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Abstract— Machine-to-Machine (M2M) communication 
technology is emerging as one of the major trends shaping the 
development of services in Smart Cities. However, there are 
grand challenges related to complexity in integrating existing 
vertical silos limiting services interoperability. Providing 
standard M2M platforms allows the interaction of billions of 
devices and services in a network independent way. In this 
paper, we present the results of performance evaluating of a 
common platform for M2M using the open Machine Type 
Communication platform (OpenMTC), which is aligned with 
various M2M standards. The evaluation process considered 
different deployment setups (hardware, transport protocols, 
interaction models, etc.) and traffic conditions likely common 
in Smart City, EHealth and Smart Energy services. 

Keywords: Machine-to-Machine; Internet of Things (IoT); 
Evaluation; Standard Platform 

I.  INTRODUCTION 
The communication world is heading to a new era, where 

a huge number of things (e.g., smartphones, air-conditioners, 
meters, cars, etc.) will be interconnected within the Internet 
of Things (IoT).  The vision of the IoT is to enable objects to 
be connected any-time, any-place, with any-thing and any-
one ideally using any-path/network and any-service. From a 
technical point of view, this vision could not be 
accomplished by implementing one novel technology; 
instead, several complementary technical developments shall 
provide functionalities and capabilities to assist in bridging 
the gap between the virtual and physical world. To this end, 
the successful development of such systems requires 
embedded sensing devices, efficient communication 
infrastructure over Machine-to-Machine (M2M) platforms, 
and intelligent data processing capability.  

Standardization activities in the M2M communication are 
looking indeed into the direction of horizontal solutions to 
support the interoperability of vertical application domains. 
In this regard, various standard organizations are working on 
gathering requirements from different vertical domains and 
specifying common reference architectures accordingly. A 
standardized architecture with a common set of service layer 
capabilities and open Application Programmable Interfaces 
(APIs) should help M2M service providers to reduce 
investments, time-to-market, development and on-boarding 
costs and facilitate management of devices and applications.  

M2M platforms support multiple types of interactions 
between connected devices, such as pushing data, retrieving 
data, and receiving notifications of dedicated events. These 
interactions shall take place through open standard interfaces 
to support interoperability between different services and 
vendors. Nevertheless, the smooth running of such 
operations could be affected from one side by the 
transmission network that can cause delays and data loss, in 
addition to the efficiency of the services provided by the 
M2M platform itself. Furthermore, the role of the M2M 
platform in ensuring a reliable M2M services is to proses the 
incoming requests in a very short time in order to minimize 
as maximum as possible the end-to-end delay with reliability 
and without message lost.  

The remainder of the paper is structured as follows. In 
Section II background information related to M2M 
communication and relevant work by others are presented. 
Section III discuss the design and architecture of the 
OpenMTC platform. Section IV presents the performance 
evaluation of our system. Section V discuss the usability of 
our platform in different M2M solutions. Finally, the paper is 
concluded in Section VII. 

II. BACKGROUND AND RELATED WORK 
The European Telecommunications Standards Institute 

(ETSI) M2M technical committee has defined a middleware 
Service Capability Layer (SCL) that interact with M2M 
nodes over open interfaces named: mIa, dIa and mId [1][2]. 
These interfaces offer generic and extendable mechanism for 
interactions with the SCLs at both device and gateway 
domain and network domain. 

Recently, the oneM2M consortium was established with 
the aim to become the world-wide accepted standard for 
M2M/IoT communication by consolidating the work from 
ETSI M2M and other international standardization bodies. 
OneM2M specifies a high-level architecture at both the field 
and infrastructure domain, to support end-to-end M2M 
services. The oneM2M functional architecture comprises of 
three entities: Application Entity (AE), Common Services 
Entity (CSE), and Underlying Network Services Entity 
(NSE). Each M2M node (i.e., Infrastructure Node (IN), 
Middle Node (MN) or Application Service Node (ASN)) 
could deploy one or more entities. Both ETSI M2M and 
oneM2M have aimed to develop an application-agnostic 
M2M framework for the vertical market solutions, with 
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emphasis on specific technologies. Considering the 
connectivity control aspect, each SCL in the ETSI M2M 
architecture shall implement the Generic Communication 
(GC) capability, which is responsible for the established 
transport session including encryption and reporting errors 
features. Similarly, the Communication Management and 
Delivery Handling (CMDH) function, defined by oneM2M, 
handles the communication functionalities with other entities 
i.e. CSEs, AEs and NSEs. The CMDH uses the Underlying 
Network equivalent delivery handling functionality based on 
provisioned policies to decide when to use the 
communication channel to transmit the data. The M2M 
server deployed in the Infrastructure Node (IN) is expected 
to handle a wide variant of M2M traffic patterns, while most 
of existing communication platforms in the operator 
infrastructure have been developed to support regular 
Human-to-Human traffic. A conceptual overview of different 
M2M traffic classes is presented in [3].  

There are several research projects working towards 
define a reference architecture for IoT system deployments. 
The IoT-A project presented the direction of defining a 
general Reference Model Architecture for IoT, to be used as 
a basis of platforms design. The project has created an 
“Architectural Reference Model” (IoT ARM) as the common 
ground for the field of IoT. The model defines entities and 
describes their basic interactions and relationships with each 
other [4]. The FI-WARE service infrastructure developed 
upon reusable Generic Enablers is making the development 
of value-added services easier. A number of research 
projects have been established as a phase-two use case 
projects that aim to validate the FI-WARE Generic Enabler 
in specific use cases, such as FI-STAR [5], XIFI [6] and 
FRACTALS [7]. The compatibility of FI-WARE IoT 
Generic Enablers with ETSI M2M service layer is quite 
notable, which facilitates the interoperability of the 
developed applications with other platforms. However, 
global interoperability with international standards is still 
missing.   

III. OPENMTC DESIGN AND ARCHITECTURE 
The OpenMTC platform [8] is a prototype 

implementation of recent standard specification for M2M 
service middleware. It has been designed to act as a 
horizontal convergence layer supporting multiple vertical 
application domains, such as transport, automotive, eHealth, 
etc. The platform may be deployed independently or as part 
of a common platform. OpenMTC features are aligned with 
ETSI M2M Rel. 1 specifications  [1][2]  and oneM2M Rel. 1 
specifications [9]. 

Keeping in mind the diversity of computing capabilities 
of connected devices, the OpenMTC front-end components 
are implemented with support of various hardware platforms, 
such as Android platform for mobile devices and Arduino 
platform for constrained devices. On the one hand, Android 
smart phones could be utilized as M2M gateways for sensors 
and devices connected to the Personal Area Network (PAN), 
such as eHealth sensors. On the other hand, Arduino provide 
a light platform for power constrained devices installed for 
long range monitoring and controlling usage, such as home 

automation to remote control measurement. OpenMTC can 
be deployed in devices equipped with sensors or/and 
actuators and supporting their special requirements and 
capabilities.  

OpenMTC Release 4 features include several features 
that can be deployed in the field domain gateway/device and 
in the infrastructure nodes.  The architecture, as depicted in 
Fig 1, is based on horizontal functional layers covering the 
following: 

A. Application Enablement 
OpenMTC supports a client/server based RESTful 

architecture with the hierarchical resource tree defined by 
ETSI M2M and oneM2M. The data exchange 
communication over open interfaces is independent of the 
transport protocol in use. OpenMTC supports both of MIa 
interface specified by ETSI as well as Mca interface 
specified by oneM2M.  Furthermore, the application 
enablement layer defines a set of high-level abstraction API, 
which are categorized under three groups: Device, Data and 
Network APIs. In addition, OMA NGSI-9 and NGSI-10 
interfaces for context management [10] are supported on the 
backend server, to allow seamless integration of M2M 
platforms. 

B. Core M2M features  
The GEvent is used as underlying platforms to manage 

events across OpenMTC components. It composes of event 
based generic libraries providing asynchronous I/O API that 
can scale its number of execution units according to the 
processing load. While it is often used for its speed and 
locality as it is targeted for constrained devices or single-
instance setups, it can be deployed in could-based 
infrastructure. To persistently store data related to entities in 
the M2M system, OpenMTC internally uses a database 
abstraction layer. By using different database adapters, 
OpenMTC can be configured to data in different data back-
ends with different characteristics depending on the usage 

 
Figure 1.  OpenMTC Functional Architecture 
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scenario at hand. Additionally, OpenMTC features an 
extended subscriptions management system in which the 
applications as well as the remote M2M common feature are 
notified when specific data is created, modified or deleted.   

C. Connectivity and Network Exposore  
A connectivity management layer enables the interaction 

between the frontend and backend over managed access, and 
unmanaged Access Networks. This allows the integration 
with 3GPP networks based on the Diameter protocol over the 
Rx interface. The used bearer can be selected based on 
defined policies. Both ETSI mId and oneM2M Mcc 
reference point implementation specified support for 
synchronous, semi-synchronous and asynchronous 
communication between the network service platform and 
M2M gateways/devices. Various transport protocols are 
supported such as HTTP and CoAP. Allowing to use 
transport protocols dynamically depending on the 
application. A Store and Forward (SAF) feature is supported 
by OpenMTC, which enables the handling of different traffic 
streams based on their priority. 

D. Interworking proxy 
Interworking Proxies allow interaction with non-

ETSI/oneM2M compliant devices or systems. In order to 
enable interaction with off-the-shelf sensors and actuators 
and to offer the OpenMTC functionality to devices not 
compliant to ETSI and oneM2M standards, Gateway 
Interworking Proxy (GIP) are defined to translate specific 
control and data requests to the ETSI and oneM2M 
conformant model. Various protocol adapters are implanted 
based on different access technologies like Bluetooth, Zigbee 
and FS20. Similarly, Network Interworking Proxy (NIP) are 
implemented to enable the interworking with other service 
platforms or M2M standards by translating messages from 
other platforms to the ETSI/oneM2M standard [11].  

E. Device Management  
OpenMTC platform integrates a Device Management 

(DM) implementation based on the OMA LWM2M protocol 
[12]. A library for LWM2M message parsing and creating, 
and managing communication back to the registered clients 
is implemented at both front-end and back-end servers. The 
LWM2M library creates a tree dictionaries of the supported 
Management Objects (MOs) and is easy to extend with 
another one by adding new entries in the dictionary.  The 
processing is then uniform for each of the management 
objects when it comes to parsing, storing, updating 
information related to the management objects.  

IV. PERFROMANCE EVALUATION SCENARIOS 
M2M devices support a large variety of applications in 

several domains (e.g. Smart metering, e-Health, Home 
automation, etc.). Therefore, we face various traffic patterns 
and volumes. As the OpenMTC platform is generic and 
abstracted from any M2M domain, it should be able to 
support any type of traffic as well as message size. The 
evaluation of the key functionalities of the OpenMTC has 

been carried out within the Future Seamless Communication 
(FUSECO) Playground at Fraunhofer institute FOKUS.  

Parameters of M2M traffic pattern alter depending on the 
sensor type and application features, and it might be periodic 
with constant time intervals or randomly generated. In order 
to avoid non-meaningful tests, a set of sampling rate values 
has been selected according to the requirements of  the actual 
existing M2M applications specified in multiple research 
studies [13][14]. The same criteria have been used to choose 
the values set of the payload size parameter.  

A. Tesbed Setup  
The OpenMTC platform runs on different types of 

hardware platforms with different capabilities. In the 
performance evaluation presented here, we will cover two 
types of systems for an OpenMTC gateway: an embedded 
system operated with Raspberry Pi (model B) BCM2708 
processor, uses the ARMv6 instruction set with 400 MB 
RAM, and a PC with 2.4 GHz quad-core Intel processor, 8 
GB RAM. Our testbed setup, as shown in Fig 2, is composed 
of three main parts: the OpenMTC gateway, M2M 
application and M2M device. The sensor traffic generator is 
running on a PC, with 3.70 GHz Xeon Intel processor, 16 
GB RAM and running Ubuntu OS.  For the M2M 
application emulator, a PC with 2.40GHz Duo core Intel 
processor, 3GB RAM is used. In order to define a 
meaningful evaluation scenario, it is important to choose 
well the test parameters and the performance metrics. 

During the evaluation, the test cases consider two types 
of M2M interactions to test, these are pushing data and 
retrieving data. Therefore, we will study the case of having 
different devices/sensors pushing/retrieving different types 
of data to/from the platform. All the interactions and the 
M2M traffic exchange will be established through both 
HTTP and CoAP protocols. 

Apache JMeter was used to carry out all evaluation 
scenarios. Apache JMeter is a pure Java application designed 
for load testing and performance measurement of different 
servers/protocols such as HTTP, HTTPS, REST, etc. [15]. It 
could be also extended to support other protocols, such as 
CoAP and MQTT, through multiple pluggable 
samplers[15][15]. A sampler plugin for CoAP was deployed 
to perform the presented performance evaluation. In order to 
emulate the use case of having multi-devices connected to 
the OpenMTC gateway, we have used the parallel JMeter 
Ant task. In fact, Apache Ant is a Java library and command-
line tool whose mission is to drive processes described in 
build files as targets and extension points dependent on each 
other. For the high sample rates, we have used the JMeter 
distributed testing, which consists in running the same test 

 
Figure 2.  Experimental testbed setup 
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scenario on different virtual machines on the cloud to 
overcome the one machine limitation. One machine (master) 
can control any number of other machines 
(JMeterEngines/slaves) and collect all the data from them. 
All test machine’s clock have been synchronized using the 
Network Time Protocol (NTP), belong to the same LAN and 
use a wired Ethernet connection. By choosing a wired 
connection, we aim to eliminate any problems related to the 
network transmission such as packet loss, congestion, etc. 
Each test scenario lasts more than 5 minutes and has been 
repeated at least 5 times in order to get accurate results.  

On each test scenario, an application registered to the 
M2M gateway prior to start the data interaction of pushing or 
retrieving data. According to the oneM2M specifications, 
data storage in M2M gateways is associated with container 
related operations. In our tests, each registered application 
has one container that enables maximum 10 content 
instances to be stored with a maximum size 1Kb each. These 
parameters have been set to limit the effect of database 
processing time. 

B. Results, Scientific and Technical discussion 
Fig 3 and Fig 4 plot the response time/delay when 

pushing data with POST request, as well as the 95% 
confidence interval for different sampling rates. The requests 
were sent over HTTP and CoAP protocols respectively to the 
OpenMTC gateway (PC and Raspberry Pi platforms). The 
payload size was fixed to 200bytes. The 95% confidence 
interval (CI) aims to describe how reliable and relevant is the 
average value by showing us the range of the 95 % of the 

captured results in each test scenario.   
From Fig 3 a slight increase in the response time values 

for the sampling rates lower than 250 Hz (for CoAP) and 270 
Hz (for HTTP) is observed, which is followed by a strong 
surge that exceeds one second for the rates higher than 350 
Hz with both protocols. A deeper look in the response time 
behavior over a specific period when using HTTP, allows us 
to distinguish between two states (for the rates lower than 
270 Hz). At the beginning of each connection, the delay is 
extremely high and unstable, and then it maintains lower 
values during the remaining time.  

These steep values at the starting of each connection 
could be explained by the fact that HTTP is based on TCP 
connection which causes higher latency due to connection 
setup (three-way handshake & slow start). However, for the 
rates higher than 280Hz, we have only one state as the 
response time values remain high during the period.  The 
processing time within the OpenMTC platform becomes 
longer. Beyond 250 samples/second (CoAP), we notice a 
strong rise in the delay values. The same surge also has 
occurred with lower payload size messages (around 10 
bytes). This could be related to the CoAP protocol 
implementation according to [16]  which mentions that a 16-
bit size message can enable up to about 250 messages per 
second from one endpoint to another with default protocol 
parameters similar to this case. As illustrated in Fig.5 the 
upper bound of short delays is approximately between [7-9 
Hz] for both protocols. Beyond this limit, the system is 
overloaded as the response time exceeds 1 second for most 
requests while it reaches more than 1 minute for other ones.  

Table 1 summarizes the resources usage during the tests. 
The memory usage is relatively the same for both protocols 
and for different sample rates. However, the CPU utilization 
appears slightly higher in case of using HTTP. The resource 
consumption differences between the fact of using HTTP 
and CoAP is clear in the case of using the Raspberry Pi. The 
load average (process in queue) is relative to the number of 
processor cores, e.g., for the single core processor 1.00 
means 100% CPU utilization while for the quad core 4.00 
signifies 100% CPU utilization. For the higher sample rates, 
one of the CPU cores (PC platform) usage reaches up 98 % 
(the OpenMTC gateway is one core based). Generally, CoAP 
performs slightly better than HTTP for the low, medium and 
high sample rates [1-250 Hz, 300-500 Hz] for both 
platforms. More tests were carried on with variable traffic 
rates using HTTP and CoAP, it was noticed that the 
OpenMTC gateway could handle the fast variability in the 
number of incoming requests (between 1 and 250 Hz) 
efficiently. 

Fig 5 and Fig 6 show the response time of POST requests 
at fixed sampling rate with different payload sizes running 
respectively on the PC and Raspberry Pi platforms. It is clear 
that the impact of the payload size (sizes lower than 1Kb) is 
negligible for both HTTP and CoAP protocol and both 
platforms.  As the size of the CoAP one block is between 16 
and 1024 bytes in case of using block-wise transfer option, 
which means that only one block has been sent in each test 
scenario (payload size<1Kb). In addition, the Ethernet MTU 
is equal to 1500 bytes at the network layer, then no IP 

 
Figure 3.  Impact of a periodic traffic on the response time (POST & PC 

platform)

 

Figure 4.  Impact of a periodic traffic on the response time (POST & 
Raspberry Pi platform) 
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fragmentation for CoAP messages (UDP supports larger 
payloads through IP fragmentation), and no TCP 
fragmentation for HTTP messages have occurred. 

TABLE I.  RESOURCES USAGE 

Transport 
Protocol 

 

Rate (Hz) CPU 
(%) 

Process in queue 

PC Ras PC Ras PC Ras 
HTTP 

 
270 1 75 2 1.62 0.25 
280 7-8 83 65 – 85  2.04 1.0  -  

2.425 
290 9 86 99 2.41 2.95 

CoAP 250 1 47 1 0.57 0.12 
260 8 69 72 0.62 1.0 

270 9 73 98 0.74 1.5 

 
The results obtained with payload sizes bigger than 1Kb 

prove the ability of the OpenMTC gateway to handle and 
process high request message sizes in a very short period. 
Additionally, the impact of the packet fragmentation on the 
response time for CoAP packets was more noticeable. 
Generally, HTTP performs much better than CoAP with high 
payload sizes. The system performance was tested also for 
data retrieving interaction. However, the results are not 
included due to space constraints. 

Testing the system performance with multiple connected 
nodes proves the scalability of the OpenMTC. The 
measurements showed a strong increase in responses time 

when the number of total transactions is between 240Hz and 
320Hz for HTTP, while there isn’t any range for CoAP,  as 
it’s very variable depending on  the number of devices and 
sample rates. The Raspberry Pi platform causes very long 
delays in case of increasing slightly the number of devices 
even for the very low rates.  As mentioned earlier, the system 
is overloaded, when the sample rate exceeds 9 Hz, in regard 
to one connected device and for both protocols. Therefore, 
the OpenMTC Raspberry Pi platform is more suitable for 
very low rates.    

V. CONCLUSION AND DISCUSSION  
For the deployment of an M2M system in any domain, 

such as health care, Smart Home or Industry, it’s important 
to start by specifying the environment conditions and 
requirements. The understating of operating specifications 
including the integrated devices, traffic pattern, samples rate, 
and delay tolerance level, have a great impact on designing 
the final solution. Many options are available when selecting 
the components, platform capabilities and access 
technologies to be used in the system.  

Based on the evaluation results, presented in this paper, 
the deployment of the OpenMTC platform on constrained 
resources gateway showed a fine performance for delay 
tolerant application with low sample rate traffic. It would be 
suitable to deploy Smart Home use cases to provide the 
monitoring of the home environment and a number of 
appliances, e.g., temperature, light level, relative humidity 
and presence. Usually, the sample rates and message payload 
size of such sensors/applications are very small. In such a 
way, the platform can reliably serve a specific number of 
connected devices with a minimal cost in term of hardware 
capabilities. Furthermore, when using CoAP protocol, the 
response time of data pushing and retrieving requests is less 
affected than with HTTP, slimier observation is obtained for 
the usage of hardware resources. However, a gateway with 
higher resource-capability is required for the more exigent 
M2M domains such E-health, and Smart Grid. We have 
already proved through the usage of two different platforms 
the strong impact of the hardware features on defining the 
limits of the system.  

Nowadays, the E-health domain is gaining more 
momentum. Several E-health solutions have been developed 
for remote monitoring of patient health and fitness 
information, remote control of certain treatment and alarms 
triggering in case of detecting critical situations based on 
M2M communication. Several wearable sensors are 
available in the market to measure vital signs. Based on our 
evaluation scenarios and the analysis of the e-health 
communication requirements and traffic loads, presented in 
[14], we can deduce that the OpenMTC gateway is suitable 
for such systems and it’s used by some use cases in the FI-
STAR project [17]. The Smart Grid is also an important 
M2M domain, covering different applications such as 
Automatic Meter Reading (AMR) and Substation 
Automation [13]. The Smart Energy is one of the domains 
under study within the TRESCIMO project [18]. 
 

 
Figure 5.  Impact of the payload size on the response time (POST & PC 

platform) 

 
Figure 6.  Impact of the payload size on the response time (POST & 

Raspberry Pi platform) 
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