
Performance Evaluation of an M2M Platform in Different Deployment Setups

Chayma Berrhouma1, Asma Elmangoush2, Adel Al-Hazmi1, Ronald Steinke1, Thomas Magedanz2

1Next Generation Network Infrastructures
Fraunhofer FOKUS Institute - Berlin, Germany

2Next Generation Networks Department
Technical University Berlin - Berlin, Germany

{chayma.berrhouma, adel.alhazmi, ronald.steinke}@fokus.fraunhofer.de, asma.a.elmangoush@campus.tu-berlin.de,
thomas.magedanz@tu-berlin.de

Abstract— Machine-to-Machine (M2M) communication
technology is emerging as one of the major trends shaping the
development of services in Smart Cities. However, there are
grand challenges related to complexity in integrating existing
vertical silos limiting services interoperability. Providing
standard M2M platforms allows the interaction of billions of
devices and services in a network independent way. In this
paper, we present the results of performance evaluating of a
common platform for M2M using the open Machine Type
Communication platform (OpenMTC), which is aligned with
various M2M standards. The evaluation process considered
different deployment setups (hardware, transport protocols,
interaction models, etc.) and traffic conditions likely common
in Smart City, EHealth and Smart Energy services.

Keywords: Machine-to-Machine; Internet of Things (IoT);
Evaluation; Standard Platform

I. INTRODUCTION
The communication world is heading to a new era, where

a huge number of things (e.g., smartphones, air-conditioners,
meters, cars, etc.) will be interconnected within the Internet
of Things (IoT). The vision of the IoT is to enable objects to
be connected any-time, any-place, with any-thing and any-
one ideally using any-path/network and any-service. From a
technical point of view, this vision could not be
accomplished by implementing one novel technology;
instead, several complementary technical developments shall
provide functionalities and capabilities to assist in bridging
the gap between the virtual and physical world. To this end,
the successful development of such systems requires
embedded sensing devices, efficient communication
infrastructure over Machine-to-Machine (M2M) platforms,
and intelligent data processing capability.

Standardization activities in the M2M communication are
looking indeed into the direction of horizontal solutions to
support the interoperability of vertical application domains.
In this regard, various standard organizations are working on
gathering requirements from different vertical domains and
specifying common reference architectures accordingly. A
standardized architecture with a common set of service layer
capabilities and open Application Programmable Interfaces
(APIs) should help M2M service providers to reduce
investments, time-to-market, development and on-boarding
costs and facilitate management of devices and applications.

M2M platforms support multiple types of interactions
between connected devices, such as pushing data, retrieving
data, and receiving notifications of dedicated events. These
interactions shall take place through open standard interfaces
to support interoperability between different services and
vendors. Nevertheless, the smooth running of such
operations could be affected from one side by the
transmission network that can cause delays and data loss, in
addition to the efficiency of the services provided by the
M2M platform itself. Furthermore, the role of the M2M
platform in ensuring a reliable M2M services is to proses the
incoming requests in a very short time in order to minimize
as maximum as possible the end-to-end delay with reliability
and without message lost.

The remainder of the paper is structured as follows. In
Section II background information related to M2M
communication and relevant work by others are presented.
Section III discuss the design and architecture of the
OpenMTC platform. Section IV presents the performance
evaluation of our system. Section V discuss the usability of
our platform in different M2M solutions. Finally, the paper is
concluded in Section VII.

II. BACKGROUND AND RELATED WORK
The European Telecommunications Standards Institute

(ETSI) M2M technical committee has defined a middleware
Service Capability Layer (SCL) that interact with M2M
nodes over open interfaces named: mIa, dIa and mId [1][2].
These interfaces offer generic and extendable mechanism for
interactions with the SCLs at both device and gateway
domain and network domain.

Recently, the oneM2M consortium was established with
the aim to become the world-wide accepted standard for
M2M/IoT communication by consolidating the work from
ETSI M2M and other international standardization bodies.
OneM2M specifies a high-level architecture at both the field
and infrastructure domain, to support end-to-end M2M
services. The oneM2M functional architecture comprises of
three entities: Application Entity (AE), Common Services
Entity (CSE), and Underlying Network Services Entity
(NSE). Each M2M node (i.e., Infrastructure Node (IN),
Middle Node (MN) or Application Service Node (ASN))
could deploy one or more entities. Both ETSI M2M and
oneM2M have aimed to develop an application-agnostic
M2M framework for the vertical market solutions, with

2016 IEEE First International Conference on Internet-of-Things Design and Implementation

978-1-4673-9948-7/16 $31.00 © 2016 IEEE

DOI 10.1109/IoTDI.2015.23

223

emphasis on specific technologies. Considering the
connectivity control aspect, each SCL in the ETSI M2M
architecture shall implement the Generic Communication
(GC) capability, which is responsible for the established
transport session including encryption and reporting errors
features. Similarly, the Communication Management and
Delivery Handling (CMDH) function, defined by oneM2M,
handles the communication functionalities with other entities
i.e. CSEs, AEs and NSEs. The CMDH uses the Underlying
Network equivalent delivery handling functionality based on
provisioned policies to decide when to use the
communication channel to transmit the data. The M2M
server deployed in the Infrastructure Node (IN) is expected
to handle a wide variant of M2M traffic patterns, while most
of existing communication platforms in the operator
infrastructure have been developed to support regular
Human-to-Human traffic. A conceptual overview of different
M2M traffic classes is presented in [3].

There are several research projects working towards
define a reference architecture for IoT system deployments.
The IoT-A project presented the direction of defining a
general Reference Model Architecture for IoT, to be used as
a basis of platforms design. The project has created an
“Architectural Reference Model” (IoT ARM) as the common
ground for the field of IoT. The model defines entities and
describes their basic interactions and relationships with each
other [4]. The FI-WARE service infrastructure developed
upon reusable Generic Enablers is making the development
of value-added services easier. A number of research
projects have been established as a phase-two use case
projects that aim to validate the FI-WARE Generic Enabler
in specific use cases, such as FI-STAR [5], XIFI [6] and
FRACTALS [7]. The compatibility of FI-WARE IoT
Generic Enablers with ETSI M2M service layer is quite
notable, which facilitates the interoperability of the
developed applications with other platforms. However,
global interoperability with international standards is still
missing.

III. OPENMTC DESIGN AND ARCHITECTURE
The OpenMTC platform [8] is a prototype

implementation of recent standard specification for M2M
service middleware. It has been designed to act as a
horizontal convergence layer supporting multiple vertical
application domains, such as transport, automotive, eHealth,
etc. The platform may be deployed independently or as part
of a common platform. OpenMTC features are aligned with
ETSI M2M Rel. 1 specifications [1][2] and oneM2M Rel. 1
specifications [9].

Keeping in mind the diversity of computing capabilities
of connected devices, the OpenMTC front-end components
are implemented with support of various hardware platforms,
such as Android platform for mobile devices and Arduino
platform for constrained devices. On the one hand, Android
smart phones could be utilized as M2M gateways for sensors
and devices connected to the Personal Area Network (PAN),
such as eHealth sensors. On the other hand, Arduino provide
a light platform for power constrained devices installed for
long range monitoring and controlling usage, such as home

automation to remote control measurement. OpenMTC can
be deployed in devices equipped with sensors or/and
actuators and supporting their special requirements and
capabilities.

OpenMTC Release 4 features include several features
that can be deployed in the field domain gateway/device and
in the infrastructure nodes. The architecture, as depicted in
Fig 1, is based on horizontal functional layers covering the
following:

A. Application Enablement
OpenMTC supports a client/server based RESTful

architecture with the hierarchical resource tree defined by
ETSI M2M and oneM2M. The data exchange
communication over open interfaces is independent of the
transport protocol in use. OpenMTC supports both of MIa
interface specified by ETSI as well as Mca interface
specified by oneM2M. Furthermore, the application
enablement layer defines a set of high-level abstraction API,
which are categorized under three groups: Device, Data and
Network APIs. In addition, OMA NGSI-9 and NGSI-10
interfaces for context management [10] are supported on the
backend server, to allow seamless integration of M2M
platforms.

B. Core M2M features
The GEvent is used as underlying platforms to manage

events across OpenMTC components. It composes of event
based generic libraries providing asynchronous I/O API that
can scale its number of execution units according to the
processing load. While it is often used for its speed and
locality as it is targeted for constrained devices or single-
instance setups, it can be deployed in could-based
infrastructure. To persistently store data related to entities in
the M2M system, OpenMTC internally uses a database
abstraction layer. By using different database adapters,
OpenMTC can be configured to data in different data back-
ends with different characteristics depending on the usage

Figure 1. OpenMTC Functional Architecture

224

scenario at hand. Additionally, OpenMTC features an
extended subscriptions management system in which the
applications as well as the remote M2M common feature are
notified when specific data is created, modified or deleted.

C. Connectivity and Network Exposore
A connectivity management layer enables the interaction

between the frontend and backend over managed access, and
unmanaged Access Networks. This allows the integration
with 3GPP networks based on the Diameter protocol over the
Rx interface. The used bearer can be selected based on
defined policies. Both ETSI mId and oneM2M Mcc
reference point implementation specified support for
synchronous, semi-synchronous and asynchronous
communication between the network service platform and
M2M gateways/devices. Various transport protocols are
supported such as HTTP and CoAP. Allowing to use
transport protocols dynamically depending on the
application. A Store and Forward (SAF) feature is supported
by OpenMTC, which enables the handling of different traffic
streams based on their priority.

D. Interworking proxy
Interworking Proxies allow interaction with non-

ETSI/oneM2M compliant devices or systems. In order to
enable interaction with off-the-shelf sensors and actuators
and to offer the OpenMTC functionality to devices not
compliant to ETSI and oneM2M standards, Gateway
Interworking Proxy (GIP) are defined to translate specific
control and data requests to the ETSI and oneM2M
conformant model. Various protocol adapters are implanted
based on different access technologies like Bluetooth, Zigbee
and FS20. Similarly, Network Interworking Proxy (NIP) are
implemented to enable the interworking with other service
platforms or M2M standards by translating messages from
other platforms to the ETSI/oneM2M standard [11].

E. Device Management
OpenMTC platform integrates a Device Management

(DM) implementation based on the OMA LWM2M protocol
[12]. A library for LWM2M message parsing and creating,
and managing communication back to the registered clients
is implemented at both front-end and back-end servers. The
LWM2M library creates a tree dictionaries of the supported
Management Objects (MOs) and is easy to extend with
another one by adding new entries in the dictionary. The
processing is then uniform for each of the management
objects when it comes to parsing, storing, updating
information related to the management objects.

IV. PERFROMANCE EVALUATION SCENARIOS
M2M devices support a large variety of applications in

several domains (e.g. Smart metering, e-Health, Home
automation, etc.). Therefore, we face various traffic patterns
and volumes. As the OpenMTC platform is generic and
abstracted from any M2M domain, it should be able to
support any type of traffic as well as message size. The
evaluation of the key functionalities of the OpenMTC has

been carried out within the Future Seamless Communication
(FUSECO) Playground at Fraunhofer institute FOKUS.

Parameters of M2M traffic pattern alter depending on the
sensor type and application features, and it might be periodic
with constant time intervals or randomly generated. In order
to avoid non-meaningful tests, a set of sampling rate values
has been selected according to the requirements of the actual
existing M2M applications specified in multiple research
studies [13][14]. The same criteria have been used to choose
the values set of the payload size parameter.

A. Tesbed Setup
The OpenMTC platform runs on different types of

hardware platforms with different capabilities. In the
performance evaluation presented here, we will cover two
types of systems for an OpenMTC gateway: an embedded
system operated with Raspberry Pi (model B) BCM2708
processor, uses the ARMv6 instruction set with 400 MB
RAM, and a PC with 2.4 GHz quad-core Intel processor, 8
GB RAM. Our testbed setup, as shown in Fig 2, is composed
of three main parts: the OpenMTC gateway, M2M
application and M2M device. The sensor traffic generator is
running on a PC, with 3.70 GHz Xeon Intel processor, 16
GB RAM and running Ubuntu OS. For the M2M
application emulator, a PC with 2.40GHz Duo core Intel
processor, 3GB RAM is used. In order to define a
meaningful evaluation scenario, it is important to choose
well the test parameters and the performance metrics.

During the evaluation, the test cases consider two types
of M2M interactions to test, these are pushing data and
retrieving data. Therefore, we will study the case of having
different devices/sensors pushing/retrieving different types
of data to/from the platform. All the interactions and the
M2M traffic exchange will be established through both
HTTP and CoAP protocols.

Apache JMeter was used to carry out all evaluation
scenarios. Apache JMeter is a pure Java application designed
for load testing and performance measurement of different
servers/protocols such as HTTP, HTTPS, REST, etc. [15]. It
could be also extended to support other protocols, such as
CoAP and MQTT, through multiple pluggable
samplers[15][15]. A sampler plugin for CoAP was deployed
to perform the presented performance evaluation. In order to
emulate the use case of having multi-devices connected to
the OpenMTC gateway, we have used the parallel JMeter
Ant task. In fact, Apache Ant is a Java library and command-
line tool whose mission is to drive processes described in
build files as targets and extension points dependent on each
other. For the high sample rates, we have used the JMeter
distributed testing, which consists in running the same test

Figure 2. Experimental testbed setup

225

scenario on different virtual machines on the cloud to
overcome the one machine limitation. One machine (master)
can control any number of other machines
(JMeterEngines/slaves) and collect all the data from them.
All test machine’s clock have been synchronized using the
Network Time Protocol (NTP), belong to the same LAN and
use a wired Ethernet connection. By choosing a wired
connection, we aim to eliminate any problems related to the
network transmission such as packet loss, congestion, etc.
Each test scenario lasts more than 5 minutes and has been
repeated at least 5 times in order to get accurate results.

On each test scenario, an application registered to the
M2M gateway prior to start the data interaction of pushing or
retrieving data. According to the oneM2M specifications,
data storage in M2M gateways is associated with container
related operations. In our tests, each registered application
has one container that enables maximum 10 content
instances to be stored with a maximum size 1Kb each. These
parameters have been set to limit the effect of database
processing time.

B. Results, Scientific and Technical discussion
Fig 3 and Fig 4 plot the response time/delay when

pushing data with POST request, as well as the 95%
confidence interval for different sampling rates. The requests
were sent over HTTP and CoAP protocols respectively to the
OpenMTC gateway (PC and Raspberry Pi platforms). The
payload size was fixed to 200bytes. The 95% confidence
interval (CI) aims to describe how reliable and relevant is the
average value by showing us the range of the 95 % of the

captured results in each test scenario.
From Fig 3 a slight increase in the response time values

for the sampling rates lower than 250 Hz (for CoAP) and 270
Hz (for HTTP) is observed, which is followed by a strong
surge that exceeds one second for the rates higher than 350
Hz with both protocols. A deeper look in the response time
behavior over a specific period when using HTTP, allows us
to distinguish between two states (for the rates lower than
270 Hz). At the beginning of each connection, the delay is
extremely high and unstable, and then it maintains lower
values during the remaining time.

These steep values at the starting of each connection
could be explained by the fact that HTTP is based on TCP
connection which causes higher latency due to connection
setup (three-way handshake & slow start). However, for the
rates higher than 280Hz, we have only one state as the
response time values remain high during the period. The
processing time within the OpenMTC platform becomes
longer. Beyond 250 samples/second (CoAP), we notice a
strong rise in the delay values. The same surge also has
occurred with lower payload size messages (around 10
bytes). This could be related to the CoAP protocol
implementation according to [16] which mentions that a 16-
bit size message can enable up to about 250 messages per
second from one endpoint to another with default protocol
parameters similar to this case. As illustrated in Fig.5 the
upper bound of short delays is approximately between [7-9
Hz] for both protocols. Beyond this limit, the system is
overloaded as the response time exceeds 1 second for most
requests while it reaches more than 1 minute for other ones.

Table 1 summarizes the resources usage during the tests.
The memory usage is relatively the same for both protocols
and for different sample rates. However, the CPU utilization
appears slightly higher in case of using HTTP. The resource
consumption differences between the fact of using HTTP
and CoAP is clear in the case of using the Raspberry Pi. The
load average (process in queue) is relative to the number of
processor cores, e.g., for the single core processor 1.00
means 100% CPU utilization while for the quad core 4.00
signifies 100% CPU utilization. For the higher sample rates,
one of the CPU cores (PC platform) usage reaches up 98 %
(the OpenMTC gateway is one core based). Generally, CoAP
performs slightly better than HTTP for the low, medium and
high sample rates [1-250 Hz, 300-500 Hz] for both
platforms. More tests were carried on with variable traffic
rates using HTTP and CoAP, it was noticed that the
OpenMTC gateway could handle the fast variability in the
number of incoming requests (between 1 and 250 Hz)
efficiently.

Fig 5 and Fig 6 show the response time of POST requests
at fixed sampling rate with different payload sizes running
respectively on the PC and Raspberry Pi platforms. It is clear
that the impact of the payload size (sizes lower than 1Kb) is
negligible for both HTTP and CoAP protocol and both
platforms. As the size of the CoAP one block is between 16
and 1024 bytes in case of using block-wise transfer option,
which means that only one block has been sent in each test
scenario (payload size<1Kb). In addition, the Ethernet MTU
is equal to 1500 bytes at the network layer, then no IP

Figure 3. Impact of a periodic traffic on the response time (POST & PC

platform)

Figure 4. Impact of a periodic traffic on the response time (POST &
Raspberry Pi platform)

226

fragmentation for CoAP messages (UDP supports larger
payloads through IP fragmentation), and no TCP
fragmentation for HTTP messages have occurred.

TABLE I. RESOURCES USAGE

Transport
Protocol

Rate (Hz) CPU
(%)

Process in queue

PC Ras PC Ras PC Ras
HTTP

270 1 75 2 1.62 0.25
280 7-8 83 65 – 85 2.04 1.0 -

2.425
290 9 86 99 2.41 2.95

CoAP 250 1 47 1 0.57 0.12
260 8 69 72 0.62 1.0

270 9 73 98 0.74 1.5

The results obtained with payload sizes bigger than 1Kb

prove the ability of the OpenMTC gateway to handle and
process high request message sizes in a very short period.
Additionally, the impact of the packet fragmentation on the
response time for CoAP packets was more noticeable.
Generally, HTTP performs much better than CoAP with high
payload sizes. The system performance was tested also for
data retrieving interaction. However, the results are not
included due to space constraints.

Testing the system performance with multiple connected
nodes proves the scalability of the OpenMTC. The
measurements showed a strong increase in responses time

when the number of total transactions is between 240Hz and
320Hz for HTTP, while there isn’t any range for CoAP, as
it’s very variable depending on the number of devices and
sample rates. The Raspberry Pi platform causes very long
delays in case of increasing slightly the number of devices
even for the very low rates. As mentioned earlier, the system
is overloaded, when the sample rate exceeds 9 Hz, in regard
to one connected device and for both protocols. Therefore,
the OpenMTC Raspberry Pi platform is more suitable for
very low rates.

V. CONCLUSION AND DISCUSSION
For the deployment of an M2M system in any domain,

such as health care, Smart Home or Industry, it’s important
to start by specifying the environment conditions and
requirements. The understating of operating specifications
including the integrated devices, traffic pattern, samples rate,
and delay tolerance level, have a great impact on designing
the final solution. Many options are available when selecting
the components, platform capabilities and access
technologies to be used in the system.

Based on the evaluation results, presented in this paper,
the deployment of the OpenMTC platform on constrained
resources gateway showed a fine performance for delay
tolerant application with low sample rate traffic. It would be
suitable to deploy Smart Home use cases to provide the
monitoring of the home environment and a number of
appliances, e.g., temperature, light level, relative humidity
and presence. Usually, the sample rates and message payload
size of such sensors/applications are very small. In such a
way, the platform can reliably serve a specific number of
connected devices with a minimal cost in term of hardware
capabilities. Furthermore, when using CoAP protocol, the
response time of data pushing and retrieving requests is less
affected than with HTTP, slimier observation is obtained for
the usage of hardware resources. However, a gateway with
higher resource-capability is required for the more exigent
M2M domains such E-health, and Smart Grid. We have
already proved through the usage of two different platforms
the strong impact of the hardware features on defining the
limits of the system.

Nowadays, the E-health domain is gaining more
momentum. Several E-health solutions have been developed
for remote monitoring of patient health and fitness
information, remote control of certain treatment and alarms
triggering in case of detecting critical situations based on
M2M communication. Several wearable sensors are
available in the market to measure vital signs. Based on our
evaluation scenarios and the analysis of the e-health
communication requirements and traffic loads, presented in
[14], we can deduce that the OpenMTC gateway is suitable
for such systems and it’s used by some use cases in the FI-
STAR project [17]. The Smart Grid is also an important
M2M domain, covering different applications such as
Automatic Meter Reading (AMR) and Substation
Automation [13]. The Smart Energy is one of the domains
under study within the TRESCIMO project [18].

Figure 5. Impact of the payload size on the response time (POST & PC

platform)

Figure 6. Impact of the payload size on the response time (POST &

Raspberry Pi platform)

227

ACKNOWLEDGMENT
This research leading to these results has received

funding from the SmartOrchestra project.

REFERENCES
[1] ETSI TS 102 690 v1.1.1, “Machine-to-Machine communications

(M2M); Functional architecture,” 2011.
[2] ETSI TS 102 921 v1.1.1, “Machine-to-Machine communications

(M2M); mIa, dIa and mId interfaces,” 2012.
[3] A. Elmangoush, A. A. Corici, R. Steinke, M. Corici, and T.

Magedanz, “A Framework for Handling Heterogeneous M2M
Traffic,” Procedia Comput. Sci., vol. 63, pp. 112–119, 2015.

[4] A. Bassi, S. Meissner, M. Bauer, M. Fiedler, T. Kramp, R. van
Kranenburg, and S. Lange, Eds., Enabling Things to Talk - Designing
IoT solutions with the IoT Architectural Reference Model. Springer,
2013.

[5] Fi-Ware Project, “Fi-Ware (Core Platform of the Future Internet).”
[Online]. Available: http://www.fi-ware.eu/.

[6] “FI-XIFI Project.” [Online]. Available: https://fi-xifi.eu/home.html.
[Accessed: 19-Aug-2015].

[7] “FRACTALS.” [Online]. Available: http://fractals-fp7.com/.
[Accessed: 02-Sep-2015].

[8] “OpenMTC platform.” [Online]. Available: http://www.open-
mtc.org/index.html.

[9] oneM2M-TS-0001, “OneM2M Functional Architecture,” vol. 1.
2015.

[10] “OMA Next Gereration Servicres Interface V1.0.” [Online].
Available:
http://technical.openmobilealliance.org/Technical/release_program/ng
si_v1_0.aspx.

[11] T. Klinpratum, C. Saivichit, A. Elmangoush, and T. Magedanz,
“Performance of Interworking Proxy for Interconnecting IEEE1888
Standard at ETSI M2M Platforms,” Appl. Mech. Mater., vol. 781, pp.
141–144, 2015.

[12] Alliance Open Mobile, “Lightweight Machine to Machine
Architecture V1.0.” 2013.

[13] R. H. Khan and J. Y. Khan, “A comprehensive review of the
application characteristics and traffic requirements of a smart grid
communications network,” Comput. Networks, vol. 57, no. 3, pp.
825–845, Feb. 2013.

[14] L. Skorin-Kapov and M. Matijasevic, “Analysis of QoS requirements
for e-Health services and mapping to evolved packet system QoS
classes,” Int. J. Telemed. Appl., vol. 2010, pp. 1–18, Jan. 2010.

[15] “Apache JMeter.” [Online]. Available: http://jmeter.apache.org/.
[Accessed: 12-Oct-2015].

[16] Z. Shelby, K. Hartke, and C. Bormann, “RFC 7252: The Constrained
Application Protocol (CoAP).” 2014.

[17] Fi-Star Project, “Fi-Star (Future Internet Social and Technological
Alignment Research in Healthcare).” [Online]. Available:
https://www.fi-star.eu/home.html.

[18] A. A. Corici, A. Elmangoush, T. Magedanz, R. Steinke, J.
Mwangama, and N. Ventura, “An OpenMTC platform-based
interconnected European – South African M2M Testbed for Smart
City Services,” in the first International Conference on the use of
Mobile Informations and Communication Technology (ICT) in Africa
- UMICTA 2014, 2014, pp. 35–39.

228

