
Combining Tiled and Textual Views of Code

Michael Homer and James Noble
School of Engineering and Computer Science

Victoria University of Wellington

New Zealand

Email: {mwh,kjx}@ecs.vuw.ac.nz

Abstract—“Jigsaw puzzle” programming environments manip-
ulate programs primarily by drag-and-drop. Generally these
environments are based on their own special-purpose languages,
meaning students must move on to another language as their
programs grow. Tiled Grace is a tile-based editor for Grace, an
educational programming language with a conventional textual
syntax. Using Tiled Grace, programmers can move seamlessly
between visualising their programs as tiles or source code, editing
their programs via tiles or text, and continue on to traditional
textual environments, all within the same programming language.
We conducted a user experiment with Tiled Grace, and present
the results of that experiment showing that users find dual views
helpful.

I. INTRODUCTION

Visual programming environments like Scratch [1],

Blockly [2], and Alice [3] present a program as a combination

of nested “jigsaw piece” tiles manipulated by drag-and-drop,

and have been used successfully with new programmers [4],

[5], [6], [7]. These environments present a limited language

with a restricted expressive domain, meaning that eventually

programmers must move on to a “real” textual programming

language and, in many cases, learn to program over again [8],

[9]. Tiled Grace is a programming environment for the conven-

tional textual language Grace [10] bridging these two worlds:

programs may be edited using a drag-and-drop tile interface,

but with tiles that map exactly to the concrete text syntax. In

Tiled Grace, users can switch to a conventional textual view

at any time, and can edit that text before switching back to the

tile view, making the correspondence between tiles and source

code clear.

This paper is structured as follows. In the next section we

briefly introduce Grace, and then in Section III describe Tiled

Grace and explain the design choices we made in it. Section V

describes the additional functionalities we implemented on top

of the base system. Section VI describes the user experiment

we ran using Tiled Grace, and Section VII the results we

obtained. Section VIII positions Tiled Grace among related

work, and Section X concludes.

This paper expands upon an earlier short paper from VIS-

SOFT 2013 [11] by incorporating additional functionality and

performing a user experiment to validate our design.

II. GRACE

Grace [10] is a new object-oriented language that supports

a variety of approaches to teaching programming. Grace

integrates accepted new ideas in programming languages into

a simple language that allows students and teachers to focus

on the essential complexities of programming rather than the

accidental complexities of the language.

Grace follows a conventional curly bracket textual syntax

and a semantic model that should map cleanly onto almost all

other object-oriented languages. To permit different teaching

styles a system of dialects [12] allows the definition of sub-

languages including new definitions, control structures, and

restrictions.

III. TILED GRACE

Tiled Grace presents an editing environment for Grace

programs based on drag-and-drop tiles. A tile represents a

single syntactic unit in the program, such as a string literal,

variable assignment, or method request. For example, tiles for

a string “Hello!” and variable “x” being depicted as:

Some tiles, like the string tile above, have text input fields

for the user to enter a value.

Some tiles have holes in them, where another tile may be

placed. For example, a variable assignment tile has two holes:

one for the variable to be assigned to, and one for the value:

The holes are the empty grey rounded-rectangular areas.

Other tiles with holes include operators such as + and *,
method requests, and print statements. The user can place a

tile inside a hole to build up their program.

To assign the string “Hello!” to the variable “x”, the user

combines these three tiles:

To put a tile into a hole, the user can drag the tile they want

to use over the hole, which will be highlighted when they are

over it, and then drop it there. The hole will expand to fit its

new contents.

Tiles can be connected together in sequence as well. To

create a variable and print its value, a var tile and a print tile

can be joined together:

2014 Second IEEE Working Conference on Software Visualization

978-0-7695-5305-4/14 $31.00 © 2014 IEEE

DOI 10.1109/VISSOFT.2014.11

1

Fig. 1: Tiled Grace editing a small program in the “turtle

graphics” dialect.

The user can join tiles together in this way by dragging so

that the top of the tile they want to join on is near to the

bottom of the tile they want to join onto, and dropping the

tile there. The tile being joined onto will be highlighted:

Some holes can hold multiple tiles, such as the hole in the

body of a loop. The first tile can simply be dropped in as

for any other hole, and then other tiles can be joined onto the

bottom of it. The following code prints “Hello!” and “World!”

ten times each in alternation:

A complete program and its output is shown in the Tiled

Grace interface in Figure 1. The interface is divided into three

main areas: a large workspace area on the left, a toolbox of

available tiles, and text and graphical output areas on the right.

Tiles may be dropped anywhere in the workspace pane, and

the user can construct different sub-programs in different parts

of the area. Different categories of tile can be accessed from

a menu in the toolbox. At the bottom of Figure 1 the dialect

selector, run button, and other interface controls are displayed.

Different kinds of tile are shown in different colours.

Closely related concepts, such as variable declaration, refer-

ence, and assignment, have similar colouring.

The feel of Tiled Grace is similar to Scratch [1]. Tiled Grace

differs in that it is backed by a genuine textual language: the

tiles correspond to the syntax of the Grace language, in order

to support students when they eventually move out of Tiled

Grace and begin writing textual programs. Tiled Grace goes a

step further still: because the tiled representation maps exactly

onto text the user can switch between tiles and a standard

syntax-highlighted textual view at any time.

The transition from tiled to textual view is shown through

a smooth animation. Each tile and block of code has a

continuous visual identity throughout the transition, which

takes just under two seconds. First the tiles fade out to blocks

of the corresponding textual code, then the blocks glide into

place in a linear textual program, and finally the display

switches to editable text. When the user switches back to tiles,

the same occurs in reverse. Figure 2 shows this transition in

progress.

Each group of connected tiles is regarded as an independent

part of the program. The ordering between them in the textual

display is arbitrary, but consistent within the session. The

displayed text is editable if the user wishes: they may change

the source code, including adding and removing whole lines

or blocks, and then transition back to the tiled view.

A. Implementation

Tiled Grace is built on top of Minigrace, our prototype

Grace compiler, using its JavaScript backend with a new front-

end interface. Tiled Grace runs in a web browser without

installation, and can be accessed at http://ecs.vuw.ac.nz/∼mwh/

minigrace/tiled/. Tiled Grace runs in recent versions of Firefox

and Chrome, but does not work in other browsers at the time

of writing. To execute the code, Tiled Grace generates textual

Grace code from the program tree and gives that code to

Minigrace to compile, then executes the resulting JavaScript.

IV. MOTIVATION

When Scratch, Alice, and similar systems already exist, why

build Tiled Grace? Our design goal was to avoid some pitfalls

and problems that have been encountered with these existing

systems while remaining usable and engaging. In this section

we describe the issues with other systems that motivated the

different design choices we made in Tiled Grace.

One issue that has been encountered in introductory visual

languages is that learners do not see them as “real” program-

ming languages [13], [14], particularly when they move on

to textual languages and struggle initially [8]. These students

may feel that the visual language “didn’t count” and that they

are not capable of “real” programming, which view is harmful.

In Tiled Grace we aim to avoid or ameliorate this perception

by presenting the textual and visual representation of code

equally, and clearly the same language. The textual-tiled

combination was our original conception for Tiled Grace.

Another reported problem with moving on from visual to

textual languages [8], and moving between languages early in

learning in general, is that learners find it difficult to connect

analogous concepts in one language to the other. Our animated

transition between visual and textual representation aims to

demonstrate the exact parallel between the two.

In particular, it is known from both educational psychology

generally and computer science education that transitioning

2

Fig. 2: Frames of the animated transition from tiled to textual view. Coloured blocks fade to text and glide into place, finishing

as a linear textual program. Transitioning from textual to tiled view shows the same intermediate states in reverse.

between languages early in learning is unhelpful [15]. A

course structure predicated on such a transition will likely

run into trouble, but introductory tertiary courses in Scratch

and Alice move on to “real” languages early, often within the

first course, as programs become more complex. Permitting

both views should avoid this transition, so that learners can

begin in (Tiled) Grace, move gradually into (textual) Grace,

and continue in that full-strength language as long as required.

One issue with language transitions is that they are es-

sentially “one-way”: the learner must apply what they know

about the earlier language to the later, but movement in the

other direction is restricted. Tiled Grace has a deliberately

permeable barrier: a user can use the visual language, the tex-

tual language, and the visual language again, even within one

program. Allowing movement in both directions necessitates

some trade-offs, but we consider it appropriate to the goal of

the language.

Another key motivation was our dialect system, which

has no real parallel in the other visual language systems.

Scratch, Greenfoot, and Alice all expose different degrees of

complexity appropriate to different levels of development, but

only one each. Advanced users of Scratch find the limitations

frustrating, but permitting more flexibility can lead to early

learners becoming stuck. A key decision in the design of

Tiled Grace was that it would support dialects from the ground

up, so that learners could move into less restrictive language

variants as they went, while staying in the same language and

same interface. Again, that integration involves some trade off,

but we consider it worthwhile to allow a user to remain within

the same fundamental language as long as possible.

V. FUNCTIONALITY

On top of the basic functioning of Tiled Grace described

in the previous section, the tiled view and its duality with

the textual representation offer new possibilities for system

behaviour. In this section we describe the functionality for

handling errors, showing information about definitions, dealing

with language variants, and type checking.

A. Errors, Overlays, and Dialects

While the tiled view prevents most syntax errors, the user

may still write incomplete or incorrect code and these must be

reported to the user [11]. A graphical indicator shows whether

the program is currently valid; when there is an error the user

may hover over the indicator to highlight all existing errors.

Error sites are shown by desaturating the code area except

Fig. 3: Composite image of multiple overlays at once.

the error sites, and overlaying an associated explanation at the

site: for example, “Something needs to go in here” at an empty

hole.

To prevent errors spreading further than necessary, the user

can only switch views when the program is valid. If the user

tries to switch while there is an error, the error site will be

highlighted and the view unchanged.

In the text view, the user is unrestricted in the kinds of

error they can produce, as in any textual editor, and errors

are reported and marked in the usual way. If the user tries to

switch to the tiled view while the program does not compile,

they will be presented with the error and asked whether they

want to revert to the last-known-good version.

As well as visualising the code itself as tiles, Tiled Grace

can visualise relationships between parts of the code [11] (see

Figure 3). When a user hovers their mouse pointer over a

variable reference, the code view will be overlaid with a line

from that reference to the variable’s definition site, as well as

to any assignments to the variable in scope. Hovering over

a variable declaration produces an overlay that indicates all

the uses of that variable in scope. Similarly, hovering over

a method definition identifies any requests of that method in

the program, while hovering over a request (including of a

method that came from the dialect) highlights the definition

of the method. In this way the programmer can easily read the

program in execution order, rather than top-to-bottom, which

has been found to be helpful for novices [16]. If applicable,

multiple overlays may appear at once. These overlays are

similar to those found in spreadsheets [17] to illustrate the

dependencies of a formula.

Grace dialects can extend the methods available to the

programmer, or provide additional definitions. When the user

selects a dialect to use, Tiled Grace creates tiles for all of the

3

Fig. 4: The display of a simple type error the user is attempting

to make, where they try to place a string tile somewhere that

only numbers are permitted.

provided methods, based on a description of the dialect [11].

This description can be automatically generated from the

dialect itself, or manually with additional annotations.

Our support of dialects are an important generalisation of

Blockly’s ability to choose an extended sub-language to use.

Because our dialects persist and originate textually, the user

retains the ability to use and understand them even outside

Tiled Grace.

B. Type checking

Type checking in a drag-and-drop interface raises additional

obstacles versus conventional static type checking. While we

can run a standard algorithm over the code and display the

results, given the way the user interacts with the system we

would prefer to show errors at the time they are made, or even

to prevent their occurrence altogether.

We chose to use a variant on our overlay approach to report

errors as the user tried to make them, as well as preventing the

user from doing so. Any hole, including both those in built-in

tiles and those from dialects, can be annotated with the types

it will accept, and any tile can be similarly annotated with

the type of the object it represents. As Tiled Grace variable

declarations do not include static type annotations, all type

annotations are currently built in (either to the tool directly or

as part of dialect definitions), but the underlying system would

need no change to extend to other types were they added.

For example, a string tile is annotated with the type “String”,

and both holes in a + tile are annotated as accepting only

“Number”. When the programmer tries to place one into the

other, as in Figure 4, the hole is marked in pink and an error

message displayed nearby: the user will not be able to drop the

tile into the hole. In this way, the type error is prevented from

being introduced into the program in the first place, removing

the need for a typechecking pass. Nonetheless, some classes of

type error could be introduced within textual code and not be

caught there, and then make it through the transition to tiled.

As a result, the error-handling step described in Section V-A

also checks that all holes and their contents are well-typed,

and any errors are reported in the same way.

Scratch achieves a sort of type indication through its “jigsaw

puzzle” tiles: holes and tiles of different types have different

physical shapes, so a Boolean constant or expression will

not fit into a numeric expression. We initially wished to use

a similar approach, but ran into two problems: a limited

number of sensible shapes and difficulty with “multi-type”

holes. While Scratch is designed around these shapes and has

Fig. 5: Two hints showing a colour selector (top) and an image

preview (bottom). The menu allows changing between known

images, and will here update the remote def foo.

few types, in Grace we would exhaust the variety of readily

distinguishable shapes. At the same time, sometimes we have

holes (like equality tests) that can hold multiple types, and

shapes alone did not suffice for this situation. Our system

provides for an arbitrary number of types (including new types

unenvisaged by us), and gives the user explicit feedback and

vocabulary for the error they are having.

C. Hints

One advantage of a non-textual display of code, such as

our tiled view, is the flexibility to render additional “out-of-

band” information within the program display for the benefit

of the programmer. In Tiled Grace we call these “hints” and

a dialect may define them for its tiles. The dialect we built

for graphical programs includes two hints, both showing a

graphical representation of some text the programmer wrote.

The first hint is on a tile for defining colours using the hue-

saturation-lightness scale. A small block of colour appears on

the tile, updated live as the programmer edits the values or

definitions leading to them. The second involves images: the

dialect provides the ability to construct “image” objects, which

render an image at run time. The image used is determined by

the name assigned to the url field of the object. The hint catches

these assignments, shows a preview of the image referred to,

and offers a drop-down menu for the user to select from known

images. If the user chooses a new image, the code is updated,

even if the original definition site is remote from the code at

hand. Both of these are depicted in Figure 5.

These hints are implemented by augmenting a dialect def-

inition with JavaScript functions, which access Tiled Grace’s

internal representation and API. While the dialect implementor

must know the structure of Tiled Grace to build a hint, the end

user receives additional help with no effort on their part.

VI. EXPERIMENT

Our experiment trialled Tiled Grace with 33 participants,

primarily students enrolled in undergraduate courses in the

School of Engineering and Computer Science at Victoria Uni-

versity of Wellington. This experiment was approved by the

4

Fig. 6: A photograph of the room used for experimental trials.

The two experimental PCs are on the far edges of the picture,

with up to one participant on each machine. The experimentor

was positioned approximately at the camera during trials.

university’s Human Ethics Committee. Participants were asked

to use Tiled Grace to write, modify, and describe programs,

while we recorded their actions. Participants also completed

questionnaires about themselves and the experiment.

Our experimental design was guided by some key questions

we wished to answer (as well as by practical considerations,

particularly timing). We wished to find out whether users

found the ability to switch views useful, and also whether

they appreciated the explicit animation connecting the two, a

particular novelty of our approach. We wanted to see whether

the error reporting and type checking we had built was useful

to users. As a tool that users do not enjoy will not be used,

we wanted to measure engagement. Finally, we wanted users

to explore different parts of the system so we could discover

any unanticipated problems or successes. Further detail on the

structure and results of the experiment is available in the first

author’s thesis [18].

A. Participation

Participants were recruited by announcements in lectures,

forum posts, word of mouth, and direct recruitement, and

invited to make an appointment to perform the experiment.

These are the standard techniques used for experiments in the

department. Participants were able to attend in pairs, with

each person performing the experiment simultaneously but

independently. Two enticements to participate were provided:

a random draw for one of three $50 gift vouchers, and a

bowl of assorted confectionery that was available during the

experiment and some in-person recruiting sessions.

B. Instruments

The experiment was conducted in a room provided by

the School of Engineering and Computer Science of Victoria

University of Wellington set up for this purpose. The experi-

mental room had two ordinary workstation computers set up,

as shown in Figure 6. Each machine had an ordinary keyboard,

mouse, and screen, and was running Windows 7. All recorded

information, including questionnaires, occurred within a web

browser. Google Chrome 33 was used on each machine. The

experimentor sat at a distance positioned to see both screens

and observed participants during the experiment.

C. Protocol

On arriving at the experimental room each participant

was given an information sheet and a consent form. After

completion of the consent form each participant was led to a

workstation with the initial questionnaire open and was invited

to fill it in. Survey responses were collected electronically.

Following completion of the survey we provided a brief tour

of the experimental system. After the tutorial each participant

was provided a freshly-loaded version of our instrumented

interface that had not previously had any interaction to use

for the body of the experiment, which included five tasks

presented in sequence. Each task involved being presented

with a program and some instructions on what to do with

it. We selected the tasks with the goal of having users interact

with all different parts of the system in mind, while also

wishing to have the entire experiment complete within 40

minutes.

D. Data collection

While participants used the experimental system their on-

screen interaction was recorded by the tool. Every drag, vari-

able selection, text modification, switch of views, or attempt

to run the program was noted, and a snapshot taken after

every change. These logs were automatically saved to the

server while the participant used the system. No audio or

video recording was used in the experiment. Participants were

automatically prompted to move on after five minutes.

On arrival each participant was led to a workstation with

an initial questionnaire open and invited to fill it in. The

survey responses were recorded electronically. Following the

completion of the initial questionnaire participants were given

a scripted tour of the experimental system: we showed a

tutorial program in a graphical dialect and demonstrated ways

it could be manipulated. After the tour participants could

explore the system with the tutorial program before moving

on to the first task when they wished. The tasks were:

1) To modify a procedural program printing Fibonacci

numbers to print factorials instead. We chose this task to

begin with as it could be represented by a single linear

block of tiles and involved variable assignments. This

program was most similar to simple textual programs

from introductory courses.

2) To correct introduced errors in a modified version of the

program in Figure 1. The errors were primarily tiles out

of place, and a single misspelled method name.

3) To swap behaviours of two graphical objects.

4) To type a description of the behaviour of a program

without running it. This program was first presented in

the textual view, but users could switch if they wished.

5) A final “task” where users were told they had finished,

and could continue to play with the system and move

on to the final questionnaire when ready; this task

5

aimed to measure user engagement implicitly, similar

to Kelleher et al.’s use of “sneak time” [19]. A sample

program implementing a crude orbital simulator was

given, but users could replace it entirely if they wished.

The final questionnaire asked participants about their in-

teractions with the system and what they preferred. Free-

text entry fields were provided with prompts to say what the

participant liked or disliked about the system.

In the questionnaire we sought to measure what participants

found difficult or easy in the experiment, how engaged they

were, and what they liked or disliked. Questions primarily

asked participants for such information directly and gave a

seven-point Likert item for answers.

VII. RESULTS

A. Demographics

33 participants completed our experiment (one further par-

ticipant withdrew). Participants were principally drawn from

students in the School of Engineering and Computer Science

at Victoria University of Wellington and so represent at best

the demographics of the source. 23 (70%) of participants

were male while 10 (30%) were female. The median age of

participants was 20 and the most common age was 18. There

are decreasingly many participants in older age bands.

B. Programming experience

We asked questions about past programming experience.

The most informative presented 72 technologies (mostly lan-

guages, but also IDEs and other tools) and asked participants

to indicate any they had used before. The total number of

technologies ranged from 1 to 25. The median was 10.

The most popular technologies used were Java and Eclipse

(79%), both used in undergraduate courses in the school, while

Python (76%) and HTML (73%) were also popular.

Four participants had previously used Scratch, the system

most similar to our drag-and-drop interface, while six had

used Alice, another introductory programming language with

a partial drag-and-drop interface. One had seen Grace.

C. Engagement

A key measure of this system is user engagement. We

attempted to measure engagement in multiple ways. In the

simplest, we asked participants in the final questionnaire

whether the system was fun to use. Responses were on a

seven-point Likert item. Responses 1, 4, and 7 were labelled

“Agree”, “Neutral”, and “Disagree”.

The most common response was 2, with nine participants

(27%), while 1 (“Agree”) and 3 were chosen eight times

(24%) each. 25 participants in total (76%) chose one of

the responses on the Agree side. One participant chose 5,

a light disagreement, while seven (21%) were neutral. The

median response was 2, a medium agreement. We also asked

participants for their agreement with “I would use this system

again”, and again 76% chose an agreeing response.

The fifth task of our experiment included a program but

no actual task, instead informing participants that they were

0%

10%

20%

30%

40%

1
Agree

2 3 4
Neutral

5 6 7
Disagree

The system was fun to use

P
ro

po
rt

io
n How many

technologies
used

Ten or
fewer
More than
ten

Fig. 7: Participants’ agreement with “The system was fun to

use” split by how many technologies they had used.

finished, that they could use the system there if they wished,

and to move on to the final questionnaire when they were

ready. By this we intended to measure implicit engagement:

would participants use the system unprompted? We measured

whether participants interacted with the system for 45 seconds

or more. We chose this threshold conservatively, allowing 30

seconds for participants to read the task description, look at

the program, and potentially run it before moving on to the

questionnaire, and adding a 15 second buffer. 23 participants

(70%) used the system for at least 45 seconds here, while 10

(30%) moved directly on to the questionnaire. The median

time spent here was 1:43 and the mean 3:10.

We take from these results that participants were reasonably

engaged with the system. Large majorities in every case

indicated some degree of engagement, including both when

explicitly asked and through revealed preferences.

Not all participants were as enthusiastic, and we note one

trend shown in Figure 7 in particular. If we recall the list

of technologies we asked participants about their use of, we

can divide participants into two groups: those who have used

more than the median number of technologies (16 participants,

or 48%), and those who have not (17 participants, or 52%).

We can then examine the proportions in each group giving

each response to the statement “The system was fun to use”.

On doing so we see that participants with less experience

are substantially more positive than those with more. Fully

41% of less-experienced participants fully agreed with the

statement, while only 6% of more-experienced participants

did so. Similarly, 31% of more-experienced participants were

neutral, while only 12% of less-experienced participants were.

From these responses and regression analysis it appears that

all other things being the same a more experienced user will

enjoy the system less. This result is consistent with our and

others’ experience with Scratch, and not a substantial issue for

a tool designed for introductory programming.

D. Error handling

The tiled interface both prevents some kinds of error from

occurring at all and provides the opportunity for entirely new

kinds of error. Tiled Grace includes novel error reporting for

6

0

5

10

1
Agree

2 3 4
Neutral

5 6 7
Disagree

Finding errors in the code was easy

co
un

t

Fig. 8: Participant agreement that finding and fixing errors was

easy.

such code, as described in Section V-A. We asked participants

whether finding errors in the code was easy, and also whether

fixing them was easy. The results are shown in Figure 8.

Responses were on a seven-point Likert item with responses

1, 4, and 7 labelled “Agree”, “Neutral”, and “Disagree”.

Most participants agreed that finding errors was easy. The

modal answer was 1 (“Agree”), with 13 participants (39%),

while 26 in total (79%) gave an answer on the Agree side. The

median answer was 2, a moderate agreement. Responses were

much more varied on the question of fixing errors, with every

response from 1 to 5 being chosen by between five and seven

participants. Fixing errors in an unfamiliar system, language,

and codebase under time pressure would not generally be

expected to be easy, so this result is not surprising.

E. View switching

Tiled Grace permits switching between tiled and textual

views of code at any time. We measured participants’ use of

this feature and asked them several questions about it.

One particular focus of the tiled interface was the elim-

ination of basic syntax errors like mismatched brackets or

using the wrong symbol. We asked participants whether they

found the syntax easier to deal with in the tiled view. Most

participants (18, 55%) chose an answer on the Agree side and

answers were steadily less common moving towards Disagree.

Table I shows the distribution of time in text mode and

switches of view for each task and overall. The median number

of switches is six, the first quartile is four, and the third

quartile is eleven. Participants varied substantially in their use

of the view-switching feature, using it between zero and 22

times. The median participant spent one third of their time

in the text view and two thirds in the tiled view. We also

asked participants for their self-assessment of how they had

edited their code, which was broadly in accordance with our

instrumentation results.

Most participants used the tiled view a majority of the

time, but most switched views at least once for each of the

first three tasks, and used the text view a nontrivial amount

of time. These counts and proportions are fairly consistent

across tasks until the fourth. This task asked participants to

describe a program initially presented as text, and the majority

of participants did not switch to the tiled view at all. It may

be that participants simply did not think to switch views; an

Stat. T. 1 T. 2 T. 3 T. 4 T. 5 Tot.

Prop.
of time
in text
view

Min. 0% 0% 0% 3% 0% 1%
1Q 0% 0% 0% 65% 0% 24%

Med. 17% 53% 8% 100% 0% 33%
3Q 50% 84% 32% 100% 17% 52%

Max. 83% 94% 76% 100% 83% 78%

Number
of
switches
of view

Min. 0 0 0 0 0 0
1Q 0 0 0 0 0 4

Med. 1 1 1 0 0 6
3Q 3 3 3 1 2 11

Max. 8 8 8 5 14 22

TABLE I: Summary and distribution statistics for the usage of

different views per Task and overall.

Appearance
Colour
Errors

Overview
Revert

Switching
Syntax

Toolbox
Var list

0 3 6 9
count

W
ha

t d
id

 y
ou

 li
ke

 a
bo

ut
th

is
 s

ys
te

m
?

(c
od

ed
)

Fig. 9: Coded participant responses to “What did you like

about this system?” Any point with more than one mention is

included.

alternative possibility is that they find text more useful for

comprehension, but the tiled view helpful for editing code. We

will examine these possibilities more closely when analysing

the freeform text responses from participants.

F. Freeform responses

We prompted participants for freeform responses on what

they liked and disliked about the system. Participants could

write arbitrary text in response to these questions. We coded

participants’ responses to the like and dislike questions and

show the distribution in Figures 9 and 10.

Figure 9 shows the distribution of coded responses to “What

did you like about this system?”. Participants could mention

multiple topics and be coded for each. Any mention of the

relevant topics was coded into that category. The figure shows

all topics that were mentioned more than once.

The most common response was that participants liked

the error reporting described in Section V-A and found it

helpful. The most interesting response for this experiment

was whether participants liked switching views, which six

participants identified explicitly, while four said they found

the tiled view helpful for an overview of the code and eight

found the tiled view helpful for dealing with syntax.

Figure 10 shows the distribution of coded responses to

“What did you dislike about this system?”. The figure shows

all topics that were mentioned more than twice.

7

Change op
Dislike GUIs
Middle drag

Dragging hard
New language

No hole default
Unfamiliar

0 3 6 9
countW

ha
t d

id
 y

ou
 d

is
lik

e
ab

o
th

is
 s

ys
te

m
?

(c
od

ed
)

Fig. 10: Coded participant responses to “What did you dislike

about this system?” Any point with more than one mention is

included.

0
1
2
3
4
5

0% 50% 100% 150%
Ratio of misdrags into holes

to successful drags into holes

co
un

t

Fig. 11: Ratios of hole misdrags to non-misdrags.

The most common dislike was that the drag-and-drop was

too sensitive or insensitive or did not do what participants

wanted. A common note in the responses that we also observed

during the experiment was that some participants found it

difficult to drag a tile into a hole. The system required

the mouse pointer to be inside the borders of the hole to

consider the drag to be over the hole, and not just a portion

of the dragged tile; the hole would be highlighted (yellow)

when the pointer was over it and a tile was being dragged.

We considered this standard behaviour for drag-and-drop and

did not give it any significant design thought before the

experiment. Our preliminary trials did not show this issue.

We have confirmed subsequently that the default behaviour

of the standard interface widgets on Windows, Mac OS X,

KDE, and GNOME conforms to this expectation; nevertheless,

multiple participants had repeated difficulty here. It may be

that this convention is in fact unintuitive and users need to

learn it separately for each tool they use. Past human-computer

interaction research [20], [21], [22] has found that point-and-

click interfaces may involve fewer errors and be faster than

drag-and-drop. We examined the interaction data we collected

in more detail to try to discover any trends in the data.

We analysed the actions participants took during the exper-

iment to count these “mis-drag” events. We defined a misdrag

as a drag and drop onto the background followed immediately

by picking up the same tile in a subsequent drag event, without

interacting with the system in any other way in between. We

defined a “hole misdrag” as a misdrag where the tile was

eventually placed into a hole, and an “unrealised misdrag”

as one where the participant either tried to run the program

or viewed the error overlay immediately after the misdrag,

and so could be assumed not to have realised that the tile

was not where they wanted. The number of hole misdrags

ranged widely from 1 to 36. We can compare these counts

to the number of successful drags into holes by the user

(Figure 11). Five participants (15%) had more hole misdrags

than successful drags into holes, indicating serious difficulty.

If we consider unrealised misdrags only we see that again

around 15% have difficulty, with all other participants having

no unrealised misdrags. One participant had ten unrealised

misdrags, while four others had between two and four.

The fact that most participants had at least 10 hole mis-

drags, and that some participants had debilitating difficulty,

suggests that drag-and-drop may be a problematic paradigm

for programming. We discuss this issue further in Section IX.

G. Summary

Measures of engagement were high and participants gen-

erally (76%) enjoyed using our system. The error reporting

in the tiled view was very well received (79%). Participants

found the mapping between tile and text clear and useful,

and appreciated the ability to switch. A few participants had

significant difficulty programming by drag and drop.

H. Threats to validity

Our sample is drawn primarily from undergraduate students

in the School of Engineering and Computer Science at Victoria

University of Wellington, and may not be representative in

general. In particular, as participants volunteered to participate

in the study, those to whom the study sounded interesting

may have been more likely to choose to participate. As most

participants had meaningful past programming experience,

they are not the true novices that Grace aims to support.

Both the pre- and post-questionnaires were completed in the

experimental room with the experimentor present, although

not watching their responses. Participants may have been

influenced by this situation to rate their experiences more

favourably than otherwise. As well, when participants came in

pairs they may have been influenced to hurry if they observed

the other participant completing before them, which may affect

their performance or responses. Similar pressure may have

resulted from the time limits we imposed on tasks.

VIII. RELATED WORK

A. Scratch

Scratch [1] is a wholly visual drag-and-drop programming

environment with jigsaw puzzle–style pieces, aimed at novices

and children. Scratch is purely visual: there is no textual

representation of Scratch code at all, and some tiles in the

system take advantage of layout tricks not possible in text.

A Scratch program is able to talk exactly about the graphical

microworld the system presents, and no more, so eventually a

8

student must move on and use a “real” language when their

programs become more complicated.

Tiled Grace avoids this immediate need by allowing arbi-

trarily complex programs and always providing an equivalent

(and co-equal) textual representation for a program. A student

may gradually use the textual editor more and more until they

are confident in moving to a more standard environment, or

even continue to use Tiled Grace indefinitely without any loss.

In our experiment we found that participants appreciated

having a conventional textual view available, even when they

preferred to edit graphically. We believe from these results that

including a bijective textual representation of code is helpful

in visual editors and that Scratch and others should consider

incorporating such a representation.

A number of aspects participants in our experiment disliked

were common across most tile-based editors including Scratch,

notably finding dragging to be a chore, which conformed with

our own experience in Scratch. In Section IX we discuss

possible future work with both Scratch and Tiled Grace

relating to this point.

Scratch includes one notable feature that our system does

not: when a Scratch program is running, each tile is high-

lighted in turn as it is executed. The idea behind this high-

lighting is to make the flow of control clear, particularly

the fact that multiple threads of control flow are executing

simultaneously in a Scratch program. Our system does not

include such highlighting; primarily, this omission is a techni-

cal limitation of the JavaScript environment and the generated

JavaScript code from Minigrace. Because Minigrace generated

JavaScript code, and browsers execute JavaScript in a single-

threaded and blocking fashion, we could not provide any visual

update from a program until it completed. Alternative code

generation techniques allow solving this problem, but we did

not implement these in Minigrace.

B. Blockly

Blockly [2] is very similar in ethos to Scratch. Blockly runs

in a web browser and incorporates language variants (what we

call dialects), but in mimicking Scratch also has no editable

textual format. The same limits apply to Blockly and Scratch.

Blockly supports exporting code to a number of languages,

but there is no way to reverse the process and no explicit

indication of which parts of the visual representation cor-

respond to which parts of the exported code. Tiled Grace

makes this connection clear through animation, and experi-

mental participants indicated that they liked and understood

the correspondence. We believe that making the connection

between the two formats explicit is important for participants

transitioning from visual to textual programming.

C. Calico Jigsaw

Calico Jigsaw [23] is a drag-and-drop visual language for

the multi-language Calico development environment. Jigsaw

programs can be exported to Python code. Unlike Tiled Grace,

Jigsaw code export is to a complete textual program and does

not provide a direct mapping to and from the corresponding

tiles. The transition is intended to be one-way and one-time,

rather than having users remain in a single language.

D. Alice

Alice [3] is a 3D microworld language manipulated by

drag-and-drop. Alice uses drag-and-drop both for putting 3D

models into the microworld and for editing logic; there is

no interaction with concrete textual syntax. Our system does

not include a persistent microworld and does not permit

manipulating the worlds it does present (through dialects)

other than programmatically. Alice programs can only interact

with this microworld and cannot express tasks outside of it.

Event handlers on Alice’s in-world objects are put in place

through drag-and-drop in a similar way to our tiled view,

but there is no editable text. One notable difference in the

way the drag-and-drop logic behaves compared to ours is that

Alice code does not allow even temporary syntax errors: when

placing an “if-then” into the code, the programmer cannot

move on to any other task before they fill in the condition.

We consider such a prohibition to be a reasonable option, but

note that it obstructs other idioms. In particular, one way of

programming with both Tiled Grace and Scratch is to drag

multiple tiles from the toolbox onto the workspace when

knowing that they will be needed and then assembling them

once all are available, avoiding back-and-forth trips to the

toolbox. We are unsure which approach is best, but a future

experiment could use both.

Powers, Ecott, and Hirshfield experimented with transi-

tioning from Alice to Java (with BlueJ) in an introductory

programming course [8]. They observed that many students

were intimidated by the textual language and syntax,

and seemed to have a difficult time seeing how the

Java code and the Alice code related

even when working with exactly corresponding Alice and Java

code. The authors identify this problem as a potential issue

for visual programming languages for novices in general. Our

system aims to ease this transition to conventional syntax

by explicitly showing how tiled and textual code relate. In

addition, Tiled Grace was explicitly designed with a permeable

barrier in mind: a user is not forced to move entirely into the

textual world at once, but can acclimatise gradually.

IX. FUTURE WORK

While Tiled Grace includes simple type checking to prevent

common errors, we would also like, if possible, to signal what

is permissible in advance by some feature of the tiles them-

selves. Scratch and Blockly use a “jigsaw puzzle” approach,

where only tiles that “fit” can be placed in any given position,

but this is incomplete; some tiles may be the correct shape

but still not allowed (in Blockly) or not sensible (in Scratch)

in a particular location. We plan to investigate variations of

shape, colour, and other attributes to indicate these restrictions

in advance of a user trying to perform the task in the program.

The graphical design of the tool would benefit from further

consideration. The current colouring of tiles is essentially

arbitrary, while the overlays are functional but may obscure

9

areas of the program. We intend to create a more consistent

design and investigate variations to the overlay displays such

as transparency and alternative pathfinding.

At present our view-switching system only allows programs

with no current errors to be switched to the other view. In

part this is for technical and representational reasons: some

erroneous code has no clear representation in one view or the

other. Some errors, however, could be seen on both sides of

the divide, and users may benefit from being able to look at

them in two different ways. In future we may allow at least

some classes of error to pass through the barrier between the

two views, but establishing which errors are suitable, both

technically and in terms of not creating additional confusion

for the user, is design work remaining to be performed.

In Section VI we outlined experimental results suggesting

that some participants had substantial difficulty with drag-and-

drop, and many noted some degree of difficulty, suggesting

that drag-and-drop may not be the most suitable paradigm for

programming. After the experiment we examined the human-

computer interaction literature and described in Section VII-F

that some HCI research has suggested that drag-and-drop is a

problematic interaction mechanism in general, and that a point-

and-click arrangement is less error-prone. Further research is

required to determine the impact of this issue in relation to

visual programming; in particular, given the target markets of

Scratch and Grace, and the recent work of Barendregt [24] on

children’s interaction with various interfaces, more structured

classroom-style experimentation may be in order.

X. CONCLUSION

Tiled Grace is a graphical editing environment for Grace,

inspired by visual program editors such as Scratch. Tiled Grace

visualises code as nested “tiles” that can be manipulated by

drag-and-drop, eliminating many syntax errors. Tiled Grace’s

tiles always correspond exactly to Grace’s textual syntax,

so that users become familiar with the textual syntax while

dragging and dropping tiles. The user can switch between

the tiled and textual view, with the program editable in both

forms. Tiled Grace can also visualise relationships between

definitions and uses of variables and methods.

We conducted an experiment to measure user engagement

with Tiled Grace, and how people would use the tiled view,

view-switching and error-reporting provided by the tool. We

found that participants generally (76%) enjoyed using our

system and that other measures of engagement were high,

supporting the use of these features in development tools. We

also found that enjoyment was lower for more experienced

users, suggesting that Tiled Grace and similar interfaces may

be most appropriate within the novice market Grace targets.

The error reporting (desaturating all non-erroneous tiles and

overlaying explanations) was very well received. 79% agreed

that finding errors in the code was easy with this reporting

style. This approach does not strictly require a tiled view and

might have application in more conventional editors as well.

We showed in the experiment that participants found having

a more conventional textual view of code available to be

helpful, even if they liked to edit the graphical version, and

that they liked to have the graphical version available for an

“overview” even when they were editing textually. The direct

equivalence between the two views was helpful.
Participants also noted features afforded by the tiled view,

such as colour coding, a toolbox of available methods, lists

of variables in scope, and direct indicators of the definition or

usage sites of variables and methods to be helpful. Several of

these features could be incorporated into conventional editors.

REFERENCES

[1] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, and
Y. Kafai, “Scratch: programming for all,” Communications of the ACM,
vol. 52, no. 11, pp. 60–67, Nov. 2009.

[2] “Blockly,” https://code.google.com/p/blockly/.
[3] S. Cooper, W. Dann, and R. Pausch, “Teaching objects-first in introduc-

tory computer science,” in SIGCSE Bulletin, vol. 35, no. 1, 2003.
[4] D. Franklin, P. Conrad, B. Boe, K. Nilsen, C. Hill, M. Len, G. Dreschler,

G. Aldana, P. Almeida-Tanaka, B. Kiefer, C. Laird, F. Lopez, C. Pham,
J. Suarez, and R. Waite, “Assessment of computer science learning in a
Scratch-based outreach program,” in SIGCSE ’13.

[5] Q. Burke and Y. B. Kafai, “The writers’ workshop for youth program-
mers: Digital storytelling with scratch in middle school classrooms,” in
SIGCSE ’12, New York, NY, USA, pp. 433–438.

[6] O. Meerbaum-Salant, M. Armoni, and M. M. Ben-Ari, “Learning
computer science concepts with scratch,” in ICER ’10, pp. 69–76.

[7] J. H. Maloney, K. Peppler, Y. Kafai, M. Resnick, and N. Rusk, “Pro-
gramming by choice: Urban youth learning programming with scratch,”
SIGCSE Bull., vol. 40, no. 1, pp. 367–371, Mar. 2008.

[8] K. Powers, S. Ecott, and L. M. Hirshfield, “Through the looking glass:
Teaching CS0 with Alice,” SIGCSE Bull., vol. 39, no. 1, Mar. 2007.

[9] D. Parsons and P. Haden, “Programming osmosis: Knowledge transfer
from imperative to visual programming environments,” 2007.

[10] A. P. Black, K. B. Bruce, M. Homer, J. Noble, A. Ruskin, and
R. Yannow, “Seeking Grace: a new object-oriented language for
novices,” in SIGCSE, 2013. [Online]. Available: http://doi.acm.org/10.
1145/2445196.2445240

[11] M. Homer and J. Noble, “A tile-based editor for a textual programming
language,” in VISSOFT ’13, Sept 2013, pp. 1–4.

[12] M. Homer, T. Jones, J. Noble, K. Bruce, and A. Black, “Graceful
Dialects,” in ECOOP 2014, ser. LNCS, 2014, vol. 8586. [Online].
Available: http://dx.doi.org/10.1007/978-3-662-44202-9 6

[13] C. Lewis, S. Esper, V. Bhattacharyya, N. Fa-Kaji, N. Dominguez, and
A. Schlesinger, “Children’s perceptions of what counts as a program-
ming language,” J. Comput. Sci. Coll., vol. 29, no. 4, Apr. 2014.

[14] C. M. Lewis, “How programming environment shapes perception, learn-
ing and goals: Logo vs. Scratch,” in SIGCSE ’10.

[15] D. B. Palumbo, “Programming language/problem-solving research: a
review of relevant issues,” Review of Educational Research, vol. 60,
no. 1, pp. 65–89, 1990.

[16] R. A. Jeffries, “Comparison of debugging behavior of novice and expert
programmers,” in AERA Annual Meeting, 1982.

[17] V. Grigoreanu, M. Burnett, S. Wiedenbeck, J. Cao, K. Rector, and
I. Kwan, “End-user debugging strategies: A sensemaking perspective,”
ACM Trans. Comput.-Hum. Interact., vol. 19, no. 1, May 2012.

[18] M. Homer, “Graceful language extensions and interfaces,” Ph.D. disser-
tation, Victoria University of Wellington, 2014.

[19] C. Kelleher, R. Pausch, and S. Kiesler, “Storytelling Alice motivates
middle school girls to learn computer programming,” in CHI ’07.

[20] K. M. Inkpen, “Drag-and-drop versus point-and-click mouse interaction
styles for children,” ACM Trans. Comput.-Hum. Interact., vol. 8, no. 1.

[21] D. J. Gillan, K. Holden, S. Adam, M. Rudisill, and L. Magee, “How
does Fitts’ law fit pointing and dragging?” in CHI ’90.

[22] I. S. MacKenzie, A. Sellen, and W. A. S. Buxton, “A comparison of
input devices in element pointing and dragging tasks,” in CHI ’91.

[23] D. Blank, J. S. Kay, J. B. Marshall, K. O’Hara, and M. Russo, “Calico:
A multi-programming-language, multi-context framework designed for
computer science education,” in SIGCSE ’12.

[24] W. Barendregt and M. M. Bekker, “Children may expect drag-and-drop
instead of point-and-click,” in CHI EA ’11, 2011.

10

