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Abstract—Communications in Wireless Sensor Networks
(WSNs) are affected by dynamic environments, variable signal
fluctuations and interference. Thus, prompt actions are neces-
sary to achieve dependable communications and meet quality of
service requirements. To this end, the reactive algorithms used
in literature and standards, both centralized and distributed
ones, are too slow and prone to cascading failures, instability
and sub-optimality. We explore the predictive power of machine
learning to better exploit the local information available in
the WSN nodes and make sense of global trends. We aim
at predicting the configuration values that lead to network
stability. In this work, we adopt the Q-learning algorithm to
train WSNs to proactively start adapting in face of changing
network conditions, acting on the available transmission power
levels. Our aim is to prove that smart nodes lead to better
network performance with the aid of simple machine learning.

Keywords-wireless sensor network (WSN); transmission
power control (TPC); Q-learning; software architecture

I. INTRODUCTION

The Internet of Things (IoT) has triggered a new form

of industrial revolution, promising to address the most

compelling social and economic challenges. Networks of

thousand objects will be integrated to the Internet, expand-

ing the global network to several billion nodes. However,

communications among so many objects is a true hurdle, as

there are many different standards and each node competes

the other ones for spectrum [1]. The common approach is to

achieve connectivity by increasing the transmission power,

particularly in high-density, high interference conditions. Yet

this has overall detrimental consequences when it comes to

global performance. We want to analyze the benefits in using

a collaborative transmission power control algorithm based

on predictions using machine learning rather than simplistic

reactions.

Moreover because of the variability of the wireless chan-

nel and interference, the transmission power might be vari-

able as well. For this reason, we propose the usage of a

Reinforcement Learning (RL) algorithm for transmission

power prediction based on the actual network conditions.

This leads to reducing the overall transmission power in the

network and, in turn, a more efficient spectrum and energy

utilization.

II. RELATED WORK

Many works in the literature have studied proactive or

reactive solutions for Transmission Power Control (TPC).

The main difference comes from the choice of link qual-

ity estimators, such as Received Signal Strength Indicator

(RSSI), Packet Reception Ratio (PRR) and node degree;

objective function (i.e., energy efficiency, contention or in-

terference reduction); and on the methods and tools used for

validation. In Adaptive Transmission Power Control (ATPC),

the authors have discovered a correlation between RSSI and

transmission power [2]. The transmission power is controlled

by measuring instantaneous RSSI levels. Differently, in [3]-

[4], Adaptive and Robust Topology control (ART) is studied

where PRR is periodically calculated and compared based

on two thresholds. Practical-Transmission Power Control (P-

TPC) is a technique that, through the calculation of PRR and

a feedback control loop, adapts the transmission power for

the next sampling period [5].

All the above techniques are based on various observa-

tions and thresholds which, by default, are not capable of

taking in consideration the dynamic nature of the WSNs

environment. What is worse, the competitive and egoistic

nature of those protocols is not compatible with the require-

ments of high-density wireless communications, whereby

the increased power leads to a cascading effect across the

network, leading to energy and spectrum wastage.

On the other hand, another interesting research direction

in WSNs is given by the use of machine learning methods

(e.g., reinforcement learning or RL) to optimize various

aspects of WSNs. For instance, in [6] a RL based control

mechanism is applied to achieve a high throughput and

low power consumption. In [7], it is shown how simple

RL (including just three actions - i.e. wait one time step,

transmit with low power, and transmit with high power -)

can achieve better performance in a stochastic environment

(such as WSNs) than static power control algorithms. Also,

in [8] it is shown that by using RL to control the sleep

period of the sensors the system learns to increase its energy

efficiency and network performance.

Despite the initial studies on the application of RL to

WSN scenarios, to the best of our knowledge, predictive

power control at a fine level of granularity has not yet been
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solved. Our aim is to come to understand how predictive al-

gorithms can help improving massive-scale communications

through collaborative reduction of transmission power.

III. METHOD

In this section we describe our approach, Predictive

Transmission Power Control (PreTPC) in three different

aspects: explanation of the Q-learning algorithm; software

architecture; and basic operations of the method in a flow

chart diagram.

A. Algorithm

We describe here the algorithm used to perform power

control in a predictive manner. One of the most suitable self-

learning paradigms for this task is reinforcement learning

[9]. RL is inspired by psychology, and studies how artificial

agents can learn to perform actions in a sequential order to

achieve a specific goal. At any specific moment in time, an

agent is located in a state. By picking an action to perform,

the agent moves to a new state, in which it receives a reward

(scalar value). The reward informs it how far it is from

its goal (the final state). There are many variants of RL

algorithms in the literature, but in this paper we focus on

Q- learning [10], which is a widely used one. Furthermore,

it has the advantage of being one of the lightest RL methods

in terms of required computational resources. This makes it

suitable to WSNs.

More formally, Q-learning is a model-free RL technique

which learns to compute the quality Q of any state-action

combination. The Q function is defined as Q : S×A→ R,

where S is the set of all possible states, A is the set of all

possible actions and R is the set of all possible rewards.

Initially, before learning, the Q function returns arbitrary

fixed values, defined by the designer, and denoted by policy

π. During the learning process, at each time t the agent

selects an action at in a given state st. Then, it observes the

new state st+1 and a reward rt+1 given by the new state,

and by using these observations it updates the Q function.

Finally, after more iterations, the agent will learn an optimal

policy π∗. This policy will offer to the agent the knowledge

to choose the best action in a given state to fulfill its goal.

The update rule for the Q-learning algorithm is given by:

Qt+1(st, at) = Qt(st, at)+

αt(st, at) · [rt+1 + γ ·max
a

Qt(st+1, a)−Qt(st, at)]
(1)

where αt(st, at) is the learning rate, with all α ∈ [0, 1],
and γ represents the discount factor. Furthermore, the bal-

ance between the exploration (learning) of the environment

and the exploitation of the learned knowledge can be done

using various strategies, such as the ε-greedy, ε-soft, or

softmax [11].

It is clear that in the specific case of WSNs we have a

multi agent environment, as each wireless node represents

an agent. Herein, it is worth highlighting that a multi

agent reinforcement learning framework may offer better

performance. However, to avoid the overhead induced in

WSNs by the extra messages required in such framework, in

this paper we focus just on single agent Q-learning. Thus,

each node is an Independent Learner (IL) and runs its own

Q-learning algorithm without sharing information with its

neighbors. In [12] it was shown that such a naive approach

achieves good performance in practice.

For a successful Q-learning implementation the states, the

actions, and the rewards have to be designed carefully. In our

specific case, we define the set of the states of the environ-

ment as a triplet given by the number of retransmissions, the

Clear Channel Assessment (CCA) attempts, and the latency;

the actions as transmission power levels; and the reward as

Packet Error Ratio (PER) level.

B. Software Architecture

To verify our method for WSN, we have used the concepts

as defined in the IEEE 802.15.4 standard. The system com-

prises three main blocks (Fig. 1): 802.15.4 standard com-

ponent with integrated features, DataBase Manager (DBM)

and PreTPC.

802.15.4 is the IEEE standard for Low-Rate Wireless Per-

sonal Area Network (LR-WPAN) which is meant for WSNs.

It specifies only the PHY and MAC layer according to the

ISO model integrated in a sensor node. 802.15.4 MAC and

PHY run as independent processes with respect to PreTPC.

They adopt the DBM for collecting, storing and sharing data.

The MAC layer is enabled to calculate PER and latency

when a packet is transmitted and received. The transmission

power, Ptx, is chosen polling the DBM by the Transmis-

sion Power Management Entity TPME READ.request
message. The chosen power can be either random (e.g.

during the learning transient) or the best one predicted for

a specific state. Therefore, Ptx is chosen and communicated

in the reply by TPME READ.confirm. The value then

is forwarded to the PHY layer that is in charge of actuation.

The status of the local network condition, given as the

combination of the number of the retransmissions, CCA

attempts and latency of a single packet, is transmitted to

the DBM by the TPME WRITE.indication message.

DBM in such case associates the combination of values to

one value and stores it in one entry of a table. DBM controls

802.15.4 MAC

802.15.4 PHY

DBM

PreTPC

DB

TPME_WRITE.indication

TPME_READ.request

TPME_READ.confirm

PD_DATA.indication PD_DATA.request

Packet

arrival

Packet

transmission

QME_WRITE.indication

QME_READ.request

QME_READ.confirm

Fig. 1. Software Architecture schema
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the memory of the device where the information for the

method is stored. This information is provided to the other

entities every time when DBM is polled. In PreTPC the Q-

learning algorithm is implemented and computed. Through

Q-value Management Entity QME WRITE.indication
and QME READ.request messages, PreTPC commu-

nicates Q-values and requires the data (state, action and re-

ward) respectively. In conclusion QME READ.confirm
is the reply to QME READ.request.

C. Flow Chart

As mentioned in the previous subsection, there are two

processes that run in parallel, so similarly the flow chart

(Fig. 2) can be read independently on the left and right

sides. In the middle we can notice the description of DBM

that interacts with the other two entities. On the left side,

the additional operations in the MAC layer are shown.

First of all, it is checked whether a packet is generated

and ready to be sent or not. While in the latter case the

process waits for the event to happen, in the former the

random flag is read in DBM and the transmission power

is computed accordingly. Then, either the random or best

action is set. At this point the packet is transmitted and the

ACK is expected. The reward based on PER is calculated

and sent to the DBM. Other information of the transmission

is aggregated, associated to a single value in DBM and

stored in the PacketReceptionHistory (PRH) table. On

the right side, the tasks of the PreTPC are detailed. The

first step is to initialize all the values from the Q matrix to

zero. Then the technique stops if no indication of packet

history is received. Otherwise, the first entry of PRH
is extracted and processed. Before updating the Q-value,

the Q matrix convergence is examined. If the matrix has

reached convergence then the training of the Q-learning

algorithm is terminated. Otherwise, the Q-value related to a

state and action is updated. Eventually the action is chosen

with the mechanism of ε-greedy: a random number with

standard uniform distribution is taken and compared with

ε. If the value is lower than ε then the random action is

selected, otherwise the best action is preferred. The decision

is memorized in the random flag.
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PHY
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Update Q(i)
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Fig. 2. Flow Chart diagram

IV. PRELIMINARY RESULTS

PreTPC is tested in the network simulator NS3 release

ns3.23. In this section, we show the preliminary results

regarding the behavior of the method and the Q-learning

algorithm. We focus mainly on the effect of TPC on the

802.15.4 MAC and PHY layers. We use a simple scenario,

whereby two nodes are installed in a building, adopting

[13], the site-general model in ITU-R P.1238-7, for the

propagation model and Nakagami for the fading effects. The

packet generation follows a Poisson distribution with the

average rate of 4 kbit/s.

Considering the Q-learning policy, the system resides in

one state, takes some action and moves to another state

gaining a reward. Each state expresses the status of com-

munication between the two nodes. Through the number of

retransmissions, the system learns whether the receiver has

a low Signal Interference Noise Ratio (SINR) due to low

received power or high interference, thus losing one or more

copies of a packet. Through the number of CCA attempts,

the system instead learns whether or not the transmitter

detects high energy in its range. That would be a symptom

of high interference from the transmitter side. The attributes

for the mechanism of retransmissions and CCA attempts in

CSMA/CA follow the default values in the standard 802.15.4

specification. Finally, the latency provides more information

on the conditions of the communication. It gives direct

consequences of the previous factors and more causes (e.g.,

congestion) measured in terms of time. In our case, the

actions represent the discretized transmission power levels.

Only random actions are taken (ε = 1) in order to study

PreTPC in its initial stage, while α is equal to 0,9 and

γ to 0.8. The system has 20 available transmission power

levels and the sensitivity is equal to -95 dBm. Our goal is

that the nodes learn by themselves what the consequences of

transmitting packets with a certain transmission power are.

This happens through the reward for any specific state, which

is given by a non-linear mapping function applied to the

PER level, measured in percentages and calculated over the

last 10 packets, as our goal is to optimize the communication

performance in the WSN. This mapping makes the high PER

values to correspond to low reward values and the low PER

values to correspond to high rewards. In our specific case

PER∈[0, 100], while r∈[−10, 10]. As a result of all these

parameters computed in Eq. (1), the Q-value for a specific

state and action becomes a new Link Quality Estimator

(LQE).

In this paper we intend to show a proof of concept that

Q-value is an accurate LQE. Therefore we analyze Q-values

by monitoring the state 0 and two actions: MinPow, where

Ptx is equal to the minimum -35 dBm, and MaxPow,

where Ptx is equal to the maximum 0 dBm. In the state

0 the number of retransmissions and CCA attempts is equal

to zero, and the latency is smaller than 10 ms. During a

311



simulation, the Q-value of each combination state-action

is updated at every packet reception and averaged at the

end. Physically, in our scenario, the two nodes are placed at

different distances starting from 5 up to 75 meters apart, and

in each case the average Q-value is calculated. In this way,

Q-values are tested when the signal at the receiver is very

good and when weakens causing performance degradation

(as the distance between the two nodes is increasing). The

simulations results, repeated for 10 times with an average

confidence interval of 1.22 and 1.51 for MinPow and

MaxPow respectively, are depicted in Fig. 3, showing

the trend of the average Q-values (y-axis), while the two

nodes are moving apart (x-axis). While the distance between

the two couples increases, Q-value diminishes from a high

positive value of around 50 units down to a negative value

of around -7, due to worsening of the channel quality. Since

PER is calculated over a window of packets that have been

randomly transmitted at different transmission powers as the

nodes go more apart, the probability that more packets get

lost within the window increases until a saturation stage

is reached. This is expressed by the decay of the curves

that becomes slower when the distance between the nodes

is higher than 40 meters. The slight difference between the

two curves lies on the fact that the reward is the PER of 10-

packet long window with a shift of 1 packet. This means that

in the case when the lowest transmission power is selected,

the next transmitted packet will be lost differently than by

using the maximum transmission power. This influences the

Q-value update with given limits.
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Fig. 3. Average Q-values for MinPow and MaxPow in state 0

V. CONCLUSION AND FUTURE WORK

In this work we have introduced a predictive transmission

power control technique. The system learns the effects of

choosing a transmission power per network status through

the help of a Q-learning algorithm. We presented some

preliminary results and have shown as a proof of concept that

the Q-value is an accurate LQE. As expected the Q-value

reveals high positive values when the nodes are very close

to each other because of the good link quality and becomes

negative as the received power get closer to the sensitivity.

We have observed that the values for both minimum and

maximum transmission power are very similar and we have

learnt that the direct effect of one transmission power on

a singular packet loss is dependent to the effect of other

transmission powers on other packets.

In the future, we are going to reinforce the independence

of the reward caused by one action and to analyze the

convergence of the Q matrix when the ε-greedy strategy

is enabled.
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