zahedi and C. Bisdikian, "A framework for QoI-inspired analysis 
for sensor network deployment planning," in WICON, 2007. 

[21] J. Venkatesh et al: “A Context-Driven IoT Middleware Architecture," 
TechCon, 2015.

[22] K. Ellis, et al, "Identifying Active Travel Behaviors in Challenging 
Environments Using GPS, Accelerometers, and Machine Learning 
Algorithms," in Frontiers in Public Health, 2014. 

240


