
Evaluation of HPC Application I/O on Object Storage Systems

Jialin Liu1, Quincey Koziol1, Gregory F. Butler1, Neil Fortner2, Mohamad Chaarawi3, Houjun Tang1,
Suren Byna1, Glenn K. Lockwood1, Ravi Cheema1, Kristy A. Kallback-Rose1, Damian Hazen1, Prabhat1

1 Lawrence Berkeley National Laboratory, 2 The HDF Group, 3 Intel Corporation

Abstract— POSIX-based parallel file systems provide strong
consistency semantics, which many modern HPC applications
do not need and do not want. Object store technologies
avoid POSIX consistency and are designed to be extremely
scalable, for use in cloud computing and similar commercial
environments. In this work, we evaluate three object store
systems: Intel DAOS, Ceph RADOS, and Openstack Swift, and
evaluate them with three HPC applications: VPIC, H5Boss,
and BDCATS. We have developed virtual object layer (VOL)
plugins for HDF5 that can redirect the applications’ HDF5 calls
to the underlying object storage systems’ APIs, with minimum
application code change. Through our evaluation, we found that
object stores have better scalability in many cases than POSIX
file systems, but are not optimized for common HPC use cases,
such as collective I/O. Understanding current object store I/O
details and limitations will enable us to better design object
stores for future HPC systems.

I. INTRODUCTION

HPC storage architectures are becoming increasingly com-
plex as we enter the exascale computing era. The storage
hierarchy in upcoming HPC systems is expected to range
from node-local storage in the form of storage class memory
(SCM) and solid state disk (SSD), shared burst buffer layer
with SSDs, parallel file systems with hard disk drives, and
the continued presence of a tape archive. On the other hand,
scientific applications using HPC systems are exacerbating
the complexity even further with the increasingly massive
amounts of data they are generating or consuming (or both).
The amounts of data produced or analyzed by HPC appli-
cations from science simulations from high-energy physics
[24], plasma physics [16], etc., and experimental facilities
such as Advanced Light Source (ALS) [1], LCLS-II [9], and
CryoEM [42] are expected to reach exabytes in the near
future. A critical requirement in HPC systems with these
large-scale applications is to be able to store and retrieve
this scale of data efficiently.

Parallel file systems along with I/O middleware (MPI-IO)
and high-level I/O libraries (HDF5, netCDF, etc.) have been
serving data storage needs on HPC systems for decades.
However, the POSIX and MPI I/O standards that are the
basis for existing I/O libraries and parallel file system
interfaces present fundamental challenges in the areas of
scalable metadata operations, semantics-based data move-
ment, performance tuning, asynchronous operations, and
support for scalable consistency of distributed operations.
Several efforts have proposed workarounds to full POSIX
compliance and also extensions to the POSIX I/O interface
to handle large-scale parallel I/O. For example, Vilayannur et
al. [44] propose extensions to POSIX I/O for PVFS with the

goal of providing hints about I/O patterns and performing
lazy metadata operations. Parallel file systems, such as
Lustre, GPFS, and Cray Data Virtualization Service (DVS)
provide various workarounds [43]. Despite these patchwork
solutions, moving beyond the POSIX I/O API is needed for
HPC to achieve exascale I/O goals [13], [17], [12], [44].

‘Object-based storage’ [37], [30] is a generic term used
to describe an abstract data container that consists of many
byte-streams (or objects), each with related attributes. At-
tributes are stored and transferred with the objects and object-
based storage can efficiently express quality-of-service,
transparent performance optimizations, data sharing, and data
security qualities that an application can exploit.

Several object-based storage solutions are either entering
use or in development currently. Among them, Intel is de-
veloping DAOS (Distributed Asynchronous Object Storage),
an open-source software-defined object store designed from
the ground up for massively distributed nonvolatile memory
(NVM) [22]. DAOS takes advantage of next generation
NVM technology like Storage Class Memory (SCM) and
NVM express (NVMe), while presenting a key-value storage
interface and providing features such as transactional non-
blocking I/O, advanced data protection with self-healing on
top of commodity hardware, end-to-end data integrity, fine
grained data control and elastic storage to optimize perfor-
mance and cost. [4]. DAOS is a complete I/O architecture
that aggregates SCM and NVMe storage distributed across
the fabric into globally-accessible object address spaces,
providing consistency, availability and resiliency guarantees
without compromising performance.

RADOS [14], as part of Ceph [45], is another scalable
and reliable object storage service for petabyte-scale storage
clusters. The Ceph architecture can be neatly broken into
two key layers. The first is RADOS, a reliable autonomic
distributed object store, which provides an extremely scalable
storage service for variably sized objects. The Ceph file
system is built on top of that underlying abstraction: file
data is striped over objects, and the MDS (metadata server)
cluster provides distributed access to a POSIX file system
namespace (directory hierarchy) that’s ultimately backed by
more objects. Until now, RADOS’ only user has been Ceph.

OpenStack Swift [11], The OpenStack object store project,
known as Swift, offers cloud storage software to store and
retrieve large volumes of data with a simple API. It’s
built for scale and optimized for durability, availability, and
concurrency across the entire data set. Swift is ideal for
storing unstructured data that can grow without bound.

24

2018 IEEE/ACM 3rd International Workshop on Parallel Data Storage & Data Intensive Scalable Computing
Systems (PDSW-DISCS)

978-1-7281-0192-7/18/$31.00 ©2018 IEEE
DOI 10.1109/PDSW-DISCS.2018.00006

With the goal of evaluating object storage solutions on
HPC systems with science use cases, we present an evalu-
ation of Intel DAOS, Ceph RADOS, and OpenStack Swift.
NERSC supports 7000 users for mission critical science on
the center’s flagship systems, Cori and Edison. Evaluating
object store technologies with representative science appli-
cations is beneficial to the broader HPC community and
sheds light on the next generation of HPC storage systems.
We have configured a small testbed (4 clients, 2 gateways,
and 4 storage nodes) at NERSC for this evaluation. To
provide the software bridge between existing high-level HPC
I/O interfaces and object stores, we have developed plugins
for HDF5, a popular I/O library, and the selected object
storage systems. HDF5 provides a Virtual Object Layer
(VOL) feature that allows interception of HDF5 public API
calls and redirection of the calls to object interfaces. We have
developed VOL plugins for RADOS and Swift in this effort.
We have also updated the existing prototype DAOS VOL
plugin as part of this work.

The contributions of this work include:
1) a comprehensive evaluation of object store technolo-

gies with several HPC applications
2) three HDF5 VOL plugins were either developed for

the first time (RADOS and Swift) or enhanced (DAOS)
during this evaluation

3) a better understanding of various object store I/O
internals and their potential in resolving the POSIX
constraints.

4) lessons for future HPC object store design and opti-
mization.

We first review the difference between object store and
file system in Section II. In Section III, we describe the
object store testbed setup. A brief discussion regarding object
store’s function test is included in Section IV. Three HDF5
Virtual Object Layer I/O plugins design and their evaluation
with three HPC applications are discussed in Section V and
Section VI separately. We cover a few related work in VII
and conclude the work in Section VIII

II. OBJECT STORES VS. FILE SYSTEMS

The vast majority of traditional HPC applications have
long relied on file systems to store application input and
output data. Today’s file systems support the POSIX I/O
interface, including functions such as open(), close(),
read(), and lseek(), and implement simple assurances
about the behavior of these functions. For example, the
POSIX standard stipulates that data that is successfully writ-
ten using the write() call must be immediately available
to be read using the read() call.

While this semantic meaning of read() and write()
is trivial at first glance, it introduces a tremendous amount
of complexity on networked and parallel file systems where
clients are not aware of which other clients may be modifying
the file. As a result, many parallel file systems (including
Lustre [21] and Spectrum Scale (formerly GPFS) [41])
choose to implement distributed locking schemes ensure
this POSIX consistency, effectively trading I/O performance

for strong consistency, by serializing I/O traffic [34]. Such
serialization is the antithesis of scalable performance though,
and some parallel file systems (including PVFS2 [25] and
DataWarp [32]) have chosen to recover some of this per-
formance by providing relaxed, “POSIX-like” behavior that
does not strictly conform to these POSIX semantics.

The foundations of file systems in POSIX ultimately
result in inescapable points of serialization in the kernels
of networked file system clients and servers, though. In
response to the fundamental scalability limitations of POSIX
file systems, object stores have emerged as a dramatically
more scalable storage paradigm that reject the notion of
file-based I/O and instead provide a much simpler interface
for interacting with data objects. The key features that
distinguish object stores from file systems are:

1) Object stores have a flat namespace and no pre-
scribed metadata schema. Objects simply have a
globally unique object ID, and all other metadata is
optional and implementation-specific. This contrasts
sharply with file systems which feature hierarchies of
directories and files, owners and groups, hierarchical
permissions, and a fixed set of metadata which includes
file name, create/modify/access times.

2) Object store access occurs through stateless, atomic
operations such as PUT, GET, and DELETE. Unlike
file-based I/O, there is no stateful file handle or a
requirement that a file be opened before its data can
be accessed. A user simply requests all of the data
corresponding to an object ID, or puts an entire data
object and receives an object ID in response.

3) Objects are immutable. Once an object is written via
PUT, it can never be modified again. This, combined
with the aforementioned atomicity of the PUT oper-
ation, obviates the need for any type of distributed
locking mechanisms. If data can be retrieved by GET,
it is guaranteed to be consistent and immutable.

These three features allow object stores to scale out
beyond the capability of file systems by not attempting to
provide the broad feature set dictated by POSIX-like file
systems. The corollary, though, is that object stores can be
much more difficult for users and applications to use; access-
ing data based on object IDs in a flat namespace is analogous
to only using inodes to reference files, and the immutability
of objects makes object stores unaccommodating of highly
dynamic data such as source code or application input
configurations. As a result, object stores have historically
been limited to industries with both tremendous data volumes
and significant write-once, read-many (WORM) workloads
such as content distribution [19], [38]. Following this use
case, the vast majority of existing object storage systems
today have been designed with scalable capacity for WORM
workloads as the principal optimization point.

Over the last five years, the ever-increasing demands for
scalable performance and capacity from the HPC community,
combined with the increased affordability of nonvolatile
memory and solid-state storage, have started shifting the

25

trajectory of extreme-scale parallel storage systems. The
latency penalties of file-based I/O and passing I/O requests to
the operating system kernel are becoming the single largest
bottlenecks in I/O performance to emerging nonvolatile stor-
age technologies. As a result, a new type of object stores
that are optimized for extremely high performance and low
latency are now being developed as a wholesale alternative
to the traditional parallel file system [29], [36].

Thus, there are two broad categories of object stores that
have applications in high-performance computing:

• Hot archive object stores are those optimized for
highly scalable capacity and manageability but modest
bandwidth and latency. This architecture naturally fits
the role currently fulfilled by tape-based archives and
colder file storage [28], and countless open-source and
proprietary implementations are available and in use in
enterprise computing environments.

• High-performance object stores are those optimized
specifically for the low latency and high bandwidth
enabled by emerging nonvolatile memory technologies.
This architecture is designed to overcome the perfor-
mance limitations of parallel file systems and, as such,
are intended to displace burst buffers and parallel file
systems. DAOS [36] and Mero [29] are perhaps the two
most widely known.

It is important to note that these two categories are
extremes at opposite ends of a spectrum, and some object
store implementations (such as Ceph [46]) fall somewhere
between these two. In addition, these categories only serve
to characterize the lowest-level architectural features of the
object store. It is not uncommon to implement much more
semantically rich interfaces, including POSIX-like file sys-
tems, on top of these more primitive foundations [33], [23],
[28], [26].

In this work, we explore implementations of object stores
that represent both hot archives and high-performance object
stores to provide a broad description of how these technolo-
gies may be applied in future HPC storage systems.

III. STORAGE TESTBEDS

A. SWIFT and RADOS Testbeds at NERSC

Two object store testbeds were configured at NERSC:
a GPFS/Swift testbed and a Ceph/RADOS testbed. The
testbeds used identical hardware and are all running CentOS
7.2.1511 (GPFS/Swift) or 7.3.1611 (Ceph/RAIDOS). All
tests were conducted from Cori’s Haswell nodes (each with
32 cores per node, and 128GB RAM).

1) Testbed Configuration: The testbeds use identical stor-
age configurations. Each testbed consists of eight disk arrays
and four primary storage servers. Each testbed also has two
additional servers performing specialized roles depending on
the file system being tested. These additional servers are
identical to the storage servers.

2) Network Connectivity: All servers are connected to
an FDR InfiniBand fabric, allowing them to communicate
with each other using both IP and RDMA. Each server is

connected to the IB fabric switch by a single QDR link
from a QDR HCA. Access to these servers from outside of
the testbed environment is through gateway systems attached
to both the testbed InfiniBand fabric and external Ethernet
networks.

3) Storage Connectivity: The four servers in the Swift
testbed are configured as two pairs of active-active failover
partners. Each pair serves four dual attached disk arrays.
Each member of a pair acts as the primary server for half of
the storage and the secondary server for the other half of the
storage and is capable of serving all of the the pair’s storage
in case of failure of the partner server.

The four servers in the Ceph/RADOS testbed are indepen-
dent and are not configured with any failover capability. Each
server is configured to serve dedicated storage that belongs
exclusively to them.

The storage arrays are connected to the servers via 8 Gb/s
Fibre Channel connections, with each server having 8 con-
nections, one to each of the two controllers belonging to each
of the 4 arrays it serves.

4) Servers: The servers have Supermicro X8DAH+ moth-
erboards with two 12 core 2.8 GHz Intel X6500 cpus, 48
GB of 1333 MHz DDR 3 ECC memory, 2 quad port FC8
Qlogic Fibre Channel adapters, and two dual port Mellanox
ConnectX-2 QDR InfiniBand HCAs.

5) Storage: The storage arrays are Nexsan E60 arrays
having two active-active redundant controllers and 60 3TB
disk drives. The disk drives are organized into six 8+2 Raid
6 LUNs of 24TB each. Each of the controllers has two FC8
connections and is primary for 3 of the LUNs and secondary
for the other 3.

6) Testbed specifics - Swift Testbed: The Swift testbed is
using GPFS 4.2.3.4 protocols. It consists of 4 NSD servers
operating as two failover pairs, with each pair serving 24
LUNs for a total of 48 LUNs/NSDs. Each NSD server is
responsible for being the primary server for 12 of the LUNs
and the secondary for the other 12.

The testbed also has two CES protocol servers that provide
high-availability access to the underlying GPFS filesystem
as an object store using openstack-swift 2.7.2. The Swift
testbed also provides swift-on-file access to the underlying
GPFS filesystem.

The underlying GPFS filesystem has a capacity of 1.1PB.
Both the native GPFS filesystem and its Swift interface
are exported to external systems through the InfiniBand to
Ethernet gateways.

7) Testbed specifics - Ceph/RADOS Testbed: The
Ceph/RADOS testbed is running Ceph 10.2.10 (Jewel). It
consists of 4 OSD servers and two Monitor nodes, one of
which is also a RADOS Gateway for access using Swift.

The Ceph/RADOS testbed has the standard configuration
of 4 storage servers, each of which operates independently
with non-shared storage. They serve a total of 48 LUNs
having a total capacity of 1.1PB. Each of the 48 LUNs is
configured as an OSD.

The Ceph/RADOS object store is available within the
testbed environment and on external systems using both the

26

Rados CLI and Swift access mechanisms.

B. Lustre File System at NERSC

The Lustre filesystem (v2.7.2.25) is provided by Cray, and
is used at NERSC by both the Cori and Edison systems, as
a shared global scratch space. There are 248 Object Storage
Servers (OSS), with each managing one Object Storage
Target (OST). InfiniBand connects five metadata servers and
248 OSSs to the LNET routers on the Cray XC system.
The OSTs are configured with GridRAID, similar to RAID6.
Each OST consists of 41 disks, and can deliver 240TB
of capacity. The maximum aggregated bandwidth is above
740 GB/sec. The I/O stack on this production system has
been highly optimized, not only by Cray, but also from
decades of effort in the HPC community (e.g., MPI, and
Lustre). Thus, we do not claim the comparison to the three
object store testbeds in this study is fair in any sense, but
rather is a demonstration of the pros/cons of using object
store technologies for future HPC systems.

C. DAOS Testbed at Intel

DAOS is installed on the Boro cluster at Intel. The Boro
cluster has 80 nodes, with each node having 128 GB memory,
72 CPUs, and CentOS Linux 7.4.1708. It uses Intel Infini-
band AXX1FDRIBIOM Single Port FDR I/O modules with
QSFP to connect the nodes. The client-server communication
is based on Mercury, using the OFI and PSM2 network
providers. In this study, we used tmpfs as the storage backend
for evaluating DAOS, since SCM and NVMe backends were
not available on the Boro cluster at the time of this study.

IV. OBJECT STORE FUNCTIONAL TEST

Any adoption of an object-storage solution will require a
transition period for users to adapt code and workflows that,
to date, have relied upon POSIX semantics. The Spectrum
Scale Object services implementation, based on OpenStack
Swift, provides an objectization feature to convert files to
objects automatically and therefore may be useful for those
users who would like to experiment with an object-based
solution while not leaving the traditional file-based world
all at once. This feature is a subset of the larger Spectrum
Scale Cluster Export Services (CES) and, when enabled, is
available cluster-wide.

For Unified file and object access, an administrator creates
a storage policy of this type and a Spectrum Scale fileset is
created for the policy. The objectizer is a scheduled process
which asynchronously creates an object version of new files.
It runs, by default, on a 30 minute cycle, or alternatively an
administrator can specify files to be immediately objectized.
The objectizer process is not needed for files created via
the object interface to be viewed via file access. It is
worth noting that there are separate ACLs for object versus
the file access, so user access via each method can be
controlled independently. This could be useful, for example,
in a use case where there is internally-facing file access and
externally-facing object access. The path to file access is

Fig. 1. Unified file and object access in IBM GPFS [7]

auto-generated based on the fileset name, the policy index
number (same as region number), the keystone account ID.

We performed basic functional testing of Unified file
and object access including Swift token creation for au-
thentication, Swift upload of files, viewing these objects
via file access, updating the metadata associated with the
object as well as creation of files and confirmation of the
object counterpart being created and accessible. All of this
testing was successful and demonstrated that the system was
operating correctly.

V. HDF5 VIRTUAL OBJECT LAYER (VOL) PLUGINS

HDF5 provides a data model for storing array data in
a directory-like structure. The data arrays themselves are
called datasets and the directory objects are called groups.
While the HDF5 library normally stores its data in a binary
file using the native HDF5 file format, a new prototype
feature called the Virtual Object Layer (VOL) allows HDF5
to interface with any arbitrary storage system, provided an
appropriate plugin. A VOL plugin defines its own way of
storing HDF5 objects that does not need to use the HDF5 file
format or even a traditional file system. HDF5 API calls that
would normally result in I/O to a file are instead forwarded
to the VOL plugin, which executes the requested operation
using the storage scheme it implements on top of the storage
system it uses.

Fig. 2. Virtual Object Layer

This architecture, together with the object-based nature of
HDF5 itself, make a VOL plugin a natural fit for running
HDF5 applications on an object store. While native HDF5
translates object-based operations into a serial file format, a

27

VOL plugin can forward these operations to similar object-
based operations in the object store API. This provides the
advantages of an object store, where the storage system
can make more intelligent decisions about data location and
prefetching, without needing to re-code an application.

As shown in the Figure 2, we have developed three VOL
plugins that interface with HDF5 API. For existing HPC
applications, the only application code change required is to
enable the VOL plugin, e.g., in order to use the Rados object
store, the following two lines are added to the application:

1 H 5 V L r a d o s i n i t () ;
2 H 5 P s e t f a p l r a d o s () ;

Following that, the application’s HDF5 API calls will be
automatically translated into the RADOS object store’s API
by the RADOS VOL plugin.

A. DAOS VOL Plugin

The DAOS VOL plugin currently supports most HDF5
features, including groups, datasets, named datatypes, and
attributes. I/O support includes partial I/O, chunked datasets,
datatype conversion, and variable-length datatypes, along
with a prototype implementation of asynchronous I/O.

1) Interface: While the concept of versioned epochs is
a fundamental part of the DAOS API, allowing multiple
versions of containers (i.e. HDF5 files) to be stored and later
retrieved, the most recent version of the DAOS plugin hides
this from the application. All operations are performed on a
single epoch, which is committed on a call to H5Fflush()
or H5Fclose(). Subsequent operations on that file then
use the next epoch. The plugin also provides additional API
functions to enable storing and loading snapshots of the file,
a feature made possible by the underlying use of DAOS
epochs.

One major difference from native HDF5 that remains is
that, while all metadata write operations in native HDF5 must
be collective, in the DAOS plugin they are by default inde-
pendent. This aligns the plugin with the highly independent
design of DAOS, and allows applications to leverage DAOS’
capability for highly independent access to the container.
We believe that giving applications the option to create file
objects independently will allow developers more flexibility
in creating applications and could be a major reason for them
to adopt HDF5/DAOS as opposed to native HDF5. To ease
application porting, there is also an option to use the more
traditional collective metadata access.

2) Mapping: The central paradigm for mapping HDF5 to
DAOS is that HDF5 files are stored as DAOS containers,
and HDF5 objects (groups, datasets, named datatypes, and
maps) are stored as DAOS objects, using a 1:1 mapping. All
metadata and raw data associated with an HDF5 object is
then stored as entries in the key-value store associated with
that DAOS object.

Since DAOS containers are identified by a UUID, the
plugin uses a hashing function to generate a UUID from
the file name (duplicated hash values are not handled in this
prototype plugin). Each container for an HDF5 file contains
at least two DAOS objects: a global metadata object and

the HDF5 root group. The global metadata object stores
metadata that describes properties that apply to the entire
container. Currently this is only the maximum object ID used
by the plugin. The root group is always the start of the HDF5
group structure, and uses the same format as all other groups.

All data and metadata for each HDF5 object is stored
in a single DAOS object’s key-value store. DAOS keys are
actually represented as two parts: a dkey and an akey. The
dkey determines the locality of the data – all data with the
same dkey is co-located, while the akey has no such effect.

For all HDF5 objects, constant metadata is serialized and
stored in records with the same dkey, and all HDF5 attributes
are stored in another dkey. For HDF5 groups, each link is
stored under a separate dkey, with the value being the DAOS
object ID of the link target for hard links, or the target’s path
for soft links. For HDF5 datasets, each data chunk is stored
using a separate dkey, with the value being the data buffer
for that chunk.

3) Object IDs: DAOS objects are referenced through the
DAOS API by a 128-bit object ID. Only the lower 64 bits are
currently used by HDF5. The lowest 62 bits are simply set
in increasing order, starting from 1, which is always the root
group (OID 0 is reserved for the global metadata object).
The remaining 2 bits are used to encode the HDF5 object
type. This removes the need to store the object type in the
key-value store for the object itself, and allows the plugin
to determine the object type and therefore the routines used
to access it without needing to query DAOS, reducing the
number of metadata operation server requests. The lower
64 bits (including the encoded object type) are considered
the address for the purposes of the HDF5 API, and is what
is returned as addr from H5Oget info() and what is
accepted for H5Oopen by addr().

Object ID allocation is currently not handled correctly
when done independently by multiple processes. This is a
temporary limitation, as we haven’t incorporated the latest
DAOS unique object ID allocator. This means that the
object ID space should be divided at the VOL plugin
init phase, all objects should be created by the same pro-
cess, or they should always be created collectively using
H5Pset all coll metadata ops().

B. RADOS VOL Plugin

The RADOS VOL plugin currently supports a subset of
HDF5 features including groups and datasets. I/O support
includes partial I/O and datatype conversion. The RADOS
plugin was developed following many of the lessons learned
while developing the DAOS plugin and uses that plugin’s
code as the base to work from.

1) Interface: The interface for the RADOS plugin is
simpler than that of the DAOS plugin since it does not need
to internally handle different version epochs. The RADOS
plugin does, however, retain the same behavior as the DAOS
plugin regarding independent vs collective I/O. Therefore,
raw data operations are always independent, and all metadata
operations are independent unless collective is requested.

28

2) Mapping and Object IDs: In the RADOS plugin,
HDF5 objects are again stored as RADOS objects; though,
unlike in the DAOS plugin, objects for multiple files are not
separated by an abstraction in the object store, as there is no
analog to DAOS containers in RADOS. All HDF5 objects
are stored in a single pool. However, since RADOS object
IDs are null-terminated strings, we have more flexibility in
creating object IDs. To avoid conflicts between different
files, all object IDs are prefixed with the HDF5 file name
for the file they belong to, then a numerical ID within the
file (described below) is appended. In the future we plan to
implement an object index object for each file to list all the
objects in a file, to be used when deleting a file, a file index
object for each pool listing all the files in the pool, and a
global metadata object similar to that used by the DAOS
plugin.

RADOS objects contain both a linear byte array and
a key-value store. Constant metadata for HDF5 objects is
serialized, placed together, and stored directly in that objects
byte array. For HDF5 groups, links are stored in the key-
value store, where the key is the link name and the value is
a 64-bit binary form of the numerical object ID. This binary
ID can be converted to the string form used to identify the
object by rendering it in hexadecimal and prepending the file
name. HDf5 dataset chunks are stored in separate RADOS
objects, where the object ID is the same as that of the dataset
containing the chunk, postfixed with the chunk coordinates.
In the future, we will need to change this scheme slightly to
eliminate the (unlikely) possibility of conflicts between files
involving chunks. HDF5 attributes are not yet implemented,
but they are planned to be added to the objects key-value
store, with the attributes value stored directly in the key-
value stores value.

The RADOS plugin currently has the same restrictions
involving object ID allocation as the DAOS plugin. All HDF5
objects must therefore be created collectively or by a single
process. In addition, since the global metadata object is not
implemented yet, all objects must be created during the
course of a single file open. We plan to address both of
these limitations in the future. We believe we can implement
independent object ID allocation using the existing features
of RADOS.

C. SWIFT VOL Plugin

The Swift VOL plugin currently supports basic HDF5
functions, including file and group creation, dataset cre-
ate/open/close, and dataset read/write.

1) Mapping: One of our design considerations was to
preserve the HDF5 file’s hierarchy in Swift’s flat namespace,
such that path traversal and future data re-formatting would
be easier. We leveraged the uniqueness of the HDF5 object
name within a HDF5 file. For example, a dataset object
in HDF5 file has a absolute path name, e.g., ’/group/sub-
group/dataset’. All HDF5 objects are named with its absolute
path name in the Swift container, so that the original HDF5
hierarchy is easily reversible based on the object name, at

the expense of considerable cost if an intermediate group is
renamed or deleted.

An HDF5 group is mapped as a sub-container in Swift,
and all HDF5 objects within the same group are kept in the
same sub-container. This reduces the query cost during the
IO request. Since Swift does not support nested containers,
an empty object is created in the parent container with the
same name of the sub-container, such that the sub-group
is linked with the parent group without needing to store
additional index or metadata table for tracking the objects
within a file. All HDF5 attributes and user defined metadata
are appended in the object’s extended attributes.

2) Implementation: The Swift VOL plugin is written in
C and Python. We chose Python because Swift is better
supported in Python than other languages, e.g., the last
update to the C interface for Swift is more than five years
ago. The HDF5 C functions are translated by the Swift VOL
into Swift’s Python interface, e.g., swift.upload. Implement-
ing the VOL on a Python layer immediately exposed us
some performance reductions (e.g., memory copy overhead
between C layer and Python layer), but on the other hand,
largely simplified our implementation cost. We will discuss
more details regarding the object store I/O internals in
Section VI-F.

VI. EVALUATION WITH HPC APPLICATIONS

Three HPC applications were selected to evaluate the
object stores. The applications are: VPIC, H5Boss, and
BDCATS and covered I/O patterns that include both large
sequential I/O and random small I/O, which are representa-
tive in traditional and modern HPC workloads.

A. Sequential and Large Write Benchmark Tests

In this section, we evaluate the VPIC benchmark, which
performs large sequential data writes. The VPIC-IO kernel
is extracted from a plasma physics code called VPIC [20],
which simulates kinetic plasmas in multi-dimensional space.
In this kernel, each MPI process writes a fixed number of par-
ticles. VPIC data structures use eight 1-D arrays to represent
the eight variables associated with each particle. By fixing the
number of particles written by each process, we conducted
weak scaling tests. This benchmark also represents a majority
of HPC workloads, e.g., climate and physics, that have large
and contiguous I/O pattern.

The first test is single node test with 1 to 32 processes. We
measured the I/O bandwidth on the four storage systems. As
shown in Figure 3, DAOS largely outperforms all other stor-
age systems by writing to tmpfs-emulated NVM. RADOS
and Swift show relatively low bandwidth due to hardware
limits (testbed network bandwidth is only 1GB/sec), as
described in Section III. RADOS is better than Swift due
to the fact that we set the replication size as 1 in RADOS,
but are not able to change the Swift configuration. RADOS
also uses the librados API to communicate directly with the
server (OSD) from the client, while Swift can not bypass
the gateway nodes with the existing API. All three object

29

Fig. 3. VPIC Single Node Weak Scaling

Fig. 4. VPIC Multi-Nodes Weak Scaling

stores, however, reveal better scalability than the traditional
POSIX-compliant Lustre filesystem.

Similar trends are seen in the multi-node test with 1
to 4 nodes (workload per process is set as 4 times larger
than single node test, which is now 32 MB per process, 8
processes per node), in Figure 4. The scalability of RADOS
and Swift are slightly better than Lustre, with DAOS as
winner in all tests.

B. Random and Small Write Benchmark

Random and small I/O is not rare in HPC, for example, in
astronomy field, the collected data are stored in millions of
small FITS files. Scientists submit a list of (plate, mjd, and
fiber) IDs to locate a targeted astronomy object. In case of
BOSS (Baryon Oscillation Spectroscopic Survey), the Sloan
Digital Sky Survey (SDSS) project 2, the total number of
files is 276,575, with each file containing 1000 datasets. The
data provides information about the composition of stars and
galaxies, and can be used to obtain their redshift, e.g., how
fast a star is moving away from the earth.

A query submitted with H5Boss [35] can transfer multiple
files and randomly pick certain amounts of datasets from
each file. During output, the I/O transaction size becomes
relatively small, ranging from several hundreds KBs to a
few MBs. We tested the H5Boss benchmark with various
queries, ranging from 128 datasets to 10240 datasets query.

We evaluated the three object stores with H5Boss strong
scaling tests on a single node. The first test writes 128

Fig. 5. H5Boss Single Node Strong Scaling

Fig. 6. H5Boss Single Node Strong Scaling

datasets separately on those storage testbeds. As shown in
Figure 5, the I/O cost on object stores keeps decreasing
as we increasing the number of processes. Lustre (the blue
line), however, does not decrease and suffers from POSIX
constraints and file system locking overhead as we scale.

With current VOL design, each HDF5 dataset is chunked
and each chunk is written to an independent object in
the object store. For example, in case of 32 processes,
each dataset will be evenly split into 32 objects. With 128
datasets, the number of objects is 4096. When we increase
the workload from 128 datasets to 1024 and 10240 datasets,
shown in Figure 6 for Lustre and DAOS, Swift and RADOS
failed with various errors. We have not spent enough time to
investigate the issue, but believe the network concurrency
and bandwidth limit on our testbed are possible causes.
DAOS continue to scale with this high number of concurrent
datasets/objects, and Lustre can handle these large amounts
of dataset creation/writing, but does not scale well and the
latency is higher.

It is obvious that such random and small I/O pattern is
not friendly to all tested storage systems. With 128 and
10240 datasets written into one file separately, the average
performance ratio between Lustre and DAOS is reduced from
30X to 18X.

On multi-node strong scaling tests, Figure 7, DAOS is able
to handle 60k datasets per second with 4 client nodes, while
Lustre only manages to process 7.5k datasets per second with

30

Fig. 7. H5Boss Multi-Node Strong Scaling, Lustre v.s. DAOS

same number of clients and servers.

C. Large and Sequential Read Benchmark

The last benchmark is BD-CATS. This I/O kernel is
extracted from a parallel clustering algorithm, used for
analyzing data produced by particle simulations, such as
VPIC. In this kernel, data related to the particles are read
by all the MPI processes with a load-balanced distribution.
Each process reads a contiguous chunk of data from different
sub-regions.

Fig. 8. BDCATS Single Node Weak Scaling

In Figure 8, scalability of Lustre is better than its cor-
responding write test in Figure 3, probably due to less file
system locking in this read pattern, and the benefit of Lustre
readahead. RADOS is faster than Swift not only in the
previous write test, but also in this read test, i.e., 12X faster
on average. This is partly because RADOS supports partial
reads on object and the librados library can directly connect
from the client to the server, while in Swift, reading a portion
of an object is not supported by its interface, and the gateway
node can not be bypassed.

D. Object Store Performance Optimization

Object stores, like parallel file systems, including Lustre,
have options for users to tune the I/O performance. In this
section, we discuss some initial explorations in object store
I/O tuning.

Fig. 9. Performance Variance with Different Placement Groups

Fig. 10. Performance Evaluation with Different Replication Size

The first test, Figure 9, tunes the number of placement
groups on RADOS. A placement group (PG) aggregates
objects within a pool, because tracking object placement
and object metadata on a per-object basis is computationally
expensive. We varied the placement group size from 16 to
1024 and the number of processes from 1 to 32. Among all
tests, the initial setting of 16 placement groups was the worst
case. For example, in the case of one process, maximum
performance is achieved with 32 placement groups, and on
32 processes, the maximum is achieved with 1024 placement
groups. With more than 16 placement groups, current tests do
not show any other clear pattern regarding optimal numbers
of placement groups.

We also varied the replication size in RADOS, as shown in
Figure 10. The replication size determines how many copies
the RADOS will make for each data object. The default value
is 3, which is a common strategy in object stores. RADOS
provides users with an option to either choose erasure coding
or replication when creating a new pool. For most HPC
applications, data does not need to be replicated, especially
for simulation data, as it can be reproduced instead. From
this test, we can see that trading durability for performance
is possible by reducing the number of replications.

E. Impact on HPC Application Source Code

The HDF5 VOL plugins developed here aimed to provide
HPC applications with a transparent transition to object

31

stores. We summarize the number of lines changed to the
three applications in the following table:

VPIC H5Boss BDCATS
Swift 7 6 7
RADOS 7 7 7
DAOS 4 4 4

Apart from these very modest amounts of code modifi-
cations, RADOS and Swift also require users to create an
account on the storage system, for authentication purposes.

F. Object Store I/O Internals

Through the development of VOL plugins and the evalu-
ation of the object stores, we found several interesting facts
about the object stores’ internal operation. These findings
may lead us to better customize or design object stores for
HPC applications in the future. The findings include but are
not limited to the following points:

1) Most object stores are designed to only handle I/O on
entire objects, instead of finer granularity I/O, such
as provided by POSIX, which is required by HPC
applications.

2) Swift does not support partial I/O on object. Although
it supports segmented I/O on large objects, the current
API can only read/write an entire object. This stops us
from performming parallel I/O with chunking support
in HDF5.

3) RADOS offers librados for clients to directly access its
OSD (object storage daemon), which is a performance
benefit as the gateway node can be bypassed.

4) Mapping HDF5’s hierarchical file structure to flat
namespace in object store will require additional utility
tools for users to easily view the file’s structure.

5) Traditional HPC I/O optimization techniques may be
applied in object stores, for example, two-phase col-
lective I/O, as currently each rank issues the I/O
to object independently. A two-phase collective I/O-
like algorithm is possible when considering the object
locality.

6) Object stores trade performance for durability. Reduc-
ing the replication size (default is frequently 3) when
durability is not a concern for HPC application can
increase the bandwidth.

VII. RELATED WORK

There are a few related works evaluating object store
for HPC applications. Among them, MarFS [10] proposed
a scalable near-POSIX file system by using one or more
POSIX file systems as a scalable metadata component and
one or more data stores (object, file, etc) as a scalable
data component. Early evaluation of MarFS [27] has shown
excellent scalability and parallel I/O performance, but it is
not clear how traditional HPC applications will perform on
MarFS. Our work is the first work that comprehensively
evaluated object store technologies with actual representative
HPC I/O workloads.

CERN is one of the earliest adopters of object stores in
the HPC community. The proposed Davix project [5] aims to
make file management over HTTP-based protocols simple.
Davix focuses on high-performance remote I/O and data
management of large collections of files, with support for
WebDAV, Amazon S3, Microsoft Azure and HTTP access
methods. The project developed libdavix, a C++ library
that offers an HTTP API, a remote I/O API and a POSIX
compatibility layer. The difference between Davix and our
evaluation is that our work translates application operations
(through HDF5 API calls) directly into object store opera-
tions, rather than translating POSIX I/O to non-POSIX I/O,
and the underlying storage leverages those object-oriented
solutions, e.g., scalable hashing mechanisms. Davix’s focus
is HTTP-based file management, while our main interest is
evaluation of HPC I/O performance on object stores.

Openstack Swift’s I/O is based on HTTP, optimization
techniques, including threading and RDMA support, have
shown to largely improve I/O bandwidth. For example, in
[39], the author showed how modifying the Swift threading
model can achieve 18% mean improvement in performance
with objects larger than 512 KiB and obtain a similar
performance with smaller objects. Swift-X [31], on the other
hand, accelerated several synthetic applications up to 7.3x
with RDMA. This work aligns with our finding that a HPC-
oriented object store will need both software optimization as
well as HPC friendly hardware acceleration.

As mentioned earlier, HDF5’s object-based data model is
a good fit for object storage. Researchers in [40] explored
scientific application performance with HDF5-emulated ob-
ject storage. The work is interesting in terms of connecting
HDF5 applications directly with HDF5-emulated storage.
However, the actual object store impact to HPC application
is not known from this work. Our evaluation is based on
existing object stores and the selected applications represent
a majority of actual HPC I/O patterns.

VIII. CONCLUSION AND FUTURE WORK

Parallel file systems’ high performance is a result of
decades of research and development effort. Object store
technologies, however, are still missing capabilities required
for HPC environments. In this work, we developed three
HDF5 Virtual Object Layer plugins for three different object
stores, Ceph/RADOS, Openstack Swift, and Intel DAOS.
The selected applications/benchmarks covered a majority of
typical HPC I/O patterns. By strategically choosing the right
I/O layer to adapt to the object store, only an average of
six lines of code changes to existing application code was
required to target the object store, and we were able to run the
HPC application on an object store simply by re-compiling
after this minor change.

Through the evaluation, we demonstrated that object stores
have better scalability than POSIX file systems like Lustre,
in both large contiguous write and random small write. We
discovered important API differences between RADOS and
Swift, e.g., RADOS has better support for partial read/write,
which enables us to implement a better parallel I/O solution.

32

Among all object stores we evaluated, Intel DAOS has
demonstrated outstanding performance by leveraging next
generation NVMe/SCM technologies, although our results
should be followed up when the tmpfs-emulated SCM can
be replaced with actual SCM.

Given more time, we would like to go further to optimize
the object I/O, but we believe the existing HPC I/O opti-
mization techniques could be applied to object store, e.g.,
two-phase collective I/O. The lessons learned in this work
are beneficial to future object store development for HPC,
and for HPC users to have a better understanding of and
preparation for object stores.

IX. ACKNOWLEDGEMENT

We appreciate the resources provided by National Energy
Research Scientific Computing Center and Intel Corporation.
We also thank HDF Group for extensive support in the VOL
design and implementation.

REFERENCES

[1] ALS, https://als.lbl.gov/.
[2] Cori at NERSC, http://www.nersc.gov/users/computational-

systems/cori/.
[3] Cori File System, http://www.nersc.gov/users/storage-and-file-

systems/file-systems/ngfdrawings/.
[4] Daos Community, https://wiki.hpdd.intel.com/display/dc/daos +com-

munity+home.
[5] DAVIX, http://dmc.web.cern.ch/projects/davix/home.
[6] HDF5 Benchmarks at NERSC, https://github.com/valiantljk/

h5spark/tree/master/mpiio.
[7] IBM Spectrum Scale Version 4 Release 2.3 Administration Guide,

https://goo.gl/wa2wew.
[8] Intel Mpi Benchmarks, https://software.intel.com/en-us/articles/intel-

mpi-benchmarks.
[9] LCLS-II, https://lcls.slac.stanford.edu/lcls-ii.

[10] MarFS, https://github.com/mar-file-system/marfs.
[11] OpenStack Swift, https://docs.openstack.org/swift/latest/.
[12] POSIX Extensions, http://www.pdl.cmu.edu/posix/.
[13] Posix must die, http://www.linux-mag.com/id/7711/comment-page-1/.
[14] RADOS, https://ceph.com/geen-categorie/the-rados-distributed-object-

store/.
[15] Theta at ANL, https://www.alcf.anl.gov/theta.
[16] VPIC, https://github.com/lanl/vpic.
[17] What’s So Bad About POSIX I/O,

https://www.nextplatform.com/2017/09/11/whats-bad-posix-io/.
[18] T. Barnes, B. Cook, J. Deslippe, D. Doerfler, B. Friesen, Y. He,

T. Kurth, T. Koskela, M. Lobet, T. Malas, L. Oliker, A. Ovsyannikov,
A. Sarje, J. L. Vay, H. Vincenti, S. Williams, P. Carrier, N. Wichmann,
M. Wagner, P. Kent, C. Kerr, and J. Dennis. Evaluating and optimizing
the nersc workload on knights landing. In 2016 7th International
Workshop on Performance Modeling, Benchmarking and Simulation
of High Performance Computer Systems (PMBS), pages 43–53, Nov
2016.

[19] Doug Beaver, Sanjeev Kumar, Harry C Li, Jason Sobel, and Peter
Vajgel. Finding a needle in Haystack: Facebook ’ s photo storage.
In Proceedings of the 9th USENIX Symposium on Operating Systems
Design and Implementation, number October, pages 1–8, Vancouver,
BC, 2010.

[20] K. J. Bowers, B. J. Albright, L. Yin, B. Bergen, and T. J. T.
Kwan. Ultrahigh Performance Three-dimensional Electromagnetic
Relativistic Kinetic Plasma Simulation. Physics of Plasmas, 15(5),
2008.

[21] Peter J. Braam. Scalable locking and recovery for network file systems.
In Proceedings of the 2nd International Workshop on Petascale Data
Storage - PDSW’07, page 17, New York, New York, USA, 2007. ACM
Press.

[22] M. Scot Breitenfeld, Neil Fortner, Jordan Henderson, Jérome Sou-
magne, Mohamad Chaarawi, Johann Lombardi, and Quincey Koziol.
DAOS for extreme-scale systems in scientific applications. CoRR,
abs/1712.00423, 2017.

[23] M Scot Breitenfeld, Quincey Koziol, Neil Fortner, Jerome Soumagne,
and Mohamad Chaarawi. Use of a new I/O stack for extreme-scale
systems in scientific applications. In Proceedings of the 1st Joint
International Workshop on Parallel Data Storage & Data Intensive
Scalable Computing Systems, 2016.

[24] S. Byna, J. Chou, O. Rubel, Prabhat, H. Karimabadi, W. S. Daugh-
ter, V. Roytershteyn, E. W. Bethel, M. Howison, K. Hsu, K. Lin,
A. Shoshani, A. Uselton, and K. Wu. Parallel i/o, analysis, and
visualization of a trillion particle simulation. In SC ’12: Proceedings
of the International Conference on High Performance Computing,
Networking, Storage and Analysis, pages 1–12, Nov 2012.

[25] Philip Carns, Sam Lang, Robert Ross, Murali Vilayannur, Julian
Kunkel, and Thomas Ludwig. Small-file access in parallel file systems.
In 2009 IEEE International Symposium on Parallel & Distributed
Processing, pages 1–11. IEEE, may 2009.

[26] Raghunath Raja Chandrasekar, Lance Evans, and Robert Wespetal.
An Exploration into Object Storage for Exascale Supercomputers. In
Proceedings of the 2017 Cray User Group, 2017.

[27] H. Chen, G. Grider, and D. R. Montoya. An early functional and
performance experiment of the marfs hybrid storage ecosystem. In
2017 IEEE International Conference on Cloud Engineering (IC2E),
pages 59–66, April 2017.

[28] Hsing-Bung Chen, Gary Grider, and David Richard Montoya. An
Early Functional and Performance Experiment of the MarFS Hybrid
Storage EcoSystem. In 2017 IEEE International Conference on Cloud
Engineering (IC2E), pages 59–66. IEEE, apr 2017.

[29] Nikita Danilov, Nathan Rutman, Sai Narasimhamurthy, and John
Bent. Mero: Co-Designing an Object Store for Extreme Scale. In
Proceedings of the 1st Joint International Workshop on Parallel Data
Storage & Data Intensive Scalable Computing Systems, 2016.

[30] Garth A. Gibson, David F. Nagle, Khalil Amiri, Jeff Butler,
Fay W. Chang, Howard Gobioff, Charles Hardin, Erik Riedel, David
Rochberg, and Jim Zelenka. A cost-effective, high-bandwidth storage
architecture. SIGPLAN Not., 33(11):92–103, October 1998.

[31] S. Gugnani, X. Lu, and D. K. Panda. Swift-x: Accelerating openstack
swift with rdma for building an efficient hpc cloud. In 2017 17th
IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID), pages 238–247, May 2017.

[32] Dave Henseler, Benjamin Landsteiner, Doug Petesch, Cornell Wright,
and Nicholas J. Wright. Architecture and Design of Cray DataWarp.
In Proceedings of the 2016 Cray User Group, London, 2016.

[33] Cengiz Karakoyunlu, Dries Kimpe, Philip Carns, Kevin Harms, Robert
Ross, and Lee Ward. Toward a unified object storage foundation for
scalable storage systems. In 2013 IEEE International Conference on
Cluster Computing (CLUSTER), pages 1–8. IEEE, sep 2013.

[34] Wei-keng Liao and Alok Choudhary. Dynamically adapting file
domain partitioning methods for collective I/O based on underlying
parallel file system locking protocols. In 2008 SC - International
Conference for High Performance Computing, Networking, Storage
and Analysis, number November, pages 1–12. IEEE, nov 2008.

[35] J. Liu, D. Bard, Q. Koziol, S. Bailey, and Prabhat. Searching for
millions of objects in the boss spectroscopic survey data with h5boss.
In 2017 New York Scientific Data Summit (NYSDS), pages 1–9, Aug
2017.

[36] Jay Lofstead, Ivo Jimenez, Carlos Maltzahn, Quincey Koziol, John
Bent, and Eric Barton. DAOS and Friends: A Proposal for an Exascale
Storage System. In John West, editor, 2016 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage
and Analysis, pages 585–596, Salt Lake City, 2016.

[37] M. Mesnier, G. R. Ganger, and E. Riedel. Object-based storage. IEEE
Communications Magazine, 41(8):84–90, Aug 2003.

[38] Shadi A Noghabi, Sriram Subramanian, Priyesh Narayanan, Sivabalan
Narayanan, Gopalakrishna Holla, Mammad Zadeh, Tianwei Li, In-
dranil Gupta, and Roy H Campbell. Ambry: LinkedIn’s Scalable Geo-
Distributed Object Store. In Proceedings of the 2016 International
Conference on Management of Data - SIGMOD ’16, pages 253–265,
New York, New York, USA, 2016. ACM Press.

[39] R. Nou, A. Miranda, M. Siquier, and T. Cortes. Improving openstack
swift interaction with the i/o stack to enable software defined storage.
In 2017 IEEE 7th International Symposium on Cloud and Service
Computing (SC2), pages 63–70, Nov 2017.

[40] R. Karim E. Laure S. W. Chien, S. Markidis and S. Narasimhamurthy.
Exploring scientific application performance using large scale object
storage. In arxiv 2018, 2018.

33

[41] Frank Schmuck and Roger Haskin. GPFS: A Shared-Disk File System
for Large Computing Clusters. In Proceedings of the 1st USENIX
Conference on File and Storage Technologies (FAST’02), Monterey,
California, USA, 2002.

[42] Joost Snijder, Jan M. Schuller, Anika Wiegard, Philip Lössl, Nicolas
Schmelling, Ilka M. Axmann, Jürgen M. Plitzko, Friedrich Förster,
and Albert J. R. Heck. Structures of the cyanobacterial circadian
oscillator frozen in a fully assembled state. Science, 355(6330):1181–
1184, 2017.

[43] Stephen Sugiyama and David Wallace. Cray DVS: Data Virtualization
Service . In Cray User Group Meeting (CUG2016), 2016.

[44] M. Vilayannur, Samuel Lang, Robert B. Ross, R. Klundt, and L. Ward.
Extending the posix i/o interface: A parallel file system perspective.
(ANL/MCS-TM-302), 2008.

[45] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and
Carlos Maltzahn. Ceph: A scalable, high-performance distributed file
system. In Proceedings of the 7th Symposium on Operating Systems
Design and Implementation, OSDI ’06, pages 307–320, Berkeley, CA,
USA, 2006. USENIX Association.

[46] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell D E Long, and
Carlos Maltzahn. Ceph: A Scalable, High-Performance Distributed
File System. Proceedings of USENIX Symposium on Operating
Systems Design and Implementation, 2006.

34

