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Abstract—We consider the problem of generating random-
ized control sequences for complex networked systems typi-
cally actuated by human agents. Our approach leverages a
concept known as control improvisation, which is based on a
combination of data-driven learning and controller synthesis
from formal specifications. We learn from existing data a
generative model (for instance, an explicit-duration hidden
Markov model, or EDHMM) and then supervise this model in
order to guarantee that the generated sequences satisfy some
desirable specifications given in Probabilistic Computation Tree
Logic (PCTL). We present an implementation of our approach
and apply it to the problem of mimicking the use of lighting
appliances in a residential unit, with potential applications to
home security and resource management. We present exper-
imental results showing that our approach produces realistic
control sequences, similar to recorded data based on human
actuation, while satisfying suitable formal requirements.

Keywords-control improvisation; randomized control; data-
driven modeling; automated lighting

I. INTRODUCTION

The promise of the emerging Internet of Things (IoT) is to

leverage the programmability of connected devices to enable

applications such as connected smart vehicles, occupancy-

based automated HVAC control, autonomous robotic surveil-

lance, and much more. However, this promise cannot be real-

ized without better tools for the automated programming and

control of a network of devices — computational platforms,

sensors, and actuators. Traditionally, this problem has been

approached from two different angles. The first approach

is to be data-driven, leveraging the ability of devices and

sensors to collect vast amounts of data about their operation

and environments, and using learning algorithms to adjust

the working of these devices to optimize desired objectives.

This approach, exemplified by devices such as smart learning

thermostats, can be very effective in many settings, but

typically cannot give any guarantees of correct operation.

The second approach is to be model-driven, where accurate

models of the devices and their operating environment are

used to define a suitable control problem. A controller is

then synthesized to guarantee correct operation under spec-

ified environment conditions. However, such an approach is

difficult in settings where such accurate models are hard to

come by. Moreover, strong correctness guarantees may not

be needed in all cases.

Consider, for instance, the application domain of home

automation. More specifically, consider a scenario where

one is designing the controller for a home security system

that controls the lighting (and possibly other appliances) in

a home when the occupants are away. One might want to

program the system to mimic typical human behavior in

terms of turning lights on and off. As human behavior is

somewhat random, varying day to day, one might want the

controller to exhibit random behavior. However, completely

random control may be undesirable, since the system must

obey certain time-of-day behavioral patterns, and respect

correlations between devices. For these requirements, a data-

driven approach where one learns a randomized controller

mimicking human behavior seems like a good fit. It is

important to note, though, that such an application may also

have constraints for which provable guarantees are needed,

such as limits on energy consumption being obeyed with

high probability, or that multiple appliances never be turned

on simultaneously. A model-based approach is desirable

for these. Thus, the overall need is to blend data and
models to synthesize a control strategy that obeys certain

hard constraints (that must always be satisfied), certain soft
constraints (that must be “mostly satisfied”) and certain

randomness requirements on system behavior.

This setting has important differences from typical control

problems. For example, in traditional supervisory control,

the goal is typically to synthesize a control strategy ensuring

that certain mathematically-specified (formal) requirements

hold on the entity being controlled (the “plant”). Moreover,

the generated sequence of control inputs is typically com-

pletely determined by the state of the plant. Predictability

and correctness guarantees are important concerns. In con-

trast, in the home automation application sketched above,

predictability is not that important. Indeed, the system’s

behavior must be random, within constraints. Moreover, the

source of randomness (behavior of human occupants) differs

from home to home, and so this cannot be pre-programmed.

This form of randomized control is suitable for human-in-

the-loop systems or applications where randomness is desir-

able for reasons of security, privacy, or diversity. Application

domains other than the home automation setting described

above include microgrid scheduling [1], [2] and robotic art

[3]. In the former, randomness can provide some diversity of
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load behavior, hence making the grid more efficient in terms

of peak power shaving and more resilient to correlated faults

or attacks on deterministic behavior. For the latter case,

there is growing interest in augmenting human performances

with computational aids, such as in automatic synthesis and

improvisation of music [4]. All these applications share

the property of requiring some randomness while main-

taining behavior within specified constraints. Additionally,

the human-in-the-loop applications can benefit from data-

driven methods. Streams of time-stamped data from devices

can be used to learn semantic models capturing behavioral

correlations amongst them for further use in programming

and control.

In this paper, we show how a recently-proposed formalism

termed control improvisation [5] can be suitably adapted to

address the problem of randomized control for IoT systems.

We consider the specific setting of a system whose compo-

nents can be controlled either by humans or automatically.

Human control of devices generates data comprising streams

of time-stamped events. From such data, we show how

one can learn a nominal randomized controller respecting

certain constraints present in the data including correlations

between behavior of interacting components. We also show

how additional constraints can be enforced on the output

of the controller using temporal logic specifications and

verification methods based on model checking [6], [7]. We

apply our approach to the problem of randomized control

of home appliances described above. We present simulated

experimental results for the problem of lighting control

based on data from the UK Domestic Appliance-Level

Electricity (UK-DALE) dataset [8]. Our approach produces

realistic control sequences, similar to recorded data based

on human actuation, while also satisfying suitable formal

requirements.

II. BACKGROUND

We introduce relevant background material that the

present paper builds upon and establish notation for use in

the rest of the paper.

A. Discrete-Event Systems with Hidden States

Our work focuses on control of systems whose behavior

can be described by a sequence of timestamped events. An

event e is a tuple 〈τ, v〉 ∈ T×V , where T is a totally ordered

set of time stamps and V is a finite set of values. We define

a signal to be a set of events, where T imposes an ordering

relation on the events occurring within the signal [9].

We define the state of such a system to take values from

a finite set of distinct states, where events are emitted by

state transitions. In many systems, the underlying events

and states are hidden, and all that can be observed is

some function of the state. We term this the observation.

This function can be time-dependent and probabilistic, so

that a single state can produce many different observations.
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Figure 1: Sample appliance power trace

We assume that the number of possible observation values

is finite (this can be enforced in continuous systems by

discretization), and that observations are made at discrete

time steps. A sequence of observations over time generated

by a behavior of the system is called a trace.

An example of such a trace that captures the power

consumption of three appliances is given in Figure 1. The

events related to each appliance, which can either be an

“ON” or an “OFF” event in this case, are annotated on the

sub-traces. Each state change of the system triggers an event.

Consider, for example, that the hidden state in this scenario

captures the current status of a set of physical appliances

and that all appliances are initially turned off. The kitchen

appliance being turned on at 19:50 pm causes an “ON” event

to be emitted, and triggers a state change in the system,

where in the new state, the kitchen appliance is on, and

the other two appliances are off. The system stays in this

state until any appliance triggers a state transition. In such

a scenario, it may be that the only information available

from the system are traces of the instantaneous appliance

power consumptions. Given these traces, one can infer the

state of the system and which events may have happened at

particular times.

B. Control Improvisation

The control improvisation problem, defined formally

in [5], can be seen as the problem of generating a ran-

dom sequence of control actions subject to hard and soft
constraints, while satisfying a randomness requirement. The

hard constraints may, for example, encode safety require-

ments on the system that must always be obeyed. The soft

constraints can encode requirements that may occasionally

be violated. The randomness requirement ensures that no

control sequence occurs with too high probability.

This problem is a natural fit to the applications of in-

terest in this paper, as our end goal is to randomize the

control of discrete-event systems subject to both constraints

enforcing the presence of certain learned behaviors (hard

constraints), and probabilistic requirements upper bounding

the observations (soft constraints). In the lighting control

scenario we consider later, for example, we effectively learn

a hard constraint preventing multiple appliances from being

toggled at exactly the same time, since this never occurs
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Figure 2: Graphical model representation of an EDHMM

in the training data. We also use soft constraints to limit

the probability that the hourly power consumption exceeds

desired bounds.

More formally, the control improvisation problem is de-

fined as follows. This is generalized from the definition in [5]

to allow multiple soft constraints with different probabilities.

Definition 1: An instance of the control improvisation

(CI) problem is composed of (i) a language I of improvisa-
tions that are strings over a finite alphabet Σ, i.e., I ⊆ Σ∗,
and (ii) finitely many subsets Ai ⊆ I for i ∈ {1, . . . , n}.
These sets can be presented, for example, as finite automata,

but for our purposes in this paper the details are unimportant

(see [5] for a thorough discussion).

Given error probability bounds ε = (ε1, . . . , εn) with

εi ∈ [0, 1], and a probability bound ρ ∈ (0, 1], a distribution

D : Σ∗ → [0, 1] with support set S is an (ε, ρ)-improvising
distribution if

(a) S ⊆ I (hard constraints),

(b) ∀w ∈ S, D(w) ≤ ρ (randomness),

(c) ∀i, P [w ∈ Ai | w ← D] ≥ 1− εi (soft constraints),

where w ← D indicates that w is drawn from the distri-

bution D. An (ε, ρ)-improviser, or simply an improviser,

is a probabilistic algorithm generating strings in Σ∗ whose

output distribution is an (ε, ρ)-improvising distribution. For

example, this algorithm could be a Markov chain generating

random strings in Σ∗. The control improvisation problem

is, given the tuple (I, {Ai}, ε, ρ), to generate such an

improviser.

C. Explicit-Duration Hidden Markov Models

In data-driven controller synthesis, it is essential that the

learning model captures relevant properties of the underlying

system based on observed data. For probabilistic inference in

dynamical systems whose state is only observable via state-

dependent data, Hidden Markov Models (HMM) have been

a widely used tool. An HMM is characterized by a hidden

state variable subject to Markov dynamics, observable via

state-dependent noisy observations. However, in many appli-

cations, including those of interest to this paper, the Markov

assumption on the hidden state space is insufficient, since

part of the underlying problem structure lies in the durations

of events. In such scenarios, the model quality can be

improved significantly by the use of semi-Markov models. In

this study, we will specifically consider the Explicit-Duration

Hidden Markov Model (EDHMM) [10]. These models are

an extension of HMMs that, in addition to modeling the

hidden state space as a Markov chain, also introduces the

duration spent within each state as another hidden variable

of the Bayesian network. The graphical model representation

of a general EDHMM is shown in Figure 2.

The standard definition of an EDHMM models hidden

state and its duration to be discrete hidden variables. The

state dependent observations can be drawn from either a

discrete or continuous distribution, often referred to as an

emission distribution. In this paper, we assume that the

possible observations are quantized as necessary so that the

emission distributions are discrete.

An EDHMM with discrete emissions observed for T time

steps is characterized by a partially observed set of variables

(x,d,y) = (x1, . . . , xT , d1, . . . , dT , y1, . . . , yT ). Each xi
indicates the hidden state of the model at time i from a finite

state space X , which for notational convenience we assume

to be the set {1, . . . , N}. The value di ∈ {1, . . . , D} denotes

the remaining duration in the hidden state, where D is the

maximum possible state duration. Finally, each yi is an ob-

servation drawn from a discrete alphabet Σ = {v1, . . . , vM}.
The joint probability distribution imposed by the EDHMM

over these variables can be written as

P (x,d,y) = p(x1)p(d1)
T∏

t=2

p(xt|xt−1, dt−1)p(dt|dt−1, xt)
T∏

t=1

p(yt|xt)

= πxπd

T∏
t=2

p(xt|xt−1, dt−1)p(dt|dt−1, xt)
T∏

t=1

p(yt|xt),

where p(x1) � πx and p(d1) � πd are the priors on the

hidden state and duration distributions, respectively. The

conditional state and duration dynamics are given by

p(xt|xt−1, dt−1) �
{
p(xt|xt−1) if dt−1 = 1

δ(xt, xt−1) otherwise
(1)

p(dt|dt−1, xt) �
{
p(dt|xt) if dt−1 = 1

δ(dt, dt−1 − 1) otherwise
, (2)

where δ(·, ·) is the Kronecker delta function. Equations

(1) and (2) specify the current state xt and the remaining

duration dt for that state as a function of the previous state

and its remaining duration. Unless the remaining duration

at the previous state is equal to 1, the state will remain

unchanged across time steps, while at each step within the

state, the remaining duration is decremented by 1. When the

remaining duration is 1, the next state is sampled from a tran-

sition probability distribution p(xt|xt−1), while the remain-

ing duration at xt is sampled from a state-dependent duration

distribution p(dt|xt). All self-transition probabilities are set
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to zero: p(xt|xt−1) = 0 if xt = xt−1. For compactness of

notation, for all xt, xt−1 ∈ {1, . . . , N}, dt ∈ {1, . . . , D},
and yt ∈ {v1, . . . , vM} we define probabilities axt−1,xt ,

bxt,yt , and cxt,dt so that

p(xt|xt−1) =

{
axt−1,xt

if xt �= xt−1

0 otherwise
,

p(yt|xt) = bxt,yt
,

p(dt|xt) = cxt,dt
.

We consolidate these probabilities into an N × N state

transition matrix A � (aij), an N×M emission probability

matrix B � (bij), and an N×D duration probability matrix

C � (cij).

The procedure to obtain the EDHMM parameter set

λ = {πx, πd, A,B,C}, given the observed sequence y, is

often referred to as the parameter estimation problem, which

in the general Bayesian inference setting seeks to assign the

parameters of a model so that it best explains given training

data. More precisely, given a trace (y1, . . . , yT ), parameter

estimation approximates the optimal parameter set λ∗ such

that

λ∗ = arg max
λ

p(y1, . . . , yT | λ) .
This procedure can be extended to estimate parameters

from multiple traces, provided that the traces are aligned

so that the first observation of each trace corresponds to

the same initial state. This ensures that the state prior will

be correctly captured [10]. In the case of the EDHMM,

parameter estimation can be done with a variant of the

well-known Expectation-Maximization (EM) algorithm for

HMM. The detailed formulation is presented in [11].

1) EDHMM with Non-homogeneous Hidden Dynamics:
The general definition of an EDHMM is useful in model-

ing hidden state dynamics encoded with explicit duration

information. However, in many applications where the state

dynamics model behaviors that exhibit seasonality, it can

be useful to train separate state transition and duration

distributions for different time intervals. As an example, we

consider the case where the dynamics exhibit a dependence

on the hour of the day, so that for each hour h ∈ {1, . . . , 24}
we have different probability matrices Ah and Ch.

Estimating the parameters of an EDHMM with hourly dy-

namics requires an additional input sequence {h1, . . . , hT },
where each hi ∈ {1, ..., 24} labels at which hour of the

day the observation yi was collected. Given the observation

and hour label streams, training follows the same EM-based

estimation procedure as in [11], with the difference that

parameters Ah and Ch are estimated using the training data

subsequences collected within hour h.

The EDHMM with hourly dynamics will be given by a

parameter set λ = {πx, πd, {Ah}, B, {Ch}}, where {Ah}
and {Ch} are the transition and duration distribution matri-

ces valid for hour h ∈ {1, ..., 24} such that

ali,j � p(xt = j|xt−1 = i, dt−1 = 1, ht−1 = l)

cli,d � p(dt = d|xt = i, dt−1 = 1, ht = l)

where Al = (alij) and Cl = (cli,d) are the hourly transition

and duration probability matrices for hour l.

D. Probabilistic Model Checking

Our approach relies on the use of a verification method

known as probabilistic model checking, which determines if

a probabilistic model (such as a Markov chain or Markov

decision process) satisfies a formal specification expressed

in a probabilistic temporal logic. We give here a high-

level overview of the relevant concepts for this paper. The

reader is referred to the book by Baier and Katoen [6] for

further details. For our application, we employ probabilistic

computation tree logic (PCTL). The syntax of this logic is

as follows:

φ ::= True | ω | ¬φ | φ1 ∧ φ2 | P�p [ψ] state formulas

ψ ::= Xφ | φ1 U≤kφ2 | φ1 Uφ2 path formulas

where ω ∈ Ω is an atomic proposition, �∈ {≤, <,≥, >},
p ∈ [0, 1] and k ∈ N. State formulas are interpreted at states

of a probabilistic model; if not specified explicitly, this is

assumed to be the initial state of the model. Path formulas

ψ use the Next (X ), Bounded Until
(U≤k

)
and Unbounded

Until (U) operators. These formulas are evaluated over

computations (paths) and are only allowed as parameters

to the P�p [ψ] operator. Additional temporal operators, G,

denoting “globally”, and F denoting “finally”, are defined

as follows: Fφ � TrueU φ and Gφ � ¬F ¬φ.

We describe the semantics informally; the formal details

are available in [6]. A path formula of the form Xφ holds

on a path if state formula φ holds on the second state of that

path. A path formula of the form φ1 U≤kφ2 holds on a path

if the state formula φ2 holds eventually at some state on that

path within k steps of the first state, with φ1 holding at every

preceding state. The semantics of φ1 Uφ2 is similar without

the “within k steps” requirement. The semantics of state

formulas is standard for all propositional formulas. The only

case worth elaborating involves the probabilistic operator:

P�p [ψ] holds at a state s if the probability q that path

formula ψ holds for any execution beginning at s satisfies

the relation q � p.

A probabilistic model checker, such as PRISM [7], can

check whether a probabilistic model satisfies a specification

in PCTL. Moreover, it can also compute the probability

that a temporal logic formula holds in a model, as well

as synthesize missing model parameters so as to satisfy a

specification. We show in Sec. III-E how an EDHMM can

be encoded as a Markov chain and thereby as a suitable

input model to PRISM.

190



Time-Series Data

EDHMM

Parameter

Estimation

Candidate

Improviser

Probabilistic

Model Checking

Control
ImproviserPCTL Properties

PRISM
Code

Generation

Scenario-based Model Calibration

Δh
max

Figure 3: Algorithmic Workflow

III. CONTROL IMPROVISATION WITH PROBABILISTIC

TEMPORAL SPECIFICATIONS

Now we define the problem tackled in this paper, and

describe the approach we take to solve it.

A. Problem Definition and Solution Approach

We begin with a set of traces of a discrete-event system

whose set of events is known, but whose dynamics are not.

Our goal is to randomly generate new traces with similar

characteristics to the given ones. Furthermore, we want to

be able to enforce two kinds of constraints:

• Hard constraints that the traces must always satisfy,

forbidding transitions between states that never occur

in the input traces. For example, if no part of the input

traces can be explained as a particular state transition

t, then we want to assume that t is impossible and not

generate any string that is only possible using it.

• Soft constraints that need only be satisfied with some

given probability. We focus on systems whose obser-

vations are costs, for example power consumption, and

assume soft constraints which put upper bounds on the

cost at a particular time, or accumulated over a time

period.

In the next section, we will formalize this problem as

an instance of control improvisation. First, however, we

summarize our solution approach, which consists of three

main steps:

1) Data-Driven Modeling: From the given traces, learn

an EDHMM representing the time-dependent dynam-

ics of the underlying system. The EDHMM effectively

applies hard constraints on our generation procedure

by eliminating all strings assigned zero probability.

2) Probabilistic Model Checking: Using a probabilistic

model checker, we compute the probability that a

behavior of the candidate improviser obtained in the

previous step will satisfy the soft constraints. If this

is sufficiently high, we return the EDHMM as our

generative model.

3) Scenario-Based Model Calibration: Otherwise, we

apply heuristics that increase the probability by modi-

fying the EDHMM parameters, and return to step (2).

A high level algorithmic workflow is given by Figure 3.

We elaborate on each of the steps in subsequent sections.

B. Formalization as a Control Improvisation Problem

We can formalize the intuitive description above as an

instance of the control improvisation (CI) problem described

in Section II-B. To do so, we need to specify the alphabet

Σ, languages I and Ai, and parameters εi and ρ that make

up a CI instance.

Σ Since we are learning from and want to generate

traces, which are sequences of observations, we let

Σ be the set of all observations (i.e. those occurring

anywhere in the input traces).

I We let I consist of all traces that are assigned

nonzero probability by the EDHMM1. Since the

CI problem requires any improviser to output only

strings in I , this will ensure the hard constraints

are always satisfied.

Ai, εi We let Ai consist of all traces that satisfy the

i-th soft constraint. For instance in the lighting

example, Ai could only contain traces whose total

power consumption within hour i ∈ {1, . . . , 24} of

the day never exceeds a given bound. Then in the

CI problem, εi is the greatest probability we are

willing to tolerate of the improviser generating a

trace violating the bound.

ρ We can ensure that many different traces can

be generated, and that no trace is generated too

frequently, by picking a small value for ρ: the CI

problem requires that no improvisation be gener-

ated with probability greater than ρ, and so that at

least 1/ρ improvisations can be generated.

This CI problem captures the informal requirements we

described earlier. Now we need to show that our generation

procedure is actually an improviser solving this problem

according to the three conditions given in Definition 1. We

consider each in turn.

1) Hard Constraints: By definition, any string that we

generate has nonzero probability according to the EDHMM

and so is in I.

2) Randomness Requirement: As long as the EDHMM is

ergodic (when converted to an ordinary Markov chain; see

Section III-E), the probability of generating any particular

string w ∈ Σ∗ goes to zero as its length goes to infinity.

So for any ρ ∈ (0, 1], we can satisfy the randomness

requirement by generating sufficiently long strings. We can

efficiently detect when the EDHMM is not ergodic using

1The definition of the CI problem given in [5] requires that I be described
by a finite automaton. It is straightforward to build a nondeterministic finite
automaton that accepts precisely those strings assigned nonzero probability
by the EDHMM, but we will not describe the construction here since it is
not needed for the technique used in this paper.
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standard graph algorithms, but this is unlikely to be neces-

sary in practice for applications as lighting control.

3) Soft Constraints: Our procedure checks whether this

requirement is satisfied using probabilistic model checking.

This requires encoding the sets Ai as PCTL formulas, and

the EDHMM as a Markov chain (explained in Sections III-D

and III-E respectively). Once this has been done, the model

checker computes the probability that a string generated by

the EDHMM will be in Ai. If this probability is at least

1 − εi, then the EDHMM satisfies the soft constraint, and

if this is true for each i, it is a valid improviser. Otherwise,

our procedure applies heuristics to modify the EDHMM,

detailed in Section III-F. As shown in that section, the

heuristics decrease the expected accumulated cost, so that

after sufficiently many applications the EDHMM will satisfy

the soft constraints2.

Therefore, our generation procedure yields a valid im-

proviser solving the CI problem we defined above. We

note that our technique has some further useful properties

not captured by the CI problem. In particular, we can

easily disable particular transitions between hidden states by

setting their probabilities to zero and normalizing remaining

transition probabilities appropriately. This could be useful,

for example, when controlling an IoT system with unreliable

components: if a component drops off the network or

becomes otherwise unusable, we can disable all transitions

to states in which that component is active.

C. Learning an EDHMM from Traces

The first step in our procedure is to learn an EDHMM

from the input traces. Since as explained in Section II-C we

use an EDHMM with different transition matrices for each

hour, every input trace {y1,y2, . . . ,yT } is augmented with

a corresponding stream of labels {τ1, . . . , τT } indicating

the hour of the day each observation was recorded. Note

that the observations need not be scalar costs, but could

be vectors: for example, in our lighting experiments each

observation was a K-tuple yi = [yi,1, . . . , yi,K ]T containing

instantaneous power readings from each of K different

appliances.

Given this training data, we perform EDHMM parameter

estimation as described in Section II-C. This yields a param-

eter set λ = ({Ah}, {Ch}, B, π) where the matrices {Ah}
and {Ch} give state transition and duration probabilities

respectively for each hour h ∈ {1, . . . , 24}. The distribution

of observations for each state is given by B, and π is the

prior on the state space. In this work we use categorical

distributions for B and {Ch}, although in other applications

it may be appropriate to use parametric distributions.

Note that the parameter estimation process based on

the EM algorithm is an iterative method; thus obtaining a

2Obviously, some soft constraints cannot be satisfied, for example one
requiring that the cost at the first time step be less than the smallest possible
cost of any state. See Section III-F for a precise statement.

reasonable parameter set depends on model convergence,

which in turn requires sufficient training data. In the case of

an EDHMM with hourly transition matrices, if few events

happen at certain hours it may not be possible to estimate

some of the state transition and duration probabilities for

those hours. Many application-specific heuristics exist for

handling such scenarios, as outlined in [10]. The particular

technique we used in our experiments is detailed in Sec-

tion IV-A.

D. Encoding Soft Constraints as PCTL Formulas

As mentioned earlier, we consider soft constraints which

put upper bounds on the cost observed at a particular time or

accumulated over a time period. We illustrate how to encode

upper bounds on the hourly cost — other time periods are

handled analogously.

Recall that our traces take the form {y1,y2, . . . ,yT }
where each yi is an observation, generally a vector

[yi,1, . . . , yi,K ]T of costs. Define Yi �
∑K

k=1 yi,k, the total

cost at time step i. Considering that the data is sampled

at the rate of Ns samples per hour, the total hourly cost

accumulated up to time step t is

Δ =
∑

Ns(�t/Ns�−1)+1≤i≤t

Yi.

In the next section, we show how a simple monitor added

to the encoding of the EDHMM can maintain the value Δ.

In order to be able to impose a different upper bound

Δh
max on Δ for each hour h of the day, we need to compute

the current hour of the day as a function of the time step:

h(t) = mod(
t/Ns� − 1, 24) + 1 ,

which holds if t = 1 corresponds to the time step of the first

sample collected within hour 1. Then we can write the soft

constraint for hour h as the following PCTL formula:

P≥1−εh G
[
(h(t) = h)⇒ (Δ ≤ Δh

max)
]
. (3)

This simply asserts that with probability at least 1 − εh,

at every time step during hour h the corresponding upper

bound on Δ holds. In practice we can omit the quantifier

P≥1−εh and ask the probabilistic model checker to compute

the probability that the rest of the formula holds, instead of

having to specify a particular εh ahead of time.

E. Encoding the EDHMM as a Markov Chain

In this section, we discuss how the EDHMM can be

represented as a Markov chain, so that the soft constraints

can be verified using probabilistic model checking.

Ignoring the soft constraints for now, the interpretation

of the EDHMM as a Markov chain follows the outline in

Section II-C: we expand the state space with a new state

variable d ∈ {1, . . . , D} which keeps track of the remaining

duration in the current hidden state x ∈ {1, . . . , N}. When

d > 1, we stay in x for another time step, decrementing d.
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Only when d = 1 do we transition to a new hidden state,

picking the new value of d from the corresponding duration

distribution.

Since we use an extension of the EDHMM where state

transition and duration probabilities depend on the current

hour, we need to expand the state space further to keep

track of time. The state variable t ∈ {0, . . . , T} indicates

the current time step, with t = 0 being an initialization step

in which the state is sampled from a state prior π. Note that

the domain of t need not grow unboundedly with T : in our

example where we use different transition probabilities for

each of the 24 hours, we only need to track the time within

a single day.

Finally, in order to detect when the soft constraints

are violated, we need to monitor the total hourly cost Δ
defined in the previous section. We add the state variable

Δ ∈ {0, . . . ,Δmax + 1}, where Δmax is the largest of the

hourly upper bounds Δh
max imposed by the soft constraints.

This range of values for Δ is clearly sufficient to detect when

the total cost exceeds any of these bounds. Maintaining the

correct value of Δ is simple: at each time step we increase it

by a cost sampled from the appropriate emission distribution,

except when a new hour is starting, in which case we first

reset it to zero.

Putting this all together, we obtain a Markov chain whose

states are 4-tuples (x, d, t,Δ) with the state variables as

described above. The initial state is (0, 1, 0, 0). Given the

current state, the next state (x′, d′, t′,Δ′) is determined as

follows:

EDHMM:

(t = 0)→ x′ ∼ πx ∧
d′ ∼ Ch(t)(x

′) ∧
t′ = t+ 1

(t > 0) ∧ (d > 1)→ x′ = x ∧
d′ = d− 1 ∧
t′ = t+ 1

(t > 0) ∧ (d = 1)→ x′ ∼ Ah(t)(x) ∧
d′ ∼ Ch(t)(x

′) ∧
t′ = t+ 1

Cost Monitor:

(t = 0)→ Δ′ = 0

(t > 0) ∧ (h(t′) = h(t))→ Δ′ = Δ+

K∑
i=1

pi, p ∼ B(x)

(t > 0) ∧ (h(t′) �= h(t))→ Δ′ =
K∑
i=1

pi, p ∼ B(x) ,

where h(t) = mod(
t/Ns� − 1, 24) + 1.

F. Scenario-Based Model Calibration

The procedure described so far provides a way to obtain

a generative model that captures the probabilistic nature of

events and their duration characteristics in a physical system,

and to verify that the model satisfies desired soft constraints.

However, the model may not satisfy these constraints with

sufficiently high probability, particularly if the constraints

are not always satisfied by the training data. In terms of

control improvisation, the error probability of our improviser

for some soft constraint i is greater than the desired εi.
We now describe two general heuristics for calibrating the

EDHMM to decrease the error probability while preserving

the faithfulness of the improviser to the original data. In

particular, these heuristics do not introduce new behaviors:

any trace that can be generated by the calibrated improviser

could already be generated before calibration. Since the soft

constraints we consider place upper bounds on the observed

costs, both heuristics seek to decrease the costs of some

behavior of the improviser.
1) Duration Calibration: The duration distributions of

the trained EDHMM, {Ch}, assume a maximum state du-

ration D that is enforced during the training process. One

simple way to decrease cost is to further restrict the duration

distributions by truncating them beyond some threshold for

some or all states. An effective strategy in practice is to

eliminate outliers in the duration distributions of states with

high expected cost.
This heuristic has the advantage of leaving the transition

probabilities of the model completely unchanged, and so is

a relatively minor modification. On the other hand, it cannot

reduce the duration of a state below 1 time step. So although

it can eliminate some high-cost behaviors from the model, it

is not guaranteed to eventually yield an improviser satisfying

the soft constraints.
2) Transition Calibration: A different approach is to

modify the state transition probabilities, making the model

less likely to transition to a high cost state during certain

hours of the day. Specifically, we can limit the probability of

transitioning from any state i to a particular state xr during

hour hr to be at most some value pir. We shift the removed

probability mass to the transition leading to the state xmin

with least expected cost, which we assume is strictly less

than that of xr. Writing the original transition probability

matrix Ahr as (aij), we replace it in the EDHMM with a

new matrix Ãhr
= (ãij) defined by

ãij =

⎧⎪⎨
⎪⎩
min(pir, aij) if j = xr

aij + (aixr −min(pir, aij)) if j = xmin

aij otherwise.

Note that the second case ensures that the transition prob-

abilities from any state i ∈ X are properly normalized.

Provided that the limits pir are chosen such that ãixr < aixr

for some i ∈ X , the heuristic will decrease the expected cost

of a behavior generated by the improviser.
Applying the heuristic iteratively for every choice of xr �=

xmin and hour hr ∈ {1, . . . , 24} will eventually result in
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an improviser that remains at the xmin state for all time

steps (assuming xmin is the starting state). Thus for any

soft constraints which are true for behaviors that only stay

at xmin, our procedure will eventually terminate and yield a

valid improviser. This over-simplified improviser is unlikely

to model the original data well, but it is only attained as

the limit of this heuristic: in practice, judicious choices of

the state xr and limits pir can improve the error probability

significantly in a few iterations without drastically changing

the model.

IV. EXPERIMENTAL RESULTS AND

ANALYSIS

A. Experimental Setup

To demonstrate the control improvisation approach we

have described in Sec. III, we use the UK Domestic

Appliance-Level Electricity (UK-DALE) dataset [8], which

contains disaggregated time series data representing instan-

taneous power consumptions of residential appliances from

5 homes over a period of 3 years.

We consider a lighting improvisation scenario over the

three most-used lighting appliances in a single residence,

each from a separate room of the house. The data is

presented as a vector-valued power consumption sequence y
with a corresponding sequence of time stamps τ . The input

stream y = {y1,y2, . . . ,yT } consists of 3-tuples

yi =

⎡
⎣yi,1yi,2
yi,3

⎤
⎦ , i = 1, . . . , T ,

where the values yi,1, yi,2, and yi,3 are instantaneous power

readings with time stamp τi from the main kitchen light, a

dimmable living room light, and the bedroom light respec-

tively. The power readings were sampled with a period of 1

minute and are measured in watts.

In our experiments, we synthesized three improvisers

from this data: one using an unmodified EDHMM, and two

that were calibrated using the different kinds of heuristics

described in Section III-F to enforce soft constraints on

hourly power consumption. Below, we describe the specific

choices that were made when implementing each of the three

main steps of our procedure.

1) Data-Driven Modeling: We assume there are three

sources of hidden events, corresponding to each of the three

appliances being turned on or off. This yields a hidden

state space X with 8 states, one for each combination of

active appliances. Based on inspection of the dataset, we

chose the maximum state duration to be 720 time steps (12

hours, sufficient to allow long periods when all appliances

are off). Since we used disaggregated data, our observations

are 3-tuples of power consumptions (quantized to integer

values as part of the dataset), which we assume fall in the

alphabet Σ = Σ1 × Σ2 × Σ3 where Σ1 = {0, 1, . . . , 350},

Σ2 = {0, 1, . . . , 20}, and Σ3 = {0, 1, . . . , 30} (the maxi-

mum consumptions for each appliance were again obtained

by inspecting the dataset). Having fixed these parameters

(summarized in Table I), an EDHMM was trained from

a 100-day subset of the data from one residence. Several

portions of this training data (for one appliance) are shown

at the top of Figure 9.

Note that for the specific case of lighting improvisation,

since the power emission distributions of each appliance are

independent, B � p(yt|xt), the learned emission probability

matrix over vector-valued observations, can be written as

B = p(yt|xt) =
K∏

k=1

p(yt,k|xt) .

It should also be noted that following the training process,

some of the state transition probabilities {Ah} may remain

unlearned, i.e., we may have

N∑
j=1

ahi,j = 0

for some state i ∈ {1, ..., N}. This can occur, for example,

when no state transitions from state i happen during the

hour h in any of the input traces. Since it is key to

capture the observed appliance behavior, we treat these

incomplete distributions that are unobserved in the training

data as behaviors that should also be absent from the set of

improvised behaviors. Consequently, we use a completion

strategy that forces transitions to the state xmin with the

least expected cost (i.e. the state with all appliances off) in

this scenario:

∀ahi,j , where

N∑
j=1

ahi,j = 0,

i, j ∈ {1, ..., N}, h ∈ {1, ..., 24},

ãhi,j =

{
1 if j = xmin

0 otherwise

where ãhi,j is the adjusted state transition probability of

switching from state i to j in hour h. Note that in this

case study, such incomplete parameter estimates arose only

for early morning hours in which few state transitions

were recorded (typically hours h ∈ {1, . . . , 5}). Having

completed the transition probability matrices in this way,

we obtain a fully specified EDHMM.

2) Probabilistic Model Checking: We experimented with

soft constraints upper bounding the total power consumed

during each hour. Figure 4 depicts the hourly energy con-

sumptions of each appliance, as well as the aggregated

consumption, averaged across each day in the training data.

The maximum hourly consumptions occurring in the training

data are not ideal bounds to use as soft constraints, since

they tend to be trivially satisfied by the improviser. Instead,
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Parameter ID Value
Data Source UK DALE Dataset
House ID house 1

Appliance IDs
kitchen lights
livingroom s lamp
bedroom ds lamp

Training Duration 100 days
Training Start Date 30 Jul 2013 19:07:56 GMT
Sampling Period (Ts) 60 s
Training Sequence Length (T ) 144000
Maximum State Duration (D) 720
Appliance 1 Costs (Σ1) {0, 1, . . . , 350}
Appliance 2 Costs (Σ2) {0, 1, . . . , 20}
Appliance 3 Costs (Σ3) {0, 1, . . . , 30}

State Labels

OFF: All appliances off
K: Kitchen on
L: Living room on
B: Bedroom on
KL: Kitchen and living room on
KB: Kitchen and bedroom on
LB: Living room and bedroom on
KLB: All appliances on

Table I: Parameters of the training dataset for EDHMM

learning

for each hour h we imposed a tighter bound Δh
max on the

aggregate power consumption during that hour, where Δh
max

was one standard deviation above the mean consumption

in hour h in the training data. Note that 89.2% of the

training samples were within this bound. The values Δh
max

are plotted as the shaded curve at the bottom of Figure 4.

To compute the probability of satisfying these constraints,

we used the PRISM model checker [7]. As detailed in

Section III-E, the EDHMM and a monitor tracking hourly

power consumption can be written as a discrete-time Markov

chain. This description translates more or less directly into

the PRISM modeling language. Having done this, the soft

constraints can be put directly into PRISM using the PCTL

formulation explained in Section III-D to obtain the hourly

satisfaction probabilities 1− εi, i = 1, . . . , 24.

3) Scenario-Based Model Calibration: As mentioned

above, we tested three types of improvisers:

• Scenario I: Uncalibrated Improviser. This improviser

uses the learned EDHMM with no model calibration.

• Scenario II: Duration-Calibrated Improviser. This

improviser uses the duration calibration heuristic de-

scribed in Section III-F. From the aggregate power

profile given in Figure 4, we identified peak power

consumption as occurring during hours 7, 8, 9, 17, 18,

19, 20, and 21. For these hours, the probabilities of

event durations greater than 60 minutes were set to zero

and the distributions re-normalized. Figure 5 shows a

sample set of original and calibrated event duration

distributions for the 19th hour of the day.

• Scenario III: Transition-Calibrated Improviser. This

improviser extends the previous one by also apply-

ing the transition calibration heuristic described in

Figure 4: Hourly usage patterns of main lighting appliances.

Solid curve represents average consumption and shaded area

represents one standard deviation above mean

Section III-F. The set of hours for which transition

probabilities were calibrated includes the peak hours

considered in the previous section, with the addition of

hours 4 and 5, for which very few events were recorded

in the training data. As Figure 4 indicates, the signif-

icant sources of power consumption are the kitchen

and the living room lighting appliances. Therefore, we

choose xr to include states K, L, KL, and KLB (see

Table I for label descriptions).

Figure 6 depicts some hourly transition probability ma-

trices before and after calibration. Each circle indicates

a nonzero transition probability from state xt to xt+1,

where its area is proportional to the probability. The

blue circles show the original learned probabilities, and

the green circles show the probabilities decreased by

calibration. For clarity, we do not show the correspond-

ing increases in the probabilities of transitioning to the

OFF state.

B. Experimental Results

Our focus in this section is to evaluate the performance

of synthesized improvisers using probabilistic model check-

ing and to compare them based on their fidelity to soft

constraints. It is also of interest to study the power profile
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Figure 7: Model checking results on the satisfaction probabilities of hourly soft constraints

characteristics of improvised traces to ensure scenario-based

calibrations do not impact the similarity of improvisations

to recorded data based on human actuation.

Figure 7 summarizes model checking results for the

original EDHMM and for the two calibrated models with

constrained power consumption properties. We additionally

provide the empirical probability of soft constraints being

satisfied by training data, mainly for visual comparison.

Model checking results suggest that the improviser based on

the learned EDHMM behaves comparably to the empirical

satisfaction probabilities, however, since the soft constraints

are not explicitly enforced by the EDHMM, some hourly

probabilities significantly deviate from empirical values.

When we investigate model checking results for the two

calibrated improvisers, which aim to improve the probability

of satisfying soft constraints, we observe that the transition-

calibrated improviser yields highest satisfaction probabilities

dt (minutes)
0 50 100 150 200 250

p
(d

t
|
x
t
=

s
ta
te
)

0

0.02

0.04

0.06

0.08

0.1
All Off (OFF) 

dt (minutes)
0 20 40 60 80 100 120

p
(d

t
|
x
t
=

s
ta
te
)

0

0.02

0.04

0.06

0.08

0.1

Living Room Only (L)

learned durations
calibrated durations
calibration threshold

dt (minutes)
0 20 40 60 80 100 120

p
(d

t
|
x
t
=

s
ta
te
)

0

0.02

0.04

0.06

0.08

0.1
Kitchen Only (K)

dt (minutes)
0 20 40 60 80 100 120

p
(d

t
|
x
t
=

s
ta
te
)

0

0.05

0.1

0.15

0.2

Kitchen and Living Room (KL)

Figure 5: Sample learned and calibrated duration distribu-

tions for h=19

on the soft constraints for all hours of the day. The duration-

constrained improviser performs better than the learned

model, for all hours except for hours 9, 21 and 22. As

explained in Section III-F, the duration heuristic does not

guarantee an improvement in the probability of satisfying

the soft constraints. This can be explained in this particular

case by the phenomenon that at these particular hours, the

state transition matrix tends to make transitions to high-

consumption states more probable, and skewing the duration

distribution towards zero causes more state transitions to be

made during peak hours.

Figure 8 compares the aggregate hourly power consump-

tion profiles obtained from the training data, with ones

obtained from 100 20-day long improvisations generated

by a particular lighting improviser. For all three improviser

profiles, the hourly mean power trend matches that of the

original data. Moreover, for calibrated improvisers, the one

standard deviation curve above mean mostly remains within

the same bound for the original data. Even though the

duration-calibrated improviser has eliminated most of the
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Figure 6: Learned vs. calibrated state transition probabilities

for selected hours. (Blue: Learned Ah, Green: Probabilities

adjusted by Scenario III, See Table I for label descriptions)
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highly variable power consumption trend exhibited by the

uncalibrated improviser, it still demonstrates high variability

in power for the hour range h = 9, . . . , 12 compared to

the training data. This behavior is successfully mitigated

by the transition-calibrated improviser, which is shown to

satisfy the one sigma power constraint more strictly than

the duration-calibrated improviser as expected.

Finally, in Figure 9, we show several day-long traces

from the three improvisers together with time-aligned ex-

cerpts from the training data. Note that the uncalibrated

improvisations are visually quite similar to the training

data, illustrating the quality of the EDHMM as a model.

The calibrated improvisations are also qualitatively similar

to the training data, but somewhat sparser as we would

expect from enforcing constraints on power consumption.

This demonstrates how our model calibration techniques

are effective at enforcing soft constraints without drastically

changing system behavior.

Overall, experimental results suggest that, given a suit-

able learning model, it is possible to synthesize a control

improviser which produces randomized control sequences

that are faithful to observed system behavior. More im-

portantly, scenario-based model calibration methods can be

applied to systematically constrain the nature of randomness,

which is quantifiable via probabilistic model checking. Our

experiments have shown significant improvements on the

satisfaction probabilities of soft constraints after applying

heuristic calibrations, while preserving desired qualitative

characteristics in improvised control sequences.

Figure 8: Comparison of aggregate hourly energy profiles

(Blue: Training data, Green: Improvisations. Solid curves

represent mean energy, shaded region represents one stan-

dard deviation from mean)

V. RELATED WORK

Control improvisation is an automata-theoretic problem

that was formally defined and analyzed in [5]. CI was

applied to machine improvisation of music in [4], where

a symbolic reference melody was used to synthesize an

automaton that was composed with a specification automa-

ton (capturing user-specified musical properties) to produce

a control improviser. In this work, we consider a case

study in the field of home automation, which enables us to

learn a more general Bayesian model. We represent training

data by modeling temporal progression and the stochastic

characteristics of underlying events given noisy sensor data.

Moreover, as an extension of our previous work, we learn

specifications from user-generated data directly, and perform

scenario-based calibrations on the learned model to enforce

formal statistical properties.

Appliance modeling in residential settings has several

proposed benefits, including reduced power consumption,

automated actuation of smart appliances subject to energy

pricing, microgrid load balancing, and home security [12].

Additionally, personalized advisory tools have gained popu-

larity to provide adaptive demand-response prediction [13],

[14]. Bayesian modeling techniques for home appliance load

modeling has been an emerging topic of interest [15], and

EDHMM-based models have previously been proposed for

load disaggregation [16]. Markov modeling of uncertainties

in demand and energy pricing has been studied in [17],

which presents a reinforcement learning based approach to

optimal load scheduling.

The related subjects of data-driven occupancy prediction

[18] and user behavior modeling for energy demand pre-

dictions have also been studied in recent years. In [19], a

stochastic model to predict time-dependent user activity was

presented, while in [20], a data-driven approach was adapted

for learning residential power profiles based on user-specific

factors. Integration of suitable occupancy and user prediction

techniques with ours is a clear direction for future work.

VI. CONCLUSION

In this paper, we address the problem of randomized

control for IoT systems, with a particular focus on systems

whose components can be controlled either by humans

or automatically. From streams of time-stamped system

events, we learn models that are assumed to vary as a

function of an underlying state space governed by events

with durations. We leverage the recently-proposed technique

of control improvisation [5], [21] to generate randomized

control sequences, which are similar to an observed set of

behaviors, and moreover, always satisfy some desired hard
constraints and mostly satisfy soft constraints, while exhibit-

ing variability. We presented an implementation of the end-

to-end control improvisation workflow using the PRISM tool

to enforce soft constraints on the improviser. We evaluated

our technique in the domain of home appliance control
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Figure 9: Appliance 1 activation patterns over day-long intervals

by synthesizing improvisers to control a group of lighting

appliances based on learned usage patterns and subject to

probabilistic constraints on power consumption. The results

of our experiments showed that our methods can effectively

enforce soft constraints while largely maintaining qualitative

and quantitative properties of the original system’s behavior.

For future work, we plan to investigate new applications of

this framework in the IoT space. We also plan to investigate

techniques to improve the efficiency of our scheme, as well

as its implementation on real hardware.
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