

Requirements Engineering Across the Life Cycle Continuum

presented by

Dick Fairley

Software and Systems Engineering Associates

(S2EA)

d.fairley@computer.org

STC 2-Apr-2014 Copyright © Dick Fairley 2014

lide 1

Presentation Agenda

- Requirements engineering concepts
- Life cycle phases and activities
- The project life cycle continuum
- · Life cycles and requirements engineering
 - Highly Predictive Life Cycles (HLPCs)
 - o Incremental-Predictive Life Cycles (IPLCs)
 - o Iterative-Adaptive Life Cycles (IALCs)
 - Highly Adaptive Life Cycles (HALCs)

STC 2-Apr-2014 Copyright © Dick Fairley 2014

Requirements Considerations

- Requirements are statements of needed or desired system capabilities
 - o and related assumptions and constraints
- Stakeholders' requirements address:
 - o what? why? who? when?, where?
 - o how much? how fast? how often?
 - o priorities: must, should, could
- Implicit assumptions: unstated requirements

STC 2-Apr-2014 Copyright © Dick Fairley 2014

slide 3

Requirements Considerations (2)

- Technical specifications:
 - capabilities, features, functions, behavior, quality attributes, constraints
 - o quantified to the extent possible
 - prioritized according to some criterion or criteria
- Constraints: must dos, must haves
 - policies, rules, regulations, standards, environmental factors
 - o schedule, budget, resources, technology
- Constraints result in trade studies and requirements tradeoffs

STC 2-Apr-2014 Copyright © Dick Fairley 2014

Phases and Activities

- A project phase is a way of naming and grouping related activities
 - PM phases: initiate, plan, execute, monitor and control, close
 - Engineering phases: analyze, design, construct, verify, validate, accept
- Activities are units of work that occur in the phases

STC 2-Apr-2014 Copyright © Dick Fairley 2014

Phases and Activities of RE

- Requirements Development
 - Elicitation: understanding and documenting user needs and customer expectations
 - Analysis: translating user needs and customer expectations into technical specifications
 - Specification: recording requirements information in standard notations and formats
- · Requirements Management
 - Impact analysis: analyzing the impact of proposed requirements changes on stakeholders, schedule, budget, resources, technology, and systems environment
 - Change management: approving, implementing, and controlling requirements baselines

STC 2-Apr-2014 Copyright © Dick Fairley 2014

slide 7

RE V&V

- Verification: determining the extent to which requirements are correct, complete, consistent, and clear
 - o wrt to user needs and stakeholder expectations
- Validation: determining the extent to which requirements, when implemented, will satisfy the needs of the intended users when used in the intended ways in the intended environments

Requirements V&V should not be confused with system V&V

STC 2-Apr-2014 Copyright © Dick Fairley 2014

S2EA

Architectural Patterns and Design Patterns for Software Engineering Life Cycles

- A life cycle architectural pattern provides the overall structure and behavior of a life cycle
 - o e.g., Highly Predictive
- Life cycle design patterns can be embedded within a life cycle architectural pattern
 - e.g. an Iterative-Adaptive construction pattern embedded in a Highly Predictive life cycle architecture

STC 2-Apr-2014 Copyright © Dick Fairley 2014

HPLC Activities

- Extensive requirements development
- · Requirements traceability and reviews
- Detailed V&V planning
- Milestone gates
- Requirements management
 - o baselines, change requests
 - o CCB(s) and change tracking
- Early commitment to cost and schedule estimates
- Schedule and resource allocation preplanned
- Stakeholder interactions infrequent

STC 2-Apr-2014 Copyright © Dick Fairley 2014

HPLC Success Factors

- · Stable, well-defined requirements
- Staged, functional resources
- Familiar system
- · Familiar customer
- Short duration

STC 2-Apr-2014 Copyright © Dick Fairley 2014

clide 10

Presentation Agenda

- Requirements concepts
- Life cycle phases and activities
- The life cycle continuum
- · Life cycles and requirements engineering
 - Highly Predictive Life Cycles (HLPCs)
 - o Incremental-Predictive Life Cycles (IPLCs)
 - o Iterative-Adaptive Life Cycles (IALCs)
 - Highly Adaptive Life Cycles (HALCs)

STC 2-Apr-2014 Copyright © Dick Fairley 2014

IPLC RE (2)

- Periodic demonstrations of system increments involve stakeholders
 - o and may result in revisions to requirements
 - o plus redesign and reallocation of capabilities
 - o and resources and schedule may be reallocated
- Early deliveries of subset capabilities are possible

STC 2-Apr-2014 Copyright © Dick Fairley 2014

slide 23

S2EA

Some IPLC Capability Prioritization Criteria

- allocate the system requirements to increments of growing system subsets some of which are to be periodic delivered
- allocate the system requirements to architectural layers that incrementally result in a succession of layered virtual machines
- establish the architectural skeleton first and incrementally add capabilities
- establish interfaces to external components first
- incrementally incorporate components to be reused

STC 2-Apr-2014 Copyright © Dick Fairley 2014

IPLC Capability Prioritization Notes

- some system requirements (e.g., quality attributes, external interfaces, and/or design constraints) may apply across capability sets
 - o i.e., non-allocable requirements
- the capability partitioning criteria and the system architecture influence one another
 - o they are developed and evolve together

STC 2-Apr-2014 Copyright © Dick Fairley 2014

slide 25

Internal IPLC Processes

- Internal construction may be linear, incremental, or iterative
- V&V may be separate or within the construction activity
- Internal processes may vary between increments
 - different levels of requirements volatility or uncertainty
 - o different organizational units or contractors

STC 2-Apr-2014 Copyright © Dick Fairley 2014

Scheduling of IPLC Increments

- Concurrent incremental phases
 - o fully concurrent parallel development
 - o partially concurrent
 - ✓ can shorten the schedule if there are sufficient resources
 - ✓ if a partially completed increment provides a sufficient basis
 - ✓ risk of rework if elements of a previous increment change

STC 2-Apr-2014 Copyright © Dick Fairley 2014

slide 27

Scheduling of IPLC Increments (2)

- Sequential phases
 - o can be used for phased commitments*
 - o or for staged acquisition
 - o or for sustainment activities
- see the forthcoming text on the Incremental Commitment Spiral Model (ICSM)
 by Boehm, Turner, and others

STC 2-Apr-2014 Copyright © Dick Fairley 2014

S2EA

Adaptive Attributes of Iterative Development

- Requirements, design, and plans are developed initially, to the extent possible
- A knowledgeable stakeholders' representative (i.e., the customer) is continuously involved and controls the requirements
 - o and expenditure of resources and schedule
- A backlog of requirements is maintained
 - and can be reprioritized and updated by the customer in consultation with the development team

the customer is responsible for managing the requirements

STC 2-Apr-2014 Copyright © Dick Fairley 2014

slide 35

S2EA

Adaptive Attributes (2)

- Stakeholders are involved initially, during system demonstrations at the end of each iteration cycle, and during final system acceptance
- Iteration cycles are time-boxed
 - with occasional exceptions
- The number of iterations can be preplanned, extended, or curtailed by the customer
- Most iterations produce an incremental increase in system capabilities
 - o but not necessarily all iterations

STC 2-Apr-2014 Copyright © Dick Fairley 2014

Adaptive Attributes (3)

- System developers have the needed expertise
 perhaps with occasional functional specialists
- Requirements satisfaction is determined by test driven verification and demonstration validation
- Incremental subsets of the final system can be delivered at the ends of short, fixed duration iteration cycles if desired and planned
- Progress can be tracked using burndown charts

STC 2-Apr-2014 Copyright © Dick Fairley 2014

IALC Task Completion

- IALC task completions require satisfaction of objective completion criteria
 - o i.e., binary tracking: 0% or 100% complete
- Time-boxed schedule is observed
- Any remaining tasks are addressed during
 - o a retrospective meeting at the end of the cycle
 - o a planning meeting at the start of the next cycle
- Accumulated iteration histories are displayed in a velocity chart

STC 2-Apr-2014 Copyright © Dick Fairley 2014

Consequences Time-Boxed Iterations

- Burndown charts and velocity charts provide the data for an IALC project equivalent to HPLC earned value
 - o to estimate tasks per iteration with confidence
 - to accurately estimate the capabilities (i.e., number of remaining iteration cycles) that can be completed for a fixed delivery date
 - and to accurately forecast Estimated Completion Date and Estimated Actual Cost based on a desired number of iteration cycles

STC 2-Apr-2014 Copyright © Dick Fairley 2014

lide 41

Consequences Time-Boxed Iterations (2)

- Capabilities prioritized by the customer ensure that the most important use features are implemented first
 - and permits graceful termination or extension of the project

STC 2-Apr-2014 Copyright © Dick Fairley 2014

Large IALC Projects

- IALC teams are typically small
 - o i.e., 10 or fewer members
 - o to facilitate communication and coordination
- Large IALC projects utilize several small IALC teams
- · Teams may be functional by system component
 - With allocated requirements and interfaces
 - o and periodic subsystem and system integration
- Large IALC projects use PLC techniques
 - o functional decomposition
 - interface specifications
 - CCBs, change control, and configuration management

STC 2-Apr-2014 Copyright © Dick Fairley 2014

slide 43

S2EA

Traditional IALC RE Activities

- *Elicitation*: initial planning and periodic demonstrations of implemented capabilities
- Analysis: for each increment, deciding what to build and how to build it
- Specification: written test scenarios
- Requirements management
 - the capability backlog provides the requirements baseline
 - o frequent demos of incremental capabilities can result in rework of and updates to the capability baseline
 - impact analysis and change control are managed by the customer
 - ✓ in dialog with the team members

STC 2-Apr-2014 Copyright © Dick Fairley 2014

Success Factors for IALCs

- IALCs are successful to the degree that they incorporate the desirable IALC attributes
 - o as illustrated
- But not all "IALCs" incorporate all of the desirable ALC attributes

STC 2-Apr-2014 Copyright © Dick Fairley 2014

slide 45

- The life cycle continuum
- Life cycles and requirements engineering
 - Highly Predictive Life Cycles (HLPCs)
 - o Incremental-Predictive Life Cycles (IPLCs)
 - o Iterative-Adaptive Life Cycles (IALCs)
 - Highly Adaptive Life Cycles (HALCs)

STC 2-Apr-2014 Copyright © Dick Fairley 2014

Attributes of HALCs

- Customer is "in the loop"
- Customer provides use cases or stories
 - with a backlog that may be started during initiation and planning
- Team provides frequent demos for the customer
- Customer may accept, request revisions, or reject added capabilities
- system increments are available for delivery into the user environment at frequent intervals, if desired

STC 2-Apr-2014 Copyright © Dick Fairley 2014

slide 49

Success Factors for HALCs

- Requirements, design, and plans are initially developed, to the extent possible
- Customer is continuously available on a daily basis
 and is in continuous communication with users
- Dedicated resources are available on a continuing basis
- Changing and emerging requirements are expected and accepted
 - o known unknowns
 - o and unknown unknowns

STC 2-Apr-2014 Copyright © Dick Fairley 2014

Requirements Engineering Risk and Uncertainty

- Risk is (probability x impact) of an adverse outcome
- · Uncertainty results from lack of knowledge
- HPLCs are appropriate when RE risk and uncertainty are low
- IPLCs are appropriate when RE risk and uncertainty are medium
- IALCs are appropriate when RE risk and uncertainty are high
- HALCs are appropriate when RE risk and uncertainty are very high

STC 2-Apr-2014 Copyright © Dick Fairley 2014