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Abstract — LLVM has become an integral part of the
software-development ecosystem for developing advanced
compilers, high-performance computing software and tools. This
paper presents a small set of LLVM IR extensions for explicitly
parallel, vector, and offloading program constructs. The
proposed LLVM IR extensions enable the lowering and
transformation in the LLVM middle-end for the OpenMP®
C/C++ and Fortran API, and any other explicitly parallel/simd
constructs in high-level source languages. This paper discusses
the rationale of the LLVM IR extensions to support OpenMP
constructs and clauses, and presents the LLVM intrinsic
functions, the framework for parallelization, vectorization, and
offloading, and the sandwich scheme to model the OpenMP
parallel, simd, offloading and data-attribute semantics under the
SSA form. Examples are given to show our implementation in the
LLVM middle-end passes, which paves the way to achieve a
better interaction with scalar optimizations, vectorization, and
loop optimizations, and thus resulting in higher performance.

Keywords — multi- and many-core processors, accelerators,
LLVM, OpenMP, parallelization, vectorization, offloading.

1. INTRODUCTION

This LLVM has become an integral part of the software-
development ecosystem for developing advanced compilers,
high-performance computing software and tools [1][5]. The
OpenMP* API is a widely accepted industry standard for
exploiting thread- and vector-parallelism [2][3][4], and has
been used in many applications such as machine learning,
image processing, and HPC applications to leverage the full
potential of today’s modern multi-core processor and
accelerator architectures. LLVM and the latest OpenMP
extensions usher a new era of leveraging the advanced LLVM
compiler infrastructure to support OpenMP explicitly parallel,
vector, and offloading programming models that application
developers need to utilize for achieving optimal performance.
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The C/C++ and Fortran OpenMP API has evolved a set of
new features (such as simd, declare simd, target,
target data, declare target, taskloop, do-across
loop, etc.) beyond its traditional shared-memory parallel
programming API. This requires that the support for
threading, offloading, loop tiling, fusion, privatization,
runtime lowering, loop partitioning, collapsing, outlining, etc.
be seamlessly integrated with LLVM scalar optimizations,
loop vectorization and other loop optimizations. In addition,
we want to support the OpenMP API for multiple languages
such as C/C++, Fortran, and Julia with minimal engineering
duplication and maintenance cost. Our design principles are:

e Add minimal extensions to the LLVM IR that are general
enough to represent any directive or pragma.

e Minimize the impact on the existing LLVM infrastructure and
scalar and loop optimizations.

e  Provide the support for directive (or pragma) based parallel,
vector and offloading language extensions for modern CPUs,
GPUs, coprocessors, DSP, and FPGA to explore target HW
potential.

e  Produce optimal threaded and/or simdized code by leveraging
existing and future scalar and loop optimizations with better
interaction among optimization passes.

Different from the existing Clang FE OpenMP and
offloading implementation, this paper discusses the rationale
of the language-agnostic LLVM IR extensions to support
directive (or pragma) based languages such as C/C++ and
Fortran OpenMP constructs, and provides justification of our
design for conducting OpenMP transformations including
offloading in the LLVM middle-end / back-end. A minimal set
of LLVM IR extensions is proposed to represent directives (or
pragmas) and clauses for all OpenMP constructs.

II. MOTIVATION

An LLVM-based compiler is structured as a translation
from a high-level programming language to the LLVM IR.
The LLVM tools provide a suite of IR-to-IR translations,
which provide optimizations, program transformations, and
static analyses. The resulting LLVM IR code can then be
lowered to a variety of target architectures, including x86,
PowerPC, and ARM (either by static compilation or dynamic
JIT-compilation).



The LLVM project focused on supporting C and C++ front-
ends, but many source languages, including Haskell, Fortran,
Scheme, Objective C and others have been ported to target the
LLVM IR. To support directive-based language constructs
such as OpenMP 4.5 constructs [4], the existing approach
taken in the community is to translate these constructs in the
Clang FE, so the LLVM back-end ends up dealing with a
multitude of runtime library calls, privatized code, partitioned
loop and outlined functions. Consider the example shown in
Figure 1.

#pragma omp target teams distribute parallel for simd
schedule (simd:guided, 4)

for (k=0; k< N; k++) {

.. //loop has multiple memory refs and mixed data types

}

Figure 1: An example using OpenMP combined constructs

In order to generate the most optimal code, the expected
loop transformation sequence is strip-mining, loop peeling,
offloading code generation, threaded code generation, SIMD
code generation with proper chunking, etc. The compiler has
to maintain and pass program information among these
transformations. Furthermore, for best results, it needs to
access the target machine’s architectural and micro-
architectural parameters. A front-end-only approach does not
provide an optimal implementation and it becomes impossible
to undo certain inefficient code sequences generated by the
front-end; e.g., there is no way for the front-end to perform
optimal support for SIMD modifiers without mix-data-type
analysis, computing init-chunk size with alignment peeling,
etc. Figure 2 shows another motivating example, which has
two parallel for loops. In order to increase the
granularity of the loop body, loop fusion should be applied (if
legal) before outlining each parallel for loop.

#pragma omp parallel for

for (i=0; i<N; ++i) { X[1i] += sin(X[i]); }
#pragma omp parallel for
for (i=0; i<N; ++1i) { Y[i] += cos(X[i]); }

Figure 2. Two adjacent OpenMP parallel for loops

After loop fusion, the granularity of the parallel for loop
is increased, and the threading overhead is thus amortized:
#pragma omp parallel for

for (i=0; i<N; ++i) {
X[i] += sin(X[1]); Y[i] += cos(X[i]);
To overcome these challenges, we propose a small set of
LLVM IR extensions to support explicit parallelization,

vectorization and offloading in the LLVM middle-end.

III. LLVM IR EXTENSIONS

As mentioned previously, the optimal multi-threaded,
simdized, and offloaded code generation is a combination of a
series of compiler transformations and optimizations. In
general, performing OpenMP lowering and outlining
transformations in the front-end does not produce optimal
code sequences, and maintaining a separate implementation in
each front-end for multiple program languages is becoming
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increasingly more burdensome for compiler developers. There
is a clear need for language-agnostic LLVM IR extensions to
convey high-level language construct information to the
LLVM middle- or back-end and preserve correct semantics
throughout various compilation phases.

A. Requirements

The language-agnostic LLVM IR extensions proposed in
this paper are designed around four main requirements:

e Enable scalar optimizations (e.g. inlining, global aliasing and
alignment analysis) before parallelization, vectorization and
offloading.

e Provide better interaction with scalar and loop optimizations
(e.g., minimize side-effects and impact on the vectorizer cost
model’s accuracy).

e  Leverage middle- and back-end optimizations (e.g. strip-mining,
fusion, collapsing, memory reference linearization / collapsing,
and vectorization).

e  Provide a uniform threaded code generation framework that can
be re-used for multiple programming languages, for OpenMP
parallelization, auto-parallelization and offloading.

In the remainder of this section, we detail how these
requirements have influenced our design and describe newly
proposed intrinsic functions along with their metadata
annotations.

B. Rationale of LLVM IR Extensions

There are a series of discussions on LLVM IR extensions
for representing parallelism, data attributes, data movement in
the LLVM development community and academic research.
These discussions can be classified into four options:

a) Add a large number of LLVM metadata, and use them to

annotate each necessary instruction for parallelism and data

attributes.

b) Add several new LLVM instructions such as fork, spawn, join,
barrier, etc.

¢) Add a large number of LLVM intrinsics for directives and
clauses, each intrinsic representing a directive or a clause.

d) Add a small number of general LLVM intrinsics for directives

and clauses, representing the directive/clause names using
metadata and the remaining information using arguments.

We have done pros and cons analysis based on these
discussions and our own experiences of supporting parallelism
in the Intel compilers. Table 1 shows a short summary of our
analysis.

With the understanding that foisting pragmas or directives
(e.g. OpenMP pragmas) onto the LLVM IR may not be an
ideal solution, especially since OpenMP is a large
specification that covers many different aspects of
parallelization, it appears that this is the de facto way to
support parallelism in IR in commercial product compilers
such as Intel, IBM, Cray, and PGI compilers, and GCC
compilers. Getting information represented in the LLVM IR is
the first step; the challenge is to maintain a consistent and
predictable semantics. With options c) and d), the orderings



can be preserved mainly based on USE-DEF semantics of
arguments of each intrinsic, and a manageable set of cases
depends on metadata (i.e. names of directives or clauses) for
recognizing the scope or code region. In this regard, options c)
and d) are close with respect to maintenance efforts. However,
based on our experiences of Intel compilers, option d) is
preferable because it is easier to extend to support new
directives and clauses in the future without the need to add
new intrinsics as required by option c).

Table 1. Pros/cons summary of LLVM IR extension options

Options

Pros

Cons

(2)

No need to add new
instructions or new intrinsics.

LLVM passes do not
always maintain metadata.
Must educate all passes to
understand and handle
them.

(b)

Parallelism becomes a first
class citizen.

Huge effort for extending
all LLVM passes and code
generation to support new
instructions. A large set of
information still needs to
be represented using other
means.

©

Less impact on the existing
LLVM passes. No
requirement for all passes to
maintain metadata.

A large number of
intrinsics to be added.
Some of the optimizations
need to be educated to
understand them.

(d

Minimal impact on the
existing LLVM optimizations

Some of the optimizations
need to be educated to

passes. Only directive and understand them.
clause names use metadata
strings. No requirement for all

passes to maintain metadata.

LLVM already uses metadata for certain loop information
and parallelization/vectorization annotations, but there is no
consistent and predicable way to represent data attributes and
data movement information as we mentioned in the Table 1
for option a).

C. LLVM Intrinsic Functions

Essentially, we propose four LLVM intrinsic functions to
represent directives and clauses with predefined metadata
strings. The four intrinsic functions are:

// Directive and Qualifier Intrinsic Functions

def int directive Intrinsic<[],

[11lvm metadata ty], [IntrArgMemOnly],
"llvm.directive">;

def int directive qual Intrinsic<[],

[IntrArgMemOnly],

"llvm.directive.qual">;

[1lvm metadata ty],

def int_directive_qual_opnd :
[1lvm metadata ty,
[IntrArgMemOnly],
"llvm.directive.qual.opnd">;

Intrinsic<[],

llvm any tyl,

def int directive qual opndlist
[1lvm metadata ty,
[IntrArgMemOnly],
"llvm.directive.qual.opndlist">;

Intrinsic<[],
llvm_vararg_tyl,
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The first one represents a directive or pragma, while the
remaining three are used to represent clauses, one for each
type of clause (categorized by the characteristics of its
operands):

. llvm.directive.qual(..)
. llvm.directive.qual.opnd(. .)
. llvm.directive.qual.opndlist(..)

The llvm.directive.qual.opndlist(..) intrinsic function uses
llvm_vararg ty to represent a list of items for clauses such as
private, firstprivate, lastprivate, reduction,
map, etc. The llvm.directive.qual(..) intrinsic function and
llvm.directive.qual.opnd(..) intrinsic functions are introduced
to reduce the parsing cost of clauses with simpler arguments
(zero or one operand).

D. Directives

The llvm.directive(..) intrinsic represents a directive and its
region scope. Table 2 shows a few examples of directives and
their metadata string.

The full specification for the OpenMP 4.5 standard support
is described in [6]. Given the parallel for loop example in
Figure 2, the LLVM IR generated from the front-end is shown
as below:

call void @llvm.directive (metadata !0)
for loop body ..

call void @llvm.directive (metadata !'1)

!”DIR.OMP.PARALLEL.LOOP” }

! ”DIR.OMP.END.PARALLEL.LOOP” }

0= metadata !{metadata

!'l= metadata !{metadata

Table 2. Directives and corresponding metadata strings

Directives/Pragmas LLVM Metadata String

#pragma omp ...

parallel DIR.OMP.PARALLEL
DIR.OMP.END.PARALLEL

[parallel] for [simd] DIR.OMP[.PARALLEL].LOOP[.SIMD]

DIR.OMP.END[.PARALLEL].LOOP[.SIMD]

target DIR.OMP.TARGET
DIR.OMP.END.TARGET
simd DIR.OMP.SIMD
DIR.OMP.END.SIMD
E. Clauses

In the proposed extension, the OpenMP clauses are
represented as intrinsic function calls in the LLVM IR as well.
Each such intrinsic has one or more arguments, depending on
the intrinsic type. The first argument references an LLVM IR
metadata containing the identifier (MDString) of the clause.
For the intrinsics that accept more arguments, each of the
remaining arguments may reference either a value
(representing variables or expressions) or a metadata
qualifying the number and type of arguments that follow.



OpenMP clauses can be divided into three types, and each
one corresponds to a distinct llvm intrinsic type:

e The llvm.directive.qual(..) intrinsic represents clauses with no
operands or with a predefined name (i.e., the operand is
encoded into the metadata string representing the clause name).
Clauses in this category include: default, nowait, untied,

read, write, update, capture, untied, notinbranch,
inbranch, and mergeable. Table 3 shows the metadata
string for a few of these clauses.

e  The llvm.directive.qual.opnd(..) intrinsic represents clauses with
one operand, typically an integer or boolean expression. These
clauses include: num threads, if, final, collapse,
ordered, simdlen, safelen, priority, and final.

e  The llvm.directive.qual.opndlist(..) intrinsic represents clauses
with an arbitrarily-long list of operands, usually variables. In
this category are the shared, private, firstprivate,
lastprivate, map, depend, linear, flush, uniform,
aligned, reduction, copyprivate, schedule,
copyin, and threadprivate clauses.

A group of clauses we call compound clauses allow
modifiers/operators, but they do not affect the representation
once we encode the modifier/operator into either the clause
name itself or an extra argument. Therefore, compound
clauses are represented using the same intrinsics as described
above. Examples of compound clauses include: map,
linear, reduction, schedule, depend, etc. Figure 3
shows an example of atomic with an update clause (a
clause with no operands) and its LLVM IR.

// OpenMP C++ source code

#pragma omp atomic update

count++;
// LLVM IR
call void @llvm.directive (metadata !0)
call void @llvm.directive.qual (metadata !1)
call void @llvm.directive (metadata !3)
call void @llvm.directive (metadata !2)
call void @llvm.directive (metadata !3)
'0 = metadata !{metadata !”DIR.OMP.ATOMIC”}
!l = metadata !{metadata !”QUAL.OMP.UPDATE”}
!2 = metadata !{metadata !”DIR.OMP.END.ATOMIC”}
3 = metadata !{metadata !”DIR.QUAL.LIST.END”}

Figure 3. Atomic example and its LLVM IR

Table 3. OpenMP clauses with predefined values or no value

Clauses Metadata String

default (none) QUAL.OMP.DEFAULT.NONE

default (shared) QUAL.OMP.DEFAULT.SHARED

united QUAL.OMP.UNTIED

update [seq cst] QUAL.OMP.UPDATE[.SEQ CST]
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nogroup QUAL.OMP.NOGROUP

The directive “DIR.QUAL.LIST.END” marks the end of
clauses associated with a directive (such as “DIR.OMP.ATOMIC”
or “DIR.OMP.END.ATOMIC” in the example). Its use to terminate
a directive representation is required even if the corresponding
directive has no clauses (e.g, “DIR.OMP.END.ATOMIC” above).
This requirement simplifies parsing of a group of intrinsics
that represent an OpenMP directive.

The following example shows the LLVM IR for the i f (a)
clause, which has one operand (a scalar expression):

// C++ source code
#pragma omp parallel if(a)

// LLVM IR
%4 = load i32* @a, align 4
%5 = icmp ne 132 %4, O
call void @llvm.directive(!0)
call void @llvm.directive.qual.opnd (
metadata !1, 132 %5)
call void @llvm.directive (metadata !2)
'0 = metadata !{metadata !”DIR.OMP.PARALLEL”}
!l = metadata !{metadata !”QUAL.OMP.IF”}
12 = metadata !{metadata !”DIR.QUAL.LIST.END”}

The second argument of the llvm.directive.qual.opnd(..)
intrinsic references an LLVM expression associated with a
clause (the if clause in this example). It is important to
reference expressions directly in the intrinsic calls and not in
the metadata, in order to preserve the data dependency and the
USE-DEF semantics under SSA form. Figure 4 shows the
LLVM IR for the private(a,b) clause. The list of
operands (a and b) starts from the second argument of the
llvm.directive.qual.opndlist(..) intrinsic.

// C/C++ example
// POD type
#pragma omp parallel for private (a,b)

int a,b;

// LLVM IR
call void @llvm.directive (metadata
call

10)
void @llvm.directive.qual.opndlist (
'1, %a,
12)

metadata %b)

call void @llvm.directive (metadata
'0 = metadata
11 =
12 =

!”DIR.OMP.PARALLEL")
! ”QUAL.OMP.PRIVATE” }
!”DIR.QUAL.LIST.END”}

! (metadata
metadata !{metadata

metadata ! {metadata

Figure 4. An example with private clause

In this example, both list items (variables a and b) are of
POD type, so each one is represented with a single argument
(a value in LLVM terminology) in the intrinsic. However,
there are two cases when a list item in the clause requires
multiple arguments in the intrinsic in order to represent it:

e  The list item is a non-POD (i.e., of user-defined type) variable
involved in the privatization, or a list item involved in a user-
defined reduction.

e  The list item is an array section.



When privatizing a non-POD variable, the compiler needs
to know its constructor/destructor. Therefore, a non-POD
variable in a private clause requires additional arguments
referencing its default constructor and destructor.

As a result, we represent a non-POD variable as a list of
arguments in the intrinsic. The first argument is the metadata
string “QUAL.OPND.NONPOD”. The arguments that follow
depend on the clause that lists the non-POD variable (See [6]
for the full specification):

e private (3 args): variable, constructor, destructor

e firstprivate (3 args): variable, copy-constructor,
destructor

e lastprivate (4 args): variable, constructor, copy-assign,
destructor

e reduction/UDR (5 args): variable, constructor, destructor,
combiner, initializer

For example, assume x, y are int variables, and z is a non-

POD variable. Then, the private(x,y,z) clause is
represented as:
call void @llvm.directive.qual.opndlist (
metadata !'1, %x, %y,
metadata !'2, %z, %ctor, %dtor)
!l = metadata !{metadata !”QUAL.OMP.PRIVATE"}
!2 = metadata !{metadata !”QUAL.OPND.NONPOD”}

An array section in a clause also takes multiple arguments
in the intrinsic to represent: the metadata for array section, the
base, the number of dimensions, and a triple (lower, length,
stride) for each dimension. This example shows the LLVM IR
for the clause depend (in: a, b[l:n][l:m, c):

call void @llvm.directive.qual.opndlist (

'1, %a,

12 %b, 2, 1, 1, 1, 1,
metadata !{metadata !”QUAL.OMP.DEPEND_ IN”
!”QUAL.OPND.ARRSECT"” }

metadata

metadata %n, %m, %c)
1= }
12 =

metadata !{metadata

This offloading example has multiple clauses and uses an
array section as one of its operands:

#pragma omp target device(l) if(a) \
map (tofrom: x, y[5:1007)

Its LLVM IR below shows that the source-level code
information is preserved and passed to middle-end / back-end
using a set of LLVM directive intrinsic calls.

call
call
call
call

metadata

void @llvm.
void @llvm.
void @llvm.
void @llvm.
'3,

call void @llvm.

directive (metadata !0)
directive.qual.opnd (metadata !1,1)
directive.qual.opnd (metadata !2,%a)
directive.qual.opndlist (
4, sy, 1,

directive (metadata !6)

%$x, metadata 5, 100, 1)

void @1llwvm.
void @llvm.directive (metadata

call
call
10 =
11 =

directive (metadata !5)
16)
!”DIR.OMP.TARGET” }

!”QUAL.OMP.DEVICE” }

metadata !{metadata

metadata !{metadata
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!2 = metadata !{metadata !”QUAL.OMP.IF”}

!3 = metadata !{metadata !”QUAL.OMP.MAP.TOFROM”}
!4 = metadata !{metadata !”QUAL.OPND.ARRSECT”}
!5 = metadata !{metadata !”DIR.OMP.END.TARGET"}
6 = metadata !{metadata !”DIR.QUAL.LIST.END”}
F. Privatization Semantics under SSA Form

The privatization semantics of the firstrivate,
lastprivate, private, linear, and reduction
clauses can be modeled with five basic operations: Alloca,
Def, Use, Copy-in and Copy-out under LLVM SSA form.
The operations for each clause is captured below:

e private: Alloca, Def, Use.

e firstprivate: Alloca, Copy-in, Def, Use
e lastprivate: Alloca, Def, Use, Copy-out

e linear: Alloca, Copy-in, Def, Use, Copy-out

e reduction: Alloca, Def, Use, Copy-in, Copy-out

Essentially, Copy-in is a Use of the original list item, while
Copy-out is a Def of the original list item. Thus, the
IntrArgMemOnly attribute is added to the intrinsic function
definitions for representing clauses related to privatization in
the LLVM IR with Use/Def semantics. Note that the list item
in the private clause does not need to be a reference type of
the LLVM value (pass-by-ref), as there are no Copy-in or
Copy-out operations, but list items in the other clauses need to
be of a reference type of the LLVM value.

G. Sandwich Scheme

Under the SSA form, it is not always feasible to represent
the list item in a clause with the original source variable
names due to phi node and 1-to-N (N>=1) mapping of LLVM
values for each list item. To model Use/Def in the right scope,
we propose the “sandwich scheme”, where the intrinsics
representing clauses can be generated in the place where an
LLVM value is defined or used for privatization. This is one
of the key reasons for having separate intrinsics for directives
(llvm.directive(..)) and clauses (llvm.diretive.qual*(..)) in our
proposal. This approach minimizes the impact on the existing
LLVM analysis and optimization passes. Given an OpenMP
example and its pseudo LLVM code as shown in Figure 5, the
loop index ‘k’ is an implicit linear or private variable per the
language rule for the parallel for simd loop.

#include<stdio.h>

float foo(float *a, float *x, int m)
{
float y;
#pragma omp parallel for simd private (y)
for (int k=3; k< 10001; k++) {
float w = 1.8;
*x = alk] + (float)m + w;
y = *x + k*2.888f;

alk] =
}
printf ("a[] =
return al[5];

k * 1.8 + vy;

$f\n", a[5]);



// Pseudo LLVM code -- SSA Form
define float Q@foo(float* %a, float*
entry:
3y =
@llvm.intel.directive (metadata
!"DIR.OMP.PARALLEL.LOOP.SIMD")
@llvm.directive.qual.opndlist (metadata
!"QUAL.OMP.PRIVATE", float *%y)
@llvm.directive (metadata !"DIR.QUAL.LIST.END"
br label %for.cond

%x, 132 %m) .. {

alloca float, align 4

for.cond: ; preds = %$for.body,
%$k.0 = phi i32 [ 3, %entry 1, [ %$inc, %for.body ]
@llvm.directive.qual.opndlist (metadata
! "QUAL.OMP.LINEAR",
%conv = sext 132 %k.0 to 164, !dbg !33
$cmp = icmp slt 164 %conv, 1000, !dbg
br il %cmp, label %for.body, label
'dbg !33

Sentry

float %k.0)

133
%$for.cond.cleanup,

for.cond.cleanup:
@llvm.directive (metadata
!"DIR.OMP.END.PARALLEL.LOOP.SIMD")

@llvm.directive (metadata !"DIR.QUAL.LIST.END"

; preds = %for.cond

%arrayidxl13 = getelementptr inbounds float,
float* %a, 164 5
%1 = load float, float* %arrayidx13, align 4

ret float %2, !dbg !44

; preds = %for.cond

%$inc = add nsw 132 %k.0, 1
br label %for.cond

Figure 5. An illustration example of ‘sandwich’ scheme

Figure 5 shows that, under the SSA form (pseudocode), the
loop index ‘K’ is registerized as %k.0, and there is a phi i32 [
3, %entry ], [ %inc, %for.body ]| node for the %k.0 in the
Bblock for.cond. It would be incorrect to represent its USE in
the entry Bblock using @/lvm.directive.qual.opndlist(...,
%k.0). The correct place to add the intrinsic function
@llvm.directive.qual.opndlist(..., %k.0) is right after the phi
instruction. This approach represents the Def/Use in a very
natural way, and minimizes the impact on other LLVM
optimization passes. Thus, the ‘sandwich’ scheme provides a
way to represent private or linear property properly
with Def/Use at proper places, and it also helps the compiler
to associate %inc with %k.0 without requiring extra intrinsics.
One question would be — is there another simple way to
achieve the same effect? We considered using metadata to
annotate the instruction with the required information, but
both our study and the feedback from the LLVM community
indicate that solely relying on metadata is not a viable
approach to preserve required information and model
semantics correctly in general.

IV. DESIGN AND IMPLEMENTATION

A. Work Regions

Our parallelization and offloading framework is based on
the concept of work region (a.k.a W-Region). A W-Region is
an abstraction above physical threads provided by hardware
threads or OS threads. W-Regions can be arbitrary single-
entry-single-exit sub-graphs of the CFG and have no nesting
level constraints as long as they obey the specified program
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execution order. The W-Region can be used to represent
parallel regions, parallel for loops, target regions, tasks, simd
loops, master/single region, critical sections, and so on.

A W-Region is denoted as a quadruple W(a, s, e, d) with a
thread a that is to be assigned at runtime, an entry bblock s, an
exit bblock e, and a data environment d. An important
property of the W-Region is its well-structured static
hierarchical nesting level, which is denoted as depth(W(a, s,
e, d)). The depth is computed recursively as follows:

e When W(a, s, e, d) represents a task at the outer-most
static nesting level of parallel constructs, we set its
nesting level to depth(W(a, s, e, d)) = 0.

e  When W(a, s, e, d) represents a region at an inner nesting
level of parallel constructs, we set its nesting level to
depth(W(a, s, e, d)) = depth(parent(W(q, s, e, d))) + 1.

This static nesting level property is not to be confused with
the dynamic (runtime) nesting level of the physical threads
supported by the threading runtime library. Another property
of a virtual task is its code block type (a loop, a region, a
section, or a task) that can distinguish between different
threading semantics of a W-Region and can guide the
compiler to generate threaded code according to the
definitions of the compiler-to-runtime interface. We say that a
W-Region is mapped to a physical thread (or a runtime thread)
when the W-Region is assigned a unique thread identifier a at
runtime. Note that a W-Region can be mapped to a team of
physical threads for a parallel loop or a parallel region by
assigning a unique thread identifier for each mapping.

class WRN { //base class
BasicBlock *EntryBBlock;
BasicBlock *ExitBBlock;
unsigned nestingLevel;
SmallVector<WRegionNode*,4> Children;

/I #pragma omp parallel /I #pragma omp simd

class Parallel : public WRN { <& class Simd : public WRN {
SharedClause *Shared; PrivateClause *Private;
PrivateClause *Private; b LinearClause *Linear;
Value NumThreads; int Simdlen;

} }

Figure 6. W-Region Class Definition and Hierarchy

The implementation of the W-Region is straightforward.
We define a base class, WRN, to hold information common to
all W-Regions regardless of the construct that they represent.
This information includes the entry and exit Bblocks, the
nesting level, the child W-Regions, etc. Then, we use classes
derived from WRN to represent distinct OpenMP constructs,
or any constructs. It is in these derived classes that we put the
information pertaining to the data environment, which varies
from construct to construct. This is illustrated in the Figure 6,
where the derived class to represent the parallel construct



holds the shared variables, the private variables, the number of
threads, etc., while the derived class for the simd construct
holds different data environment that is specific to simd, such
as linear variables and simdlen. Given an OpenMP code
skeleton below:

#pragma omp target
{ code-block
#pragma omp parallel for
for (k=0; k< N; k++) {
#pragma omp parallel
code-block
}

Note that the W-Region is not a new IR; it is just an
auxiliary data structure, which serves as an information
container of storing all required information collected from
LLVM IR for parallelization, vectorization, and offloading
transformations.

The corresponding W-Region hierarchy graph is shown in
Figure 7. It consists of the top-level “Target” W-Region that
has two sub-W-region children, i.e. the “parallel for”
W-Region and the “parallel” W-Region.

EntryBBlock/
ExitBBlock

O

W-Region

@) ExitBBlock
Figure 7. “Target” W-Region Hierarchy Graph Example

B. Parallelization and Offload Framework

Figure 8 outlines the parallelization and offload framework.
The first two components extract task-level parallelism within
different program scopes to construct work regions. The next
two components de-virtualize virtual tasks progressively to
match precise threading and offloading runtime constraints.
The final phase lowers a virtual task to threaded IR by
emitting runtime calls supported by the runtime library.

Component I: Prepare transformations and pre-
privatization. This component enables sections to for
loop transformations; lowers constructs such as master,
critical, single, atomic, etc.; converts a loop to its
canonical loop form; and performs transformation to honor
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privatization semantics. This component is invoked right after
the LLVM IR generation by the Clang FE.

Component II: W-Region graph construction. This
component extracts parallelism captured by parallel,
target, simd, and parallel for loops, and constructs
sibling/nesting relationships among W-Region nodes. In
addition, it collects private, shared, firstprivate,
lastprivate, linear, and reduction list items to
build up the data environment d for each W-Region.

Component III: Privatization. This component performs
trans-formations for all 1inear, reduction, private,
firstprivate, and lastprivate, variables that are
captured by the data environment d of W-Region node. For
instance, given firstprivate (x), a local clone thr_x of
the global variable x is created on the stack and initialized
with the value of x. All memory references to x in the code
block are then substituted with thr_x.

. A

|. Prepare transformation / pre-privatization

v Scalar IR
Il. W-Region graph construction

|

Ill. Privatization
Lowering IR
IV. Loop partition and scheduling code generation
|
v
V. Multi-thread code generation
! Threaded IR

Figure 8. The parallelization and offload framework

Component IV: Loop partition. This component
partitions a loop using the thread identifier & based on the
default schedule setting, or a scheduling type and chunk size
specified with the schedule clause. The loop partition and
scheduling is represented internally with the following format:

LPARTITION (tid, sched, cs, lv, glow, gup, gstride, viow, vup)

where #id denotes the thread identifier, sched denotes the loop
scheduling type, cs denotes chunk size, /v denotes whether the
code for computing the last value is needed or not (“false”
means last value is not needed), glow and gup denote the
original loop lower and upper bounds, and gstride denotes the
original loop stride. The parameters vlow and vup denote the
loop’s lower and upper bounds after loop partitioning for the
virtual thread; they are computed by an OpenMP runtime
library routine to which we pass in the other parameters in
LPARTITION.

Component V: Threaded code generation. This
component maps a W-Region loop node to LLVM instructions
and OpenMP runtime library calls for the target platform. The
transformations include (i) emit a _fork threads(..) call to
create physical threads; (ii) emit a loop partitioning call to
compute viow, vup based on the loop information captured in
the LPARTITION of each W-Region loop; (iii) outline the



code blocks in the W-Region into a function that can be
invoked from the runtime library.

The Component I implementation can be either part of the
IRBuilder library or a demand-driven transformation module,
which can be invoked in Front-Ends right after LLVM IR is
generated from the AST tree, although it works as an LLVM
function pass in our current implementation. Component II is
an LLVM analysis pass. Components III and IV are
implemented as LLVM utility functions. Component V is
implemented as an LLVM module-level pass, as it creates
outlined parallel or offload functions, and emits parallel loop
partitioning runtime calls.

C. Vectorization Framework

Figure 9 outlines the vectorization framework. The first two
components are transformations to prepare the input for actual
vectorization. The next four components are analyses, even
though some may not be explicitly made into LLVM analysis
passes. The last component transforms the input scalar IR into
vectorized widened IR [7][8][9]

Component I: Prepare transformations and pre-
privatization. This component 1is shared with the
Parallelization and Offload Framework and its functionality
for vectorization is similar, where applicable.

Component II: Vector function processing. This
component converts function vectorization (OpenMP
declare simd and other similar constructs such as
OpenCL kernels and WFV) into loop vectorization, which is
conceptually similar to sections to for loop conversion in
the Parallelization and Offloading Framework. This approach
eliminates the need for a separate function vectorizer and thus
reduces the development and maintenance cost. Other than
having to run it before Component III, placement of
Component IT within the LLVM pass ordering is flexible [8].

I. Prepare transformation / pre-privatization

v

A
1. Vector function processing Scalar IR

v

11l. W-Region graph construction

Operate on VPlan.
Input Scalar IR is
intact.

IV. VPlan construction

V. VPlan analysis & optimization

\
VI. VPlan cost modeling
|

v
VII. Vector code generation
¢ Widened Vector

Figure 9. The vectorization framework

Component III: W-Region graph construction. This
component is shared with the Parallelization and Offload
Framework, but, it needs to run separately for the vectorizer.

28

This time, it works only on simd loops since parallelization
and offloading are already processed.

Component IV: VPlan construction. Vectorization Plan
(“VPlan”) [7][8] is the collection of data structures that
describes how the vectorization will be performed. The
concept of VPlan is essential in building a unified
vectorization framework that can work on both explicit
vectorization and auto-vectorization. In general, the latter
often involves modifications to the computation and control
flow, introducing new “instructions” to accomplish the
modified control flow, before deciding whether vectorization
is profitable or not. As such, the vectorizer should not directly
work on the incoming IR to reflect the modifications to the
control flow and newly introduced “instructions”. VPlan
contains an abstraction of basic blocks and instructions so that
the vectorizer can reflect the newly introduced control flow by
manipulating the abstract basic blocks and creating abstract
instructions. By utilizing the VPlan concept also for explicit
vectorization, we can share most of the vectorization
machinery between explicit vectorization and auto-
vectorization and thus reduce the development and
maintenance cost.

The authors acknowledge the risks involved in IR format
conversions. Therefore, the constructs in VPlan are kept in
close relations with the LLVM IR to be generated from it.
LLVM IR generated from unmodified VPlan would be
identical to the input LLVM IR. The alternative is to create a
copy of the LLVM IR for the loop nest and directly operate on
it. This approach is more obvious and straightforward, but the
feedback from llvm-dev mailing list is against utilizing that
approach inside of an LLVM analysis pass. We consider
Components III to VI as analyses.

Component V: VPlan analysis and optimization. The
vectorizer performs divergence analysis on VPlan to
determine which conditional branches need to be converted to
vector masking and which inner loops require the changes in
the looping control such that all vector elements within the
vector chunk execute the same number of iterations. The
analysis is then explicitly reflected on the VPlan, without
impacting the IR incoming to the vectorizer. Furthermore,
since the incoming scalar IR may not be optimal for vector
execution, this component also performs additional analysis
and optimization on VPlan as needed.

Component VI: VPlan cost modeling. One may think
that a cost model is not needed for explicit vectorization, but
that is untrue. The vectorization factor (or vector length) and
the unroll factor are often left unspecified by the programmer,
requiring a cost model to find the best values for those. There
are other optimizations within the vectorizer that are also
subject to cost modeling.

Component VII: Vector code generation. We made the
design decision such that VPlan explicitly represents most of
what vector code generator has to emit. Therefore, the vector
code generation work is relatively straightforward; widen the
incoming scalar IR where the sections of VPlan are



unmodified, and generate vector code directly from the
sections of VPlan where modifications happened.

D. Interaction among LLVM Passess

With the parallelization, vectorization and offloading
framework presented in this section, individual scalar and loop
optimization passes, and inlining passes can be run before or
after parallelization, vectorization and offloading depending
on performance tuning strategies whenever they are needed,
and program annotations can be preserved and passed via a
sequence of directive and qualifier intrinsic function calls. The
compiler vendors can leverage the framework to build product
compilers by customizing the phase ordering for their specific
target architectures.

V. LLVM IR CODE GENERATION EXAMPLES

A. Parallelization Examples

In this section, we use a simple example to demonstrate the
multi-threaded code generation by going through some steps
in our LLVM compiler. Consider the simple C code below

with parallel and master constructs:
extern float w;
float foo(float *a,
{ int k; float y;
#pragma omp parallel private(k,y,w)
for (k=3; k< 1000; k++) {
w = 1.8;
#pragma omp master

float *x, int m)

*x = alk] + (float)m + w;
}
y = *x + k*2.888f; al[k] = k * 1.8 + y;
}
printf("al]l = %f\n", al5]);

return al[5];

The Prepare-transformation component invokes our CFG-
restructuring utility, followed by the hierarchical W-Region
graph builder (an LLVM analysis pass). Then, it lowers the
W-Regions that do not require outlining or loop partitioning.
Output (I) below shows the result of the W-Region
construction and (II) shows the LLVM IR code skeleton
coming out of the Prepare-transformation component.

(I): W-Region graph for nested constructs

BEGIN WRNParallelNode<1l> ({

BEGIN WRNMasterNode<2> {
DIR.OMP.MASTER.3:
call void @llvm.directive (
metadata !"DIR.OMP.MASTER")
call void @llvm.directive (
metadata !"DIR.QUAL.LIST.END")
br label $DIR.QUAL.LIST.END.4

DIR.QUAL.LIST.END.4:
%6 = load float*, float** %$x.addr, align 8
store float %add3, float* %6, align 4

br label $DIR.OMP.END.MASTER.S5

DIR.OMP.END.MASTER.5:
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call void @llvm.directive (
metadata !"DIR.OMP.END.MASTER")
call void @llvm.directive (
metadata !"DIR.QUAL.LIST.END")
br label %$DIR.QUAL.LIST.END.6
} END WRNMasterNode <2>

} END WRNParallelNode<1l>

(ID): IR after prepare-transformation

for.body:
store float O0x3FFCCCCCCO0000000, float* Q@w, align 4
br label %DIR.OMP.MASTER.3
DIR.OMP.MASTER.3:
$my.tid = load 132, 132* %tid.addr, align 4
%1 = call 132 @_ kmpc master(@.loc.12.15, i32 %my.tid)
%2 = icmp eq 132 %1, 1
br il %2, label %if.then.master.2,

label $DIR.QUAL.LIST.END.6

if.then.master.2:

%$8 = load float*, float** %x.addr,
%add3, float* %8,

%$DIR.OMP.END.MASTER. 5

align 8
store float align 4

br label

DIR.OMP.END.MASTER.5:
$my.tidl = load 132, 1i32* %tid.addr,
call void @__ kmpc_end master (@.loc.12.15,
br label %DIR.QUAL.LIST.END.6

align 4
i32 Smy.tidl)

DIR.QUAL.LIST.END.6:
%9 = load float*,
%10 = load float,

float**
float™*

$x.addr,

%9,

align 8
align 4

The LLVM IR output shown in (III) below demonstrates
the transformations done for the caller and callee of the
outlined function. The Intel® OpenMP runtime library API is
used in our LLVM threaded code generation; this is the same
API used by the Intel® C/C++ and Fortran compilers, as well
as the community Clang FE OpenMP implementation.

(ID): LLVM IR after privatization, outlining and _threaded
code generation

define float @foo(float* %a, float* %x, 132 %m)
entry:
%tid.addr = alloca 132, align 4

$tid.val =
store 132

call 132 @_ kmpc_global_ thread num(..)
$tid.val, 132* %tid.addr, align 4

store float* %a, float** %a.addr, align 8

store float* %$x, float** %x.addr, align 8
store 132 %m, 132* %m.addr, align 4
br label %codeRepl, !dbg !23

codeRepl:
$fork.test =
%0 =
br il

tail call i32 @_ kmpc_ok_ to_fork(..)
icmp eq i32 %fork.test, 1
%0, label %if.then.fork.3,

label %if.else.call.3

if.then.fork.3:
call void @_ kmpc_fork call(

{i32, 132, i32, 132, i8* }* @.loc.9.18,

132 3, void (float**,

i32*%, float**)* @foo DIR.OMP.PARALLEL.1,

float** %a.addr, 132* %$m.addr, float** %x.addr)
br label %DIR.QUAL.LIST.END.S8

if.else.call.3:
call void @foo_DIR.OMP.PARALLEL.1 (i32* %tid.addr,
132* %bid.addr, float** %a.addr,
i32* %m.addr, float** %$x.addr)
br label %DIR.QUAL.LIST.END.S8



DIR.QUAL.LIST.END.8:

%1l = load float*, float** %a.addr, align 8
ret float %4
}

// Outlined Function for the parallel construct
define internal void @foo_ DIR.OMP.PARALLEL.1 (

i32*% %tid, i32* %$bid, float** %a.addr,
132* %m.addr, float** %$x.addr) #4 {

newFuncRoot:

br label $DIR.OMP.PARALLEL.1
DIR.QUAL.LIST.END.8.exitStub:

ret void
DIR.OMP.PARALLEL.1:

$k.priv = alloca float, align 4 // privatization output

%y.priv = alloca float, align 4 // privatization output

br label %DIR.QUAL.LIST.END.2, !dbg !26
DIR.QUAL.LIST.END.2:

store 132 3, 1i32* %k, align 4, !dbg !26

br label %$for.cond, !dbg !26
for.cond:

%0 = load 132, i32* %k, align 4, !dbg !28

%conv = sext 132 %0 to 164, !dbg !28

$cmp = icmp slt 164 %conv, 1000, !dbg !28

br i1 %cmp, label %$for.body, label %for.end
for.body:

br label %DIR.OMP.MASTER.3

DIR.OMP.MASTER.3: // The CFG for master construct is same
// the LLVM IR in shown in (II)

DIR.OMP.END.MASTER.5:

load 132, 132* %k, align 4
br label %for.cond

for.end:
br label

}

%DIR.QUAL.LIST.END.8.exitStub

Our middle-end implementation includes a finalization step
to customize the outlined function to obey the OpenMP
runtime API’s requirement that its first two arguments be “tid”
and “bid”. The offloading support uses the same W-Region
framework to emit the offloading runtime API code.

B. Vectorization Examples

In this section, we use a simple example to demonstrate the
vector code generation by going through some steps in our
LLVM compiler. The following C code with a simd construct

will result in a W-Region graph that has a single
WRNSimdNode.
void foo(int *a, int m)
{
int k;
int y;
#pragma omp simd lastprivate(y)
for (k=3; k< 10001; k++) {
y = alk];
if (y > m)
{
y =m/ y;
}
alk] = k + y;
}
printf("y = %d\n", vy);
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(I): LLVM IR before Vectorization

Two basic blocks extracted from full LLVM IR are shown
below.

for.body:
$indvars.iv = phi i64 [ 3, %entry 1,

[ $indvars.iv.next,%if.end ]

$arrayidx = getelementptr inbounds 132, i32* %a,
i64 %indvars.iv

%0 = load i32, 132* %arrayidx, align 4

cmp2 = icmp sgt 132 %0, %m

br i1 %cmp2, label %$if.then, label %if.end
if.then:

%$div = sdiv 132 %m, %0

br label %$if.end

(1): Initial VPlan

The initial VPlan creation is a straightforward one-to-one
mapping.

VPBlock<1>:
OriginalBB: for.body:
VPBlockSuccessors <2> @%cmp2,

VPBlock<2>:

OriginalBB:

<3> @!%cmp2

if.then:

VPBlockSuccessors <3>

{ID): Final VPlan

During the VPlan analysis and optimization phase, the
vectorizer notices integer divide under a condition. Since the
generated vector code should not produce any more divide-by-
zero exceptions than the scalar code, the vectorizer decides to
blend with a safe divisor value (VPBlock<5>). The
vectorizer also notices that divide is a relatively expensive
operation and thus inserts an “all-false” bypass
(VPBlock<4>). The textual example below has an SSA form
violation, but VPlan keeps track of Uses and Defs
appropriately.

VPBlock<1l>:

OriginalBB: for.body:

VPBlockSuccessors <4>

VPBlock<4>:
OriginalBB: none
%maskval = vector mask to int (%cmp2)
$cmp3 = icmp seq i32 %0, %maskval
VPBlockSuccessors <5> @%cmp3, <3> @!%cmp3
VPBlock<5>:
OriginalBB: none
%0 = select il %cmp2, %0, Oxl
VPBlockSuccessors <2>
VPBlock<2>:
OriginalBB: if.then:



(IV): LLVM IR after Vectorization

Vector code generator utilizes the original basic block
contents for widening the unmodified bodies of VPBlocks
(for.body and if.then) and generates code directly from
VPBlocks that are newly introduced (VPBlock4 and
VPBlock5) or are having their bodies modified for
optimization purposes.
for.body:

%$indvars.iv = phi i64 [ 3, %entry 1],

[ $indvars.iv.next, %if.end ]

%arrayidx = getelementptr inbounds 132, i32* %a,

i64 %indvars.iv
$arrayidxl = bitcast i132* %Sarrayidx to <4 x 1i32>*

%0 = load <4 x 132>, <4 x i32>* %Sarrayidxl,align 4
$ml = .. ; // broadcast %m
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Scmp2 = icmp sgt <4 x i32> %0, %ml
br label $VPBLOCK4

VPBLOCK4 :
$maskval = bitcast <4 x 11> %Scmp2 to <i4>
$maskvall = zext <i4> %maskval to <i32>
$cmp3 = icmp seq 132 %0, %maskvall

br il %cmp3, label %if.end, label $VPBLOCKS5
VPBLOCK5:
%1 = select il %cmp2, <4 x 132> %0, <4 x 132> 0x1
br label %$if.then
if.then:
$div = sdiv <4 x 132> %ml, %1
br label %$if.end

VI. SUMMARY

This paper proposes a small set of extensions to the LLVM
IR to support explicit parallel, simd, and offloading constructs.
The proposed IR and compiler framework extensions enable
the lowering and transformation of the constructs in the
LLVM middle-end. These constructs can be from the
OpenMP API for C/C++ and Fortran, as well as any other
explicit parallel / simd / offload constructs supported in high-
level languages. This paper also discusses the rationale of
LLVM IR extensions for OpenMP constructs and their
relevant clauses in the LLVM IR, and describes the proposed
LLVM intrinsic functions, and the design of a unified
framework for parallelization, offloading and vectorization
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compiler transformations. A “sandwich” scheme is introduced
to model OpenMP parallel, simd, offloading and data-attribute
semantics under the SSA form. Finally, code examples are
given to show how our current implementation in the LLVM
middle-end paves the way for a better interaction with scalar
optimizations, vectorization, and loop optimizations, and thus
resulting in higher performance.
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