
Maximizing Network Lifetime of WirelessHART
Networks under Graph Routing

Chengjie Wu, Dolvara Gunatilaka, Abusayeed Saifullah∗, Mo Sha†,
Paras Babu Tiwari, Chenyang Lu, Yixin Chen

Department of Computer Science & Engineering, Washington University in St. Louis
∗ Department of Computer Science, Missouri University of Science & Technology
† Department of Computer Science, State University of New York at Binghamton

Abstract—Industrial Wireless Sensor-Actuator Networks
(WSANs) enable Internet of Things (IoT) to be incorporated in
industrial plants. The dynamics of industrial environments and
stringent reliability requirements necessitate high degrees of fault
tolerance. WirelessHART is an important industrial standard for
WSANs that have seen world-wide deployments. WirelessHART
employs graph routing to enhance network reliability through
multiple paths. Since many industrial devices operate on
batteries in harsh environments where changing batteries is
prohibitively labor-intensive, WirelessHART networks need to
achieve a long network lifetime. To meet industrial demand
for long-term reliable communication, this paper studies the
problem of maximizing network lifetime for WirelessHART
networks under graph routing. We first formulate the network
lifetime maximization problem and prove it is NP-hard. Then, we
propose an optimal algorithm based on integer programming, a
linear programming relaxation algorithm and a greedy heuristic
algorithm to prolong the network lifetime of WirelessHART
networks. Experiments in a physical testbed and simulations
show our algorithms can improve the network lifetime by up to
60% while preserving the reliability benefits of graph routing.

Index Terms—WirelessHART, industrial wireless sensor-
actuator networks, graph routing, network lifetime maximization.

I. INTRODUCTION

With the emergence of industrial standards such as Wire-

lessHART [1] and ISA100 [2], process industries are em-

bracing IoT technology based on low-power wireless mesh

networks for process automation [3]. The process industry

has installed more than 24 thousand WirelessHART networks

around the world, with more than 5 billion operating hours in

the field [4].

The limited energy supply of IoT devices necessitates the

efficient utilization of battery power. Energy consumption is

closely coupled with route selection. Selecting a routing path

that optimizes energy efficiency can lead to a longer network

lifetime. In industrial environments, changing batteries can be

dramatically expensive and difficult, e.g., oil fields spanning

large areas under harsh environmental conditions. Thus, max-

imizing the lifetime of the network is an important problem

that needs to be tackled.

Although the problem of energy efficient routing has been

extensively studied for traditional wireless networks, the strict

reliability requirements in industrial WSANs bring new chal-

lenges. To support reliable communication over wireless mesh

networks, the WirelessHART standard adopts a graph routing

approach. A graph route consists of a primary path and

multiple backup paths. For each intermediate node on the

primary path, a backup path is generated to handle link or node

failure on the primary path. Moreover, the energy consumption

of network nodes is highly coupled with the (re)transmission

scheduling policy adopted by industrial standards. Graph rout-

ing introduces unique challenges in energy-efficient routing

that has not been investigated in earlier research on energy-

efficient routing for wireless sensor networks.

This paper addresses the network lifetime maximization

problem of WirelessHART networks under graph routing.

Specifically, our contributions are five-fold:

• Formulation of the network lifetime maximization prob-

lem under graph routing and proof of its NP-hardness.

• An optimal network lifetime maximization algorithm

based on integer programming.

• An approximation algorithm through linear programming

relaxation of the integer programming algorithm.

• An efficient greedy heuristic with lower computational

complexity.

• Implementation and evaluation of the proposed algo-

rithms on a physical WSAN testbed, as well as in

simulations.

Our evaluation shows that our algorithms can improve the

network lifetime by up to 60%, and the greedy heuristic is

more efficient than the linear programming relaxation ap-

proach.

The rest of the paper is organized as follows. Section II re-

views related works. Section III describes the network model.

Section IV formulates the lifetime maximization problem

and proves its NP-hardness. Section V presents our lifetime

maximization graph routing algorithms. Section VI evaluates

the graph routing algorithms in experiments and simulations.

Section VII concludes the paper.

II. RELATED WORK

Energy-aware routing for wireless sensor and ad hoc net-

works has received significant attention [5]. Stojmenovic and

Lin [6] proposed a protocol to minimize total power consump-

tion and extend network lifetime. Chang and Tassiulas max-

imized network lifetime by balancing network traffic among

the nodes in proportion to their residual energy [7], [8]. Wu et

2016 IEEE First International Conference on Internet-of-Things Design and Implementation

978-1-4673-9948-7/16 $31.00 © 2016 IEEE

DOI 10.1109/IoTDI.2015.43

176

al. [9] proposed a routing algorithm to improve the lifetime and

reliability of the network based on local topology information.

Li et al. [10] proposed a routing protocol that combines the

benefits of selecting the path with minimum power consump-

tion and the path that maximizes residual power in the nodes.

Doshi et at. [11] implemented a minimum energy routing

version of the DSR protocol in a network simulator. Kalpakis

et al. [12] studied the lifetime maximization problem for

tree topology networks. Despite considerable results on the

general problem of network lifetime optimization, none of

the aforementioned works address graph routing. Note the

path diversity provided by graph routing is a key technique

that the WirelessHART standard used to achieve reliable

communication in industrial settings [13].

WirelessHART networks have attracted a lot of attention in

the research community [14]–[23]. Previous literature studied

real-time transmission scheduling [15], [16], [22], communi-

cation delay analysis [19], [21], rate selection [20], and system

performance optimization [23]. All these works assumed that

routes of the flows are already given, and did not provide any

routing protocol.

There has been increasing interest in developing new routing

approaches for WirelessHART networks. Zhao et al. proposed

a routing algorithm called ELHFR [24]. Gao et al. proposed

a multipath graph routing algorithm with subgraphs called

ORMGR [25]. Han et al. proposed routing algorithms [26] to

construct reliable routing graphs. However, in the aforemen-

tioned works, hop count is the only criterion when choosing

the links. Network lifetime is not considered when making

the routing decision. Wu et al. [27] studied real-time routing

for WirelessHART networks, which did not consider network

lifetime. Our work is motivated by an earlier experimental

study of WirelessHART routing protocols [13] that showed

graph routing achieved higher reliability at higher energy cost,

and hence it is essential to develop energy-efficient graph

routing protocols.

To improve energy efficiency in WirelessHART networks,

Wang et al. proposed a routing algorithm called DHEIRP

[28], which chooses the next hop node by comparing the

residual energy of neighbors. Memon et al. proposed a load-

balanced routing algorithm [29] that chooses the next-hop

node by comparing the communication loads of neighbors.

The JRMNL algorithm [30] chooses the next hop according

to node communication load, node residual energy and link

transmission energy consumption. Zhang et al. proposed a

routing algorithm [31] to select next hop by taking into account

the remaining energy, the quality of the link and the number

of hops. However, all works above take an approach sitting

between the source routing and graph routing. After building

a graph, a source route is used to deliver a single packet, al-

though different packets may use different source routes. As a

result, a packet will not benefit from path diversity to improve

reliability. As path diversity and graph routing are crucial for

industrial applications (especially control applications) to meet

their stringent reliability requirements, we investigate the open

problem of network lifetime maximization under graph routing

u v ds

(a) Source Route

backup pathprimary path

u v d

x y z

w

s

(b) Graph Route

Fig. 1: Source and Graph Routing

in WirelessHART networks in this paper.

III. NETWORK MODELS

A WirelessHART network [1] consists of a gateway, mul-

tiple access points, and a set of field devices (sensors and

actuators). The access points and field devices are equipped

with half-duplex radio transceivers compatible with the IEEE

802.15.4 standard [32], and form a wireless mesh network. The

access points are wired to the gateway and serve as bridges

between the gateway and field devices.

WirelessHART adopts a centralized network management

architecture. The network manager (a software module running

on the gateway or a host connected to the gateway) manages

all devices in the network. The network manager gathers the

network topology information, generates and disseminates the

routes and transmission schedule to all network devices. This

centralized network management architecture enhances the

predictability and visibility of network operations at the cost

of scalability.

WirelessHART adopts a Time Division Multiple Access

(TDMA) MAC layer protocol on top of the IEEE 802.15.4

physical layer. All devices in the network are time synchro-

nized. Time is divided into 10 ms slots, and each slot can

accommodate one data packet transmission and its acknowl-

edgment. WirelessHART supports multi-channel communica-

tion using up to 16 channels specified in the IEEE 802.15.4
standard. In a slot, only one transmission is scheduled on each

channel across the entire network to avoid collision.

A. Routing Model

WirelessHART supports both source routing and graph

routing. Under source routing, a single path from the source

to the destination is generated for each data flow as shown in

Figure 1(a).

Under graph routing, redundant paths are provided to handle

link failures. As shown in Figure 1(b), a single path is

generated as a primary path (solid arrows) and a backup path

is generated for each device along the primary path except

the destination d. For instance, a backup path u→ w → d is

177

generated for node u and it is used when the transmission on

u→ v fails.

A WirelessHART network can be defined as G = (V,E),
where V denotes a set of devices and E denotes a set of

bidirectional links1 between devices. A link in E can be a

link between two field devices or a link between an access

point and a field device. We define a graph route as below:

Definition 1. Given a source device s and a destination device
d, a graph route R = {φ0, φ1, · · · , φ|φ0|} is a set of paths
from s to d, where φ0 is the primary path and |φ0| denotes
the number of links in φ0. Each device vi on the primary path
φ0, except the destination d, has a backup path φi from itself
to the destination, which does not include vi’s outgoing link
on the primary path.

A WirelessHART network can support multiple data flows

in the network. Two graph routes are generated for each data

flow: an uplink graph route and a downlink graph route. The

uplink graph route starts from the sensor and ends at the

access points. A downlink route starts from an access point and

ends at the actuator. As the data flows are usually generated

by process monitoring or control applications, they usually

generate packets periodically.

B. Transmission Scheduling Model

In WirelessHART networks, a time slot can be a dedicated
slot or a shared slot. In each channel, only one transmission

is scheduled in a dedicated slot, while multiple transmissions

may compete for a shared slot in a CSMA/CA fashion.

Only dedicated slots are used for source routing. A trans-

mission and a retransmission are scheduled in dedicated slots

for each link under the source routing.

Both dedicated slots and shared slots are used for graph

routing. For each device on the primary path, the network

manager allocates two dedicated slots for a transmission and

a retransmission on its outgoing link along the primary path,

and also assigns a third shared slot on its outgoing link along

its backup path. Therefore, each link on the primary path is

assigned two dedicated slots and each link on backup paths is

assigned a shared slot. Since WirelessHART networks usually

only employ high-quality links, shared slots are assigned to

backup paths to reduce delay and enhance bandwidth.

C. Energy Consumption Model

We model the energy consumption under graph routing in

this subsection. We only consider the energy consumption of

the radio which is related to packet transmission and reception.

The energy consumption of microprocessors, sensors, and

other parts is out of the scope of this paper. For a single

packet, we calculate the energy consumption of each device

on both the primary and backup paths. Since the scheduling

policies for transmissions on the primary path and backup path

are different, we calculate the energy consumption for them

separately. For each transmission along the primary path, two

1WirelessHART only uses bidirectional links for packet transmission and
acknowledgement.

dedicated slots are assigned. If the first transmission succeeds,

the retransmission will not occur and both sender and receiver

will turn off their radios at the second slot. Otherwise, a

retransmission will occur in the second time slot. If both the

transmission and retransmission along the primary path fail,

there will be a second retransmission along the backup path.

Figure 2 shows the timing of a transmission in a time

slot. The top of the timing diagram shows the operation

of the sender and the bottom shows that of the receiver.

When a shared slot is assigned, the sender will perform Clear

Channel Assessment (CCA) before transmitting the packet.

We use TsMaxPacket to denote the maximum time to transmit

a packet. When scheduled as the transmission’s receiver, the

receiver must enter receive mode. The receiver must keep

the radio on to listen to potential packet transmission. We

denote the minimum time to wait for the start of a message

as TsRxWait. If a transmission is detected, the receiver keeps

receiving until it receives the entire packet. Otherwise, the

receiver will turn off the radio after the receive window

expires. We denote the power of transmitting and receiving

a packet as Pt and Pr respectively.

Assume vi is a device on the primary path, which is

scheduled to send one packet to device vj . We use α to

denote the Packet Reception Ratio (PRR) for this link. Then

the probability that it successfully transmits a packet to its

receiver vj on the first try is α. The probability that it fails

in the first attempt and needs to retransmit the packet to vj is

1 − α. So the expected time length that the sender keeps its

radio on is

α×TsMaxPacket+2(1−α)TsMaxPacket = (2−α)TsMaxPacket

In the case of checksum error, the receiver needs to keep

the radio on for TsMaxPacket, so the receiver on the primary

path has the same expected time length keeping its radio on as

the sender. By incorporating the power, we get the expected

energy consumption of a device as a sender or a receiver for

delivering one packet on the primary path. We denote Et as

the expected energy consumption of device vi to transmit a

packet to vj on a primary path, thus

Et = (2− α)Pt × TsMaxPacket (1)

The expected energy consumption of device j to receive a

packet from i on a primary path is:

Er = (2− α)Pr × TsMaxPacket (2)

Since transmission on a backup path only happens when the

two previous attempts fail, the chance that there is an actual

packet transmission on a backup path is (1 − α)2, e.g., less

than 0.01 if we use a PRR threshold of 0.9. However, as long

as a transmission is scheduled on a link, the receiver needs

to turn on the radio and listen for TsRxWait time to check

whether there is an incoming packet. Then the expected energy

consumption of device i on a backup path to transmit a packet

is

Etb = (1− α)2Pt × TsMaxPacket (3)

178

+�298��� +�+9
�06%��/

+�29
�06%��/
+�1�9���0%�

+�
�0

+���

+������

+�
�08���
+�+93!!�%�

+�293!!�%�

+���
3!!�%�

+�29+9

������

���	��	��

Fig. 2: Transaction timing in one time slot [1]

The expected energy consumption of device i to receive a

packet on backup path is:

Erb = (1−α)2Pr×TsMaxPacket+(1−(1−α)2)Pr×TsRxWait
(4)

Table I summarizes the transmission and reception power

of the CC2420 radio chip [33], which is compatible with the

IEEE 802.15.4 standard. Table I also shows the timing param-

eters of packet transmission specified in the WirelessHART

standard [1]. Based on Table I, we obtain the expected

energy consumptions in Table II, assuming a PRR of 90%, a

typical threshold used for blacklisting links in WirelessHART

networks.

Parameter Value Unit
Pt 52.2 mW
Pr 59.1 mW

TsMaxPacket 4256 μs
TsRxWait 2200 μs

TABLE I: Representative Radio Parameters

Variable Value Unit
Et 277 μJ
Er 244 μJ
Etb 2.2 μJ
Erb 131 μJ

TABLE II: Expected energy consumption of devices to
transmit or receive a packet

Since the expected energy consumption of transmitting a

packet through a link along a backup path is two order mag-

nitude less than the other three expected energy consumptions,

we ignore Etb in the routing algorithm for simplicity.

IV. GRAPH ROUTE LIFETIME MAXIMIZATION PROBLEM

In this section, we formulate the Graph Route Lifetime
Maximization (GRLM) problem. Our objective is to maximize

the network lifetime, which is the time interval before the

first field device exhausts its battery. This definition is well

accepted by previous literatures.

In terms of lifetime optimization, the most significant differ-

ence between WirelessHART networks and traditional wireless

sensor networks is path diversity. Instead of scheduling trans-

missions on only one path, WirelessHART networks schedule

transmissions on both the primary path and backup paths.

Definition 2. In a GRLM problem, we are given a graph G =
(V,E) with battery capacity Bi for each device vi, and a set
of flows F = {f1, f2, · · · , fN}. Each flow fk has a source
sk, a destination dk, and a data rate rk. The GRLM problem
is to find graph routes for all flows to maximize the network
lifetime.

The GRLM problem is NP-hard because even the source

routing version of the problem is NP-hard as shown below.

Proof. To prove the SRLM problem is NP-hard, we prove

its decision version is NP-complete. The decision version of

SRLM is: given a network lifetime T for a network, can this

lifetime be satisfied by the network?

Clearly, the decision problem of SRLM is NP. Given a

solution with source routes, we can verify whether the network

can satisfy the lifetime T by checking the lifetime of each

device. We calculate the expected energy consumption rate of

each device by taking account of data rates of flows which pass

this device and expected energy consumption per packet shown

in equations (1) and (2). The time complexity is O(|V |N).
To prove the decision problem of SRLM is NP-complete,

we use a well known NP-complete problem. Fortune et al. [34]

proved the Maximum Edge-Disjoint Paths problem (MEDP) is

NP-hard. In MEDP, we are given a graph G = (V,E), and

a set of N device pairs Θ = {(sk, tk) : k = 1, · · · , N}. The

goal is to find the maximum subset of pairs from Θ , along

with a path for each chosen pair, so that no two paths share the

same link. The decision problem of MEDP is whether a given

set of device pairs Θ have link-disjoint paths. The decision

problem of MEDP is NP-complete.

We reduce the decision problem of MEDP to the decision

problem of SRLM. The reduction algorithm takes an instance

of the decision problem of MEDP problem as input. Given a

graph G, we construct an auxiliary graph G′ in the following

179

Reduction

1

c

b

a

G
e

d

c

b

a

e

d

G'

f

g

h

i

1

1

1

∞ ∞

∞ ∞

Fig. 3: Reduction

manner. For each link e in G (i.e., a → c in Figure 3), we

break it into two links (a→ f and f → c) and add a new link-

device (f) to connect these two links (Figure 2). All devices

in the original graph are assigned battery capacity as +∞, and

all newly added link-devices are assigned unit battery capacity

1. For each device pair (sk, tk) in Θ, we create a flow Fi in

G′ with source sk, destination tk, and unit rate 1. The targeted

lifetime of the network is T = 1
Et+Er

. Note that 1
Et+Er

is the

lifetime of a link-device if only one flow goes through it. To

complete the proof, we show that all pairs in Θ have link-

disjoint paths if and only if the network lifetime of G′ is no

less than T .

← If all device pairs have link-disjoint paths in G, then the

reduced paths in G′ can have a network lifetime no less than T .

Since at most one reduced flow goes though each link-device,

the lifetime of each link-device is no less than the network

lifetime target T . We prove that the network lifetime of G′ is

no less than T .

→ If the network lifetime of G′ is no less than T , then

there are link-disjoint paths for all device pairs in Θ. Since the

battery of each link-device can support exactly one flow, only

one path will go through each link-device, which indicates

those paths are edge-disjoint paths. Then we get link-disjoint

paths in the original graph G.

Because the reduction takes polynomial time and an in-

stance of the decision problem of MEDP is true if and only

if the reduced instance of the decision problem of SRML is

true, the decision problem of SRML is NP-complete.

V. LIFETIME MAXIMIZATION GRAPH ROUTING

ALGORITHMS

In this section, we propose an optimal solution based on

integer programming, followed by more efficient solutions

based on linear programming relaxation and greedy heuristic.

The efficiency of the routing algorithms are important because

the network manager needs to recompute routes as network

topology and channel condition change in real-world environ-

ments.

A. Integer Programming

In this subsection, we formulate the GRLM problem as an

integer program based on our energy consumption model. All

the field devices are powered by batteries, while the access

points and the gateway are connected to wired power sources.

We define the load of a field device as its expected energy

consumption rate, which depends on the rates of flows passing

it. Then the lifetime of a field device is modeled as the initial

battery divided by load. Here we denote the initial battery

capacity of a device vi as Bi, and the load as Li. We use γi
to denote the normalized load of vi, defined as Li

Bi
. For access

points and the gateway, batteries are set to be infinity. Our

goal is to maximize the minimum lifetime among all devices,

which is expressed as maxmini
Bi

Li
. This objective function

can be transformed to minimize the maximum normalized load

γi = Li

Bi
. Hence the GRLM problem can be formulated as

minmaxi γi. We use Γ to denote the upper bound of γi in

(5f) below, and the objective function becomes minΓ.

Objective: minimize Γ
∑

−→
skj∈E

xk
sk,j

= 1 (5a)

∑

−→
ji∈E

xk
j,i + δi,sk =

∑

−→
ij∈E

xk
i,j + δi,dk

, ∀i ∈ V (5b)

∑

−→
ji∈E

ykj,i +
∑

−→
ij∈E

xk
i,j =

∑

−→
ij∈E

yki,j , ∀i ∈ V \ {dk} (5c)

∑

−→
ip∈E and p!=j

yki,p >= xk
i,j , ∀−→ij ∈ E (5d)

γi =
∑

k

rk
Bi

(
∑

−→
ij∈E

xk
i,jEt +

∑

−→
ji∈E

xk
j,iEr +

∑

−→
ji∈E

ykj,iErb)

(5e)

γi ≤ Γ, ∀i ∈ V (5f)

xk
i,j ∈ {0, 1}, yki,j ∈ Z≥0, ∀−→ij ∈ E (5g)

We formulate the integer program as follows. The primary

path variable xk
i,j is a binary variable. If a link

−→
ij is used in

the primary path for flow k, then xk
i,j equals 1, otherwise, it

equals 0. The same rule is applied to backup path variable

yki,j . However, since multiple backup paths may share a same

link, the backup path variable yki,j is an non-negative integer

variable, which could be larger than 1.
First, there is only one link used in the primary path among

all outgoing links of the source sk (5a). Then the conservation

constraint (5b) says the sum of outgoing primary path variables

180

equals the sum of incoming primary path variables at every

device except the source sk and the destination dk, where δi,j
is the Kronecker delta function [35]. Here δi,j equals 1 if i
and j are the same, and 0 otherwise.

The conservation constraint for backup path variables is

different from the constraint for primary path variables because

the backup paths do not start from the source of the flow. They

start from devices on the primary path. For backup paths, there

are two cases. For a device on a backup path but not on the

primary path (e.g. network device z in Figure 1(b)), it follows

the same conservation constraint as the primary path variables,

which means the sum of outgoing backup path variables equals

the sum of incoming backup path variables. For a network

device which is on both the backup path and primary path

(e.g. u in Figure 1(b)), it does not have any incoming backup

path. However, it still has an outgoing backup path, and

the amount of backup path variables equals the amount of

outgoing primary path variables. To incorporate both cases, we

formulate this requirement in constraint (5c), which specifies

that the sum of outgoing backup path variables from a device

equals the sum of incoming backup path variables plus the

sum of outgoing primary path variables.

Since the backup link should not coincide with the primary

link for the same packet, constraint (5d) is added to make

sure that the backup path of a link on the primary path does

not use this link. Constraint (5e) calculates the normalized

load γi of each device i. And constraint (5f) guarantees that

normalized loads of all network devices are no larger than Γ.

The objective is to minimize the maximum normalized load,

which is equivalent to minimizing Γ.

B. Linear Programming Relaxation

For large scale networks, an integer programming based

solution does not scale well. We use a linear programming

relaxation approach to speed up the route calculation. We solve

the problem in two phases. In the first phase we focus on

the primary path variables. In the beginning, we relax each

primary path variables xk
i,j from binary to real number within

[0, 1], and relax each backup path variable yki,j from non-

negative integer to non-negative real number. Then we solve

the problem and obtain the solution. We round the variables

to 1 if they are above a threshold θ, otherwise round it to 0.

For each flow fk, we want to find the highest threshold θk for

primary path variables such that there exists a path from the

source to the destination. We use a gradient based algorithm to

find this threshold. The step size is 0.05. The initial threshold

is 0.5. If a path is found, then we increase the threshold by

one step. Otherwise, we decrease the threshold by one step.

The algorithm terminates if no higher threshold can be found.

We repeat this algorithm for each flow and will get a primary

path for each flow.

After the first phase, we obtain primary paths for all flows.

In the second phase, we keep primary path variables fixed

and relax backup path variables to non-negative real numbers.

After we get the results with non-negative backup path vari-

ables, we round them to 1 following a similar approach in the

first phase. For each flow, starting from the first backup path

(whose source is the source of the flow) to the last backup

path (whose source is the last hop of the flow destination in

the primary path), we use the gradient based algorithm to find

the highest threshold that allows a path from the source to the

destination. We use the GNU Linear Programming Kit (GLPK)

[36] to solve the integer program and its linear programming

relaxation.

C. Greedy Heuristic

To further speed up the routing process, we introduce an

efficient greedy heuristic. When selecting a graph route, our

greedy heuristic selects the graph route with small normalized

load, which is the expected energy consumption rate divided

by the initial battery capacity. The basic idea is to let the

devices with higher battery capacity carry more network traffic

under the graph routing setup. To solve this problem more

efficiently, we use an algorithm inspired by Dijkstra’s shortest

path algorithm [37]. For each flow, starting from the destina-

tion, we gradually update each device’s normalized load. Each

time we select a device with the smallest normalized load and

update the normalized loads of its neighbors. The normalized

load is the key concept in our algorithm.

Our greedy heuristic runs iteratively. In each iteration, we

select graph routes for flows from the highest rate to the

lowest rate. For each flow, we pick up a graph route with

minimum normalized load. Our iterative algorithm stops if

the maximum normalized load increases or the decrease of

maximum normalized load is less than a threshold Γth, which

is set to mink rkErb

maxi Bi
in our current implementation. For each

flow, the Minimum Load Graph Route (MLGR) function in

Algorithm 1 is called to find a graph route. We use an

algorithm similar to Dijkstra’s shortest path algorithm, where

normalized load is used like the edge weight in Dijkstra’s

algorithm. Within MLGR, we use λ to denote temporary

normalized loads for devices in the network. After MLGR

return a graph route, the related devices on the graph route

will update their normalized load γ with temporary normalized

load λ. We maintain a queue Q which includes all network

devices with their updated normalized load. We use a map H
to track last hop devices.

At each step, a device u with minimum temporary normal-

ized load λu is picked up from the queue. If its temporary

normalized load λu equals ∞, then the remaining devices

cannot be added to the primary path. Then MLGR function

fails to find a graph route for current flow and returns ∞. If u
is the source, then the MLGR function adds it to the primary

path and returns its temporary normalized load λu. We can

obtain the primary path by tracing back through last hop map

H .

If none of above case is true, we will check u’s neighbors

one by one to see whether they can be added into the primary

path. For each neighbor v, we use the Minimum Load Source

Route (MLSR) function in Algorithm 2 to check whether there

is a path from v to the destination d in the graph G′ = (V,E \
{−→vu}) and return the one with the minimum normalized load.

181

Algorithm 1: Minimum Load Graph Route

1 Function MLGR(G, s, d, r, γ, B)
Input : A graph G(V,E), source s, destination d,

flow rate r, normalized load vector γ,

battery vector B
Variable: Last hop vector H , Backup Paths P ,

temporary normalized load λ
Output : Normalized load of the graph route picked

up by the algorithm (∞ if no graph route

is found)

2 for each vertex v ∈ V do
3 λv =∞;

4 Hv = NULL;

5 Pv = ∅;
6 add v to Q;

7 λd = γd +
rEr

Bd
;

8 while Q is not empty do
9 u = v ∈ Q with minimum λv;

10 remove u from Q;

11 if λu ==∞ then
12 return ∞;

13 if u == source then
14 return λu;

15 for each neighbor v of u within Q do
16 Graph G′ = (V,E \ {−→vu});
17 γbackup = MLSR(G′, v, d, Pv, r, γ, B);
18 if γbackup 	=∞ then
19 alt = max(λu, γv +

rEt+rEr

Bv
, γbackup);

20 if alt < γv then
21 λv = alt;

22 Hv = u;

We update the temporary normalized load of device v based on

its new normalized load γv+
rEt+rEr

Bv
, its parent u’s temporary

normalized load λu and the normalized load of the backup path

γbackup.

Here the MLSR function is a single path version of MLGR.

At each step, it picks up the device u with minimum temporary

normalized load λu. If λu equals ∞, then the source s cannot

be connected to the destination d, and MLSR function returns

∞. If the source s is picked up with a temporary normalized

load λs less than ∞, then s is connected with the destination

d, and MLSR function returns λs. The MLSR function can

obtain the path from the last hop trace. If none of above case

is true, the MLSR function will check device u’s neighbors

and update their temporary normalized loads according to u’s

temporary normalized load λu.

Since MLSR takes the form of the Dijkstra’s algorithm,

its time complexity is O(|E| + |V |log|V |). MLGR is a

nested version of MLSR, its time complexity is O(|E|(|E|+
|V |log|V |)+ |V |log|V |) = O(|E|2+ |E||V |log|V |). The time

Algorithm 2: Minimum Load Source Route

1 Function MLSR(G, s, d, Ps, r, γ, B)
Input : A graph G(V,E), source s, destination d,

flow rate r, normalized load vector γ,

battery vector B
Variable: Last hop vector H , temporary normalized

load λ
Output : Normalized load of the source route picked

up by the algorithm (∞ if no graph route

is found)

2 for each vertex v ∈ V do
3 λv =∞;

4 Hv = NULL;

5 add v to Q;

6 λd = γd +
rErb

Bd
;

7 while Q is not empty do
8 u = v ∈ Q with minimum λv;

9 remove u from Q;

10 if λu ==∞ then
11 return ∞;

12 if u == source then
13 return λu;

14 for each neighbor v of u within Q do
15 alt = max(λu, γv +

rErb

Bv
);

16 if alt < λv then
17 λv = alt;

18 Hv = u;

complexity of each iteration is O(N |E|2 + N |E||V |log|V |),
given there are N flows. The number of iterations is bounded

as the upper bound of normalized load Γup =
∑

k rk(Et+Er)

mini Bi

divided by the threshold of normalized load change Γth =
mink rkErb

maxi Bi
. The time complexity of our greedy heuristic is

O(
Γup

Γth
N |E|2 + Γup

Γth
N |E||V |log|V |)

VI. EVALUATION

We evaluate our routing algorithms through both experi-

ments on a physical wireless sensor-actuator network (WSAN)

testbed and simulations. We compare our Integer Programming

approach (IP), Linear Programming approximation (LP), and

Greedy Heuristic algorithm (GH) with the reliable and real-

time routing (RRC) approach that Han et al. proposed in [26]

and Dijkstra’s shortest path algorithm (SP) [37]. RRC builds

uplink and downlink routing graphs for all flows based on hop

count. We build a graph route on top of RRC’s routing graph

by selecting one path as the primary path and using available

alternative paths as backup paths. Because RRC does not

fully explore the network to find backup paths, some network

devices on the primary path do not have backup paths. In SP,

we first run Dijkstra’s algorithm to get the primary path with

the shortest hop count, then run the same algorithm to select

182

Fig. 4: Topology of the WSAN Testbed

backup paths for each network device on the primary path

while avoiding outgoing link on the primary path.

A. Experiments on a WSAN Testbed

We evaluate our routing designs on an indoor WSAN

testbed consisting of 63 TelosB motes equipped with TI

CC2420 radio. The testbed is located on the fifth floors of

two adjacent buildings on the Washington University campus.

Each mote in the testbed is connected to a wired backbone net-

work that helps facilitate the experiments and measurements

without interrupting the wireless communication. Each mote

in the testbed runs the WirelessHART protocol stack presented

in [13]. The protocol stack is implemented in TinyOS 2.1.2

on top of the CC2420x radio driver, which is compatible with

the IEEE 802.15.4 standard. The protocol stack supports the

key WirelessHART network features including a multi-channel

TDMA MAC protocol and source and graph routing protocols.

Field devices are time synchronized using the Flooding Time

Synchronization Protocol (FTSP) [38].

Figure 4 shows the topology of our testbed. We select

motes 129 and 155 (green circles) as the access points, which

are physically connected to a root server (gateway). The

other motes act as field devices (red circles). The network

manager is a software running on the root server. For each

link in the testbed, we measured its packet reception ratio
(PRR) by counting the number of received packets among

250 packets transmitted over the link. Following the practice

of industrial deployment, we only add links with PRR higher

than 90% in all channels used to the topology of the testbed. To

avoid channels occupied by the campus Wi-Fi, we use IEEE

802.15.4 channels 11 to 15 in our experiments.

We generate 8 flows in our experiment. The period of each

flow is picked up from the range of 20∼7 seconds, which are

typical periods used in the process industry as specified in the

WirelessHART standard [1]. The length of the hyper-period

is 128 seconds. The relative deadline of each flow is equal to

its period. We run the experiments for 100 rounds of hyper-

Fig. 5: Histogram of Link Qualities

period (around 3 hours) to collect at least 100 periods of data

traces for each flow. Based on the data traces we collected,

we evaluate our proposed approaches in terms of delivery
ratio and expected network lifetime. The delivery ratio of a

flow is defined as the fraction of packets that are successfully

delivered to the destination.

The expected network lifetime is calculated based on the

collected traces. Because TelosB motes in the testbed are

wire powered, we assign virtual battery capacity for each

mote randomly from the range of 8000J to 9000J , where

8640J is the typical capacity of two AA batteries. We analyze

the collected data traces from the experiments to obtain the

energy consumption of each network device in 100 rounds of

hyper-period. Based on that, we project the expected network

lifetime.

To study reliability, we first measure the link qualities.

Figure 5 shows the histogram of link qualities (PRR) of 327

links we used in our experiments. We collect the PRR of each

link on all 4 channels. Although our link selection process only

selects links with PRR higher than 90%, we find some links

have much lower PRR than the 90% threshold at run time. For

example, link
−−−−−→
158 156 under channel 12 has the lowest PRR

183

Routing Algorithm Flow Index
1 2 3 4 5 6 7 8

Source

SP 0.993 0.874 0.898 1.0 1.0 1.0 1.0 1.0
RRC 0.992 0.760 0.833 0.996 0.989 0.994 1.0 1.0
GH 0.996 0.886 0.897 0.997 0.998 1.0 1.0 1.0
LP 0.997 0.827 0.896 0.998 0.989 1.0 1.0 1.0

Graph

SP 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
RRC 0.996 0.990 0.988 1.0 1.0 1.0 1.0 1.0
GH 0.998 1.0 1.0 1.0 1.0 1.0 1.0 1.0
LP 0.998 1.0 1.0 1.0 1.0 1.0 1.0 1.0

TABLE III: Delivery Ratios of Flows

Fig. 6: Expected Network Lifetime relative to SP

of 7%. The dynamics of wireless links suggest it is necessary

to have path diversity.

Table III shows the delivery ratios of all 8 flows under both

graph routing and source routing. We use the primary path of

the graph route as the source route of each flow. Our results

show that graph routing provides a better delivery ratio than

source routing. For example, the delivery ratios of all four

routing algorithms for flow 2 under source routing are below

0.9, which can be unacceptable for industrial applications.

In comparison, their delivery ratios under graph routing are

at least 0.99. Our results demonstrate the effectiveness of

redundant routes in improving reliability. We also found in

RRC’s graph routes for flow 1, 2, and 3, 50% of the links

on the primary paths do not have backup paths. The lack of

backup paths makes RRC vulnerable to link dynamics.

Figure 6 presents the expected lifetimes of different routing

approaches normalized to that under SP. Because it takes too

long to compute routes for the testbed topology under the

IP approach, we do not have the results of IP. The results

show SP has the shortest expected lifetime and GH has the

longest expected lifetime. GH’s expected lifetime is 37%

longer than SP, and LP’s expected lifetime is 33% longer

than SP. RRC achieves a lifetime longer than SP and shorter

than LP. Our results show GH and LP enhance the expected

network lifetime compared to SP and RRC.

Fig. 7: Expected Lifetime Relative to Optimal Solution

B. Simulations

We compare different routing algorithms through simulation

in this subsection. The simulator is written in C++ and follows

the design of our testbed. All simulations are performed on

a MacBook Pro laptop with 2.4 GHz Intel Core 2 Duo

processor. We use a trace driven simulation. All data collected

in experiments are imported into the simulator. Similar to the

experiments, we use links with PRR higher than 90%. The

period of each flow is randomly generated from the range

of 20∼7 seconds. And we use IEEE 802.15.4 channels 11 to

15 in our simulations. In the simulation, when a packet is

transmitted on a link, the simulator uses a data point from the

traces collected in experiments. We generate different results

by randomly assigning network device battery capacities from

8000J to 9000J .

Because the IP approach is computationally expensive,

which requires more than 24 hours to complete its execution in

simulations based on our testbed topology, we evaluate all five

routing algorithms on a small topology consisting of 10 motes

and 20 links from our testbed. Figure 7 shows the lifetime

ratios of SP, RRC, GH, and LP relative to IP. The median of

GH and LP are 83% and 85% of the optimal lifetime under IP.

Compared with IP, SP and RRC have 44% and 47% median

lifetime ratios. The figure shows that GH and LP outperform

SP and RRC in terms of the expected lifetime.

We further test our algorithms with a large number of flows

184

(a) Network Lifetime

(b) Execution Time (in log scale)

Fig. 8: Simulation Results on Testbed Topology

in simulation on the entire testbed topology. We evaluate our

routing designs on different numbers of flows by increasing the

number of source and destination pairs. We randomly select

motes as sources and destinations. We compare four routing

designs in terms of network lifetime and execution time.

Figure 8(a) shows the expected network lifetime of different

routing designs on the entire testbed topology. In general,

network lifetime decreases as the number of flows increases,

because more flows bring more energy consumption to net-

work devices. Furthermore, results show SP consistently has

the shortest network lifetime. RRC’s network lifetime is longer

than SP but shorter than GH and LP. GH and LP provide longer

network lifetime than the other two. The figure shows GH and

LP can improve the network lifetime over RRC by up to 63%
and 76%.

The computational complexity of the four routing algo-

rithms are presented in Figure 8(b). The figure compares

execution times of four algorithms in log scale. The results

show LP is much slower than the other three algorithms.

This happens because linear programming solver in general

is slower than straightforward routing algorithms such as SP

and GH. Besides LP, GH has the highest time complexity.

However, the maximum execution time of GH in our simu-

lation is approximately 0.35 seconds, which is acceptable to

WirelessHART networks that need to reconfigure a network

only in response to topology change.

VII. CONCLUSION

As IoT starts gaining adoption in industrial applications, in-

dustrial WSANs provide critical communication infrastructure

for industrial automation. Industrial WSANs face significant

challenges in achieving long-term reliable communication in

harsh environments. While the WirelessHART standard adopts

graph routing to enhance network reliability, the problem of

maximizing network lifetime for graph routing becomes a crit-

ical open problem. This paper introduces and formulates the

network lifetime maximization problem for graph routing. We

present an optimal graph routing algorithm based on integer

programming, and two efficient algorithms based on linear

programming relaxation and greedy heuristic, respectively. We

have implemented our graph routing algorithms on a physical

WSAN network testbed. Experimental results on the testbed

and in simulations show the linear relaxation and greedy

heuristic can improve the network lifetime by up to 60% when

compared to an existing graph routing algorithm. Moreover,

the greedy heuristic requires significantly lower computation

time, making it particularly suitable for WirelessHART net-

works that may compute graph routes frequently when facing

network changes in open environments.

ACKNOWLEDGMENTS

This work is supported, in part, by NSF through grant

1320921 (NeTS) and the Fullgraf Foundation.

REFERENCES

[1] “WirelessHART specification,” 2007, http://www.hartcomm2.org.
[2] “ISA100: Wireless Systems for Automation,” https://www.isa.org/

isa100/.
[3] J. Song, S. Han, A. K. Mok, D. Chen, M. Lucas, and M. Nixon,

“WirelessHART: Applying Wireless Technology in Real-Time Industrial
Process Control,” in IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS’08), April 2008.

[4] “Emerson’s WirelessHART report,” http://www2.emersonprocess.com/en-
us/plantweb/wireless/pages/wirelesshomepage-flash.aspx.

[5] S. Singh, M. Woo, and C. S. Raghavendra, “Power-aware routing in
mobile ad hoc networks,” in ACM/IEEE International Conference on
Mobile Computing and Networking (MobiCom’98), 1998.

[6] I. Stojmenovic and X. Lin, “Power-Aware Localized Routing in Wireless
Networks,” IEEE Transactions on Parallel and Distributed Systems,
vol. 12, no. 11, 2001.

[7] J.-H. Chang and L. Tassiulas, “Energy conserving routing in wireless
ad-hoc networks,” in IEEE International Conference on Computer
Communications, 2000.

[8] ——, “Maximum Lifetime Routing in Wireless Sensor Networks,”
IEEE/ACM Transactions on Networking, vol. 12, no. 4, 2004.

[9] C. Wu, R. Yuan, and H. Zhou, “A Novel Load Balanced and Lifetime
Maximization Routing Protocol in Wireless Sensor Networks,” in IEEE
Vehicular Technology Conference (VTC-Spring’08), May 2008.

[10] Q. Li, J. Aslam, and D. Rus, “Online Power-Aware Routing in Wire-
less Ad-hoc Networks,” in ACM International Conference on Mobile
Computing and Networking (MobiCom’01), 2001.

[11] S. Doshi, S. Bhandare, and T. X. Brown, “An On-demand Minimum
Energy Routing Protocol for a Wireless Ad Hoc Network,” Mobile
Computing and Communications Review, vol. 6, no. 3, 2002.

[12] K. Kalpakis, K. Dasgupta, and P. Namjoshi, “Efficient Algorithms for
Maximum Lifetime Data Gathering and Aggregation in Wireless Sensor
Networks,” Computer Networks, vol. 42, pp. 697 –716, 2003.

185

[13] M. Sha, D. Gunatilaka, C. Wu, and C. Lu, “Implementation and Experi-
mentation of Industrial Wireless Sensor-Actuator Network Protocols,”
in European Conference on Wireless Sensor Networks (EWSN’15),
February 2015.

[14] C. Lu, A. Saifullah, B. Li, M. Sha, H. Gonzalez, D. Gunatilaka, C. Wu,
L. Nie, and Y. Chen, “Real-Time Wireless Sensor-Actuator Networks
for Industrial Cyber-Physical Systems,” Proceedings of the IEEE, 2016.

[15] A. Saifullah, Y. Xu, C. Lu, and Y. Chen, “Real-Time Scheduling
for WirelessHART Networks,” in IEEE Real-Time Systems Symposium
(RTSS’10), December 2010.

[16] O. Chipara, C. Wu, C. Lu, and W. Griswold, “Interference-Aware Real-
Time Flow Scheduling for Wireless Sensor Networks,” in Euromicro
Conference on Real-Time Systems (ECRTS’11), July 2011.

[17] C. Wu, Y. Xu, Y. Chen, and C. Lu, “Submodular Game for Distributed
Application Allocation in Shared Sensor Networks,” in IEEE Conference
on Computer Communications (INFOCOM’12), March 2012.

[18] B. Li, Z. Sun, K. Mechitov, C. Lu, S. Dyke, G. Agha, and B. Spencer,
“Realistic Case Studies of Wireless Structural Control,” in ACM/IEEE
International Conference on Cyber-Physical Systems (ICCPS’13), April
2013.

[19] C. Wu, M. Sha, D. Gunatilaka, A. Saifullah, C. Lu, and Y. Chen,
“Analysis of EDF Scheduling for Wireless Sensor-Actuator Networks,”
in IEEE/ACM Symposium on Quality of Service (IWQoS’14), May 2014.

[20] A. Saifullah, C. Wu, P. B. Tiwari, Y. Xu, Y. Fu, C. Lu, and Y. Chen,
“Near Optimal Rate Selection for Wireless Control Systems,” ACM
Transactions on Embedded Computing Systems (TECS’14), April 2014.

[21] A. Saifullah, D. Gunatilaka, P. Tiwari, M. Sha, C. Lu, B. Li, C. Wu,
and Y. Chen, “Schedulability Analysis under Graph Routing for
WirelessHART Networks,” in IEEE Real-Time Systems Symposium
(RTSS’15), December 2015.

[22] B. Li, L. Nie, C. Wu, H. Gonzalez, and C. Lu, “Incorporating Emergency
Alarms in Reliable Wireless Process Control,” in ACM/IEEE Interna-
tional Conference on Cyber-Physical Systems (ICCPS’15), April 2015.

[23] B. Li, Y. Ma, T. Westenbroek, C. Wu, H. Gonzalez, and C. Lu, “Wireless
Routing and Control: a Cyber-Physical Case Study,” in ACM/IEEE
International Conference on Cyber-Physical Systems (ICCPS’16), April
2016.

[24] J. Zhao, Z. Liang, and Y. Zhao, “ELHFR: A graph routing in industrial
wireless mesh network,” in International Conference on Information and
Automation (ICIA’09), June 2009.

[25] G. Gao, H. Zhang, and L. Li, “A Reliable Multipath Routing Strategy
for WirelessHART Mesh Networks Using Subgraph Routing,” Journal
of Computational Information Systems, vol. 9, 2013.

[26] S. Han, X. Zhu, A. K. Mok, D. Chen, and M. Nixon, “Reliable and Real-
time Communication in Industrial Wireless Mesh Networks,” in IEEE
Real-Time and Embedded Technology and Applications Symposium
(RTAS’11), April 2011.

[27] C. Wu, D. Gunatilaka, M. Sha, and C. Lu, “Conflict-Aware Real-Time
Routing for Industrial Wireless Sensor-Actuator Networks,” Washington
University in St. Louis, Tech. Rep. WUCSE-2015-005 (2015), 2015,
http://openscholarship.wustl.edu/cse research/507/.

[28] Y. Wang, S. Zhang, and X. Lin, “Distributed low-power dissipation rout-
ing algorithm based on WirelessHART,” Modern Electronics Technique,
pp. 60–64, 2013.

[29] A. A. Memon and S. H. Hong, “Minimum-Hop Load-Balancing Graph
Routing Algorithm for Wireless HART,” International Journal of Infor-
mation and Electronics Engineering, vol. 3, pp. 221–225, 2013.

[30] S. Zhang, A. Yan, and T. Ma, “Energy-Balanced Routing for Maxi-
mizing Network Lifetime in WirelessHART,” International Journal of
Distributed Sensor Networks, pp. 1–8, 2013.

[31] Q. Zhang, F. Li, L. Ju, Z. Jia, and Z. Zhang, “Reliable and Energy
Efficient Routing Algorithm for WirelessHART,” in Algorithms and
Architectures for Parallel Processing, ser. Lecture Notes in Computer
Science, 2014, vol. 8630, pp. 192–203.

[32] “IEEE 15.4 standard,” 2011, https://standards.ieee.org/about/get/802/
802.15.html.

[33] “CC2420 documentation,” http://www.ti.com/lit/ds/symlink/cc2420.pdf.

[34] S. Fortune, J. Hopcroft, and J. Wyllie, “The directed subgraph homeo-
morphism problem,” Theoretical Computer Science, vol. 10, no. 2, pp.
111 – 121, 1980.

[35] “Kronecker delta function,” http://en.wikipedia.org/wiki/Kronecker
delta.

[36] “GNU Linear Programming Kit,” http://www.gnu.org/software/glpk/.

[37] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction
to Algorithms, 2nd ed. McGraw-Hill Higher Education, 2001.

[38] M. Maróti, B. Kusy, G. Simon, and A. Lédeczi, “The Flooding Time
Synchronization Protocol,” in ACM Conference on Embedded Networked
Sensor Systems (SenSys’04), November 2004.

186

