5G AND THE EVOLUTION OF THE AUTOMOTIVE SECTOR

Stefano Sorrentino Master Researcher, Ericsson (Sweden) 5G Automotive Association (5GAA) WG2 Chairman

5G: WHAT IS NEW ABOUT IT?

New Use Cases - eMBB - AR/VR - Critical MTC - Massive MTC - Automotive - Aerials

New technology

- Massive MIMO
- -mmWave
- Licensed and unlicensed spectrum
- Network Slicing
- Network Virtualization
- Cloud distribution

New ecosystems

- Private consumers
- -Network Operators
- Industries
- Public sector

ą 5G – BEYOND MOBILE BROADBAND

Broadband experience everywhere anytime

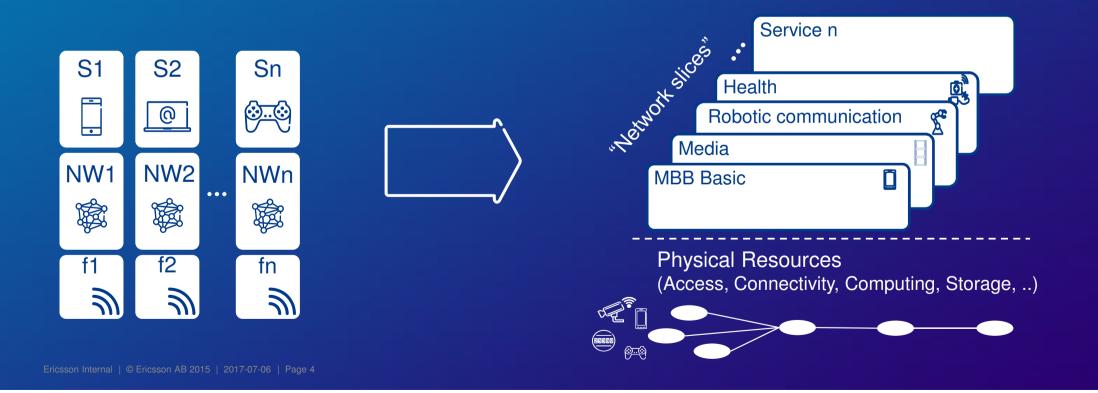
personalized media and gaming

Meters, sensors, "Massive MTC"

Remote controlled machines

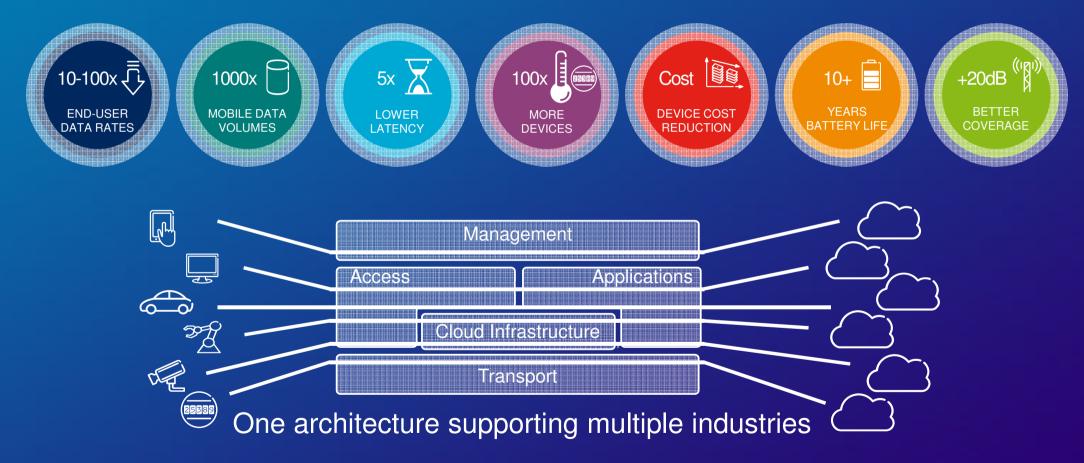
Infrastructure and vehicles

Human-machine interaction


beyond the crystal bowl

Wide range of use cases – wide range of requirements

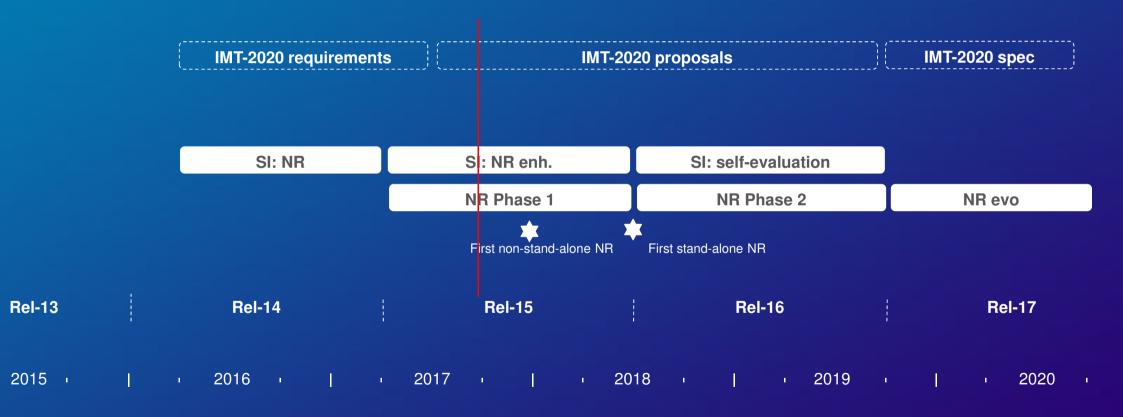
ONE NETWORK – MULTIPLE INDUSTRIES


From dedicated physical networks and resources for different applications...

...to a "network factory" where new networks and architectures are "manufactured by SW"

WHAT IS 5G – WHAT WILL IT BRING A Network for the Networked Society

Z



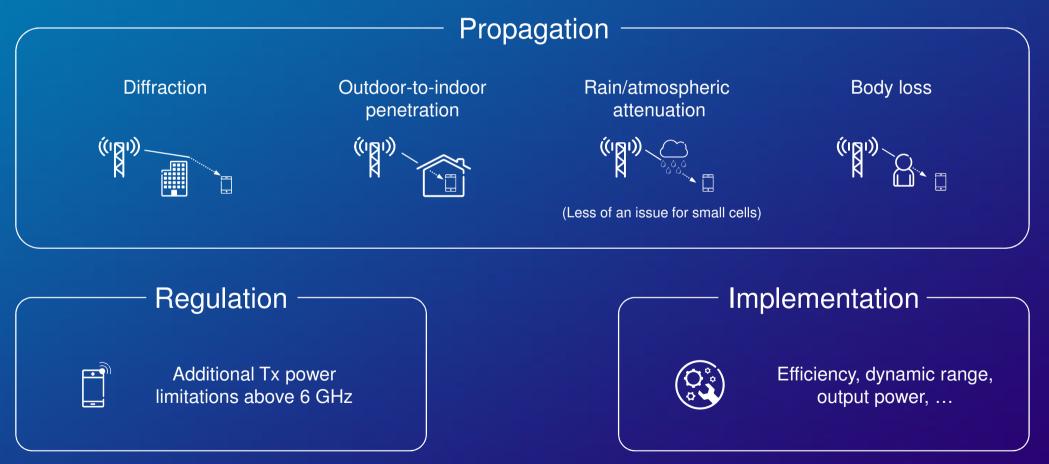
5G RADIO ACCESS

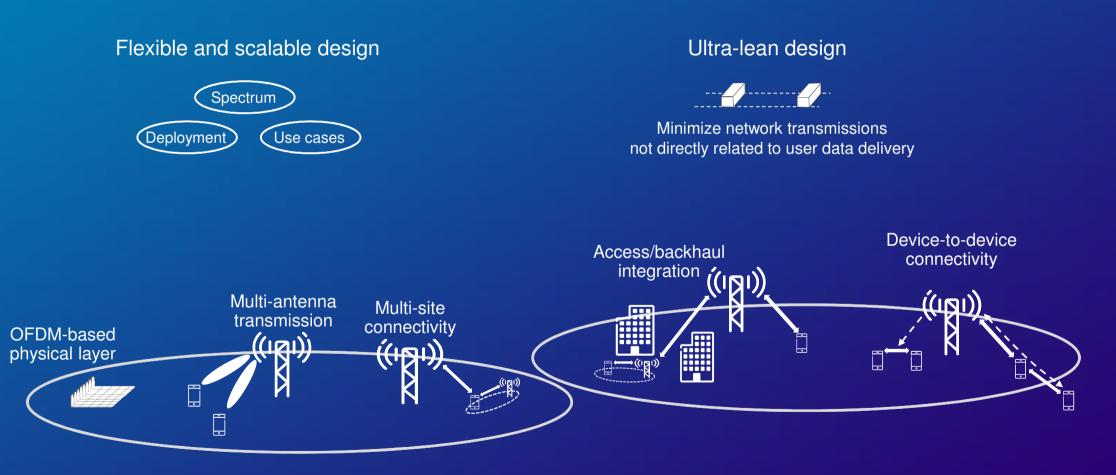
Evolution of existing technology + New radio-access technology

3GPP STANDARDIZATION

NR SPECTRUM RANGE

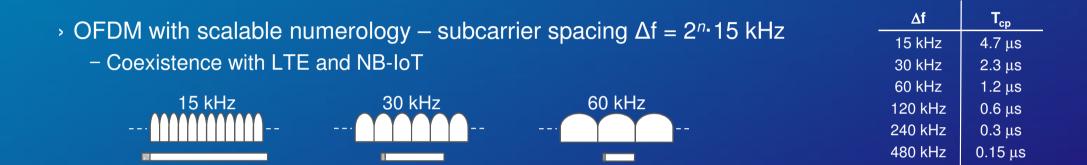
Ó


NR SPECTRUM RANGE

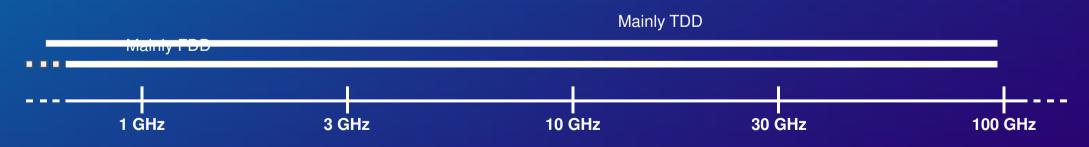

Why "mm-wave"?

- → Large amounts of spectrum ⇒ high capacity
- > Very wide bandwidth per carrier ⇒ very high data rates
- Beamforming with large number of antennas possible
 - ...and needed due to propagation conditions

MM-WAVE CHALLENGES



NR – KEY TECHNOLOGY FEATURES


5

WAVEFORM AND DUPLEX SCHEME

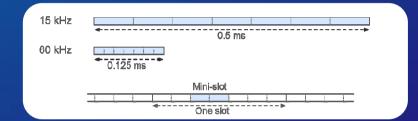
> TDD and FDD

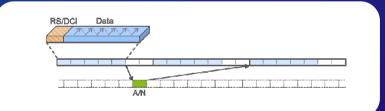
- Dynamic TDD to exploit traffic variations in small cells

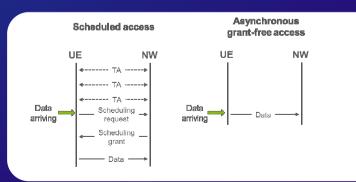
LOW LATENCY

Short scheduling units

- Short regular slots 125 μ s at 60 kHz
- "Mini slots" Arbitrary starting point and length within a slot


Fast retransmissions

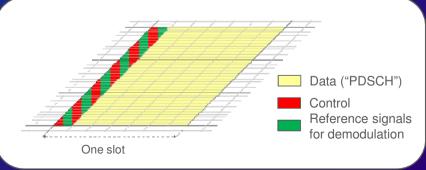

- Fast ACK
- Enabled by front-loaded DMRS/DCI and frequency-first mapping allowing for rapid data demodulation/decoding

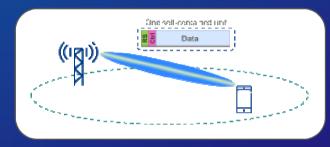

Uplink grant-free transmission

- Fast access to channel
- Preferably avoiding explicit time alignment (asynchronous access)

BEAM-FORMED TRANSMISSION

To enable the capacity, data rate, and coverage needed in the 5G era

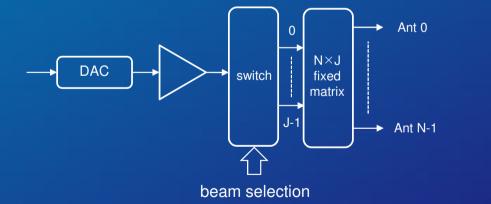

A unified toolbox for low and high frequencies


Beam-centric NR design

- Self-contained data transmissions
- "Beam mobility" Mobility between beams rather than nodes
- Initial access matched to beam-formed user plane

SELF-CONTAINED TRANSMISSIONS

- All information needed to detect and decode a transmission contained within the transmission itself
 - Scheduling assignments
 - Reference signals for demodulation
- ⇒ Joint beam-forming of data and all associated transmissions
- All information needed to detect and decode a transmission located at the beginning of the slot ⇒ Enables low-latency detection/decoding


Ó

ANALOG VS DIGITAL BEAMFORMING

- Analog beamforming
 - Limited degrees of freedom
 - Entire carrier points in one direction at a time

- Highest degree of freedom
- Different signals can be sent in different directions at the same time



Both schemes (and hybrids) to be supported by the final specifications!

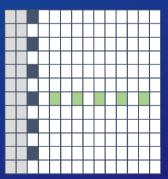
DMRS

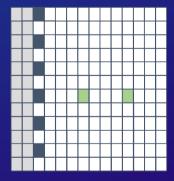
]

- Demodulation to start before receiving the whole slot
- Front-loaded DMRS in 1 or 2 adjacent OFDM symbols
 - Can only handle low mobility/Doppler
- Distributed DMRS within the slot
 - To handle some mobility/Doppler
 - Possibly some channel interpolation
 - First DMRS aligned with front-loaded
- > Up to 12 orthogonal DMRS ports

DMRS position indicative

PTRS

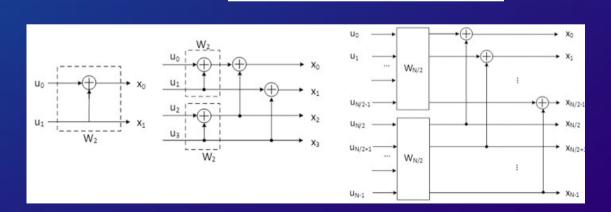

|


> Phase tracking reference signal (PTRS) can be used to compensate for common phase error

- Can be seen as extension of a DMRS symbol in time domain

Dynamic PTRS overhead

- Frequency density = f(data allocation size in frequency domain)
- Time density = f(modulation and coding scheme, MCS)

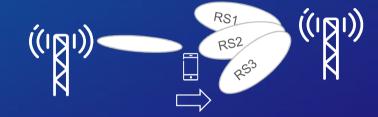


CHANNEL CODING

0

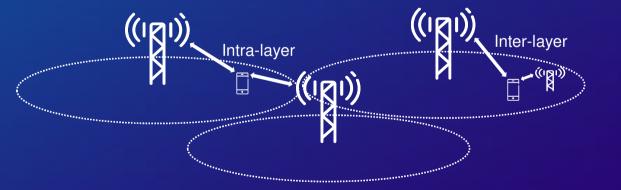
- > Turbo, LDPC, and Polar coding investigated in 3GPP
 - No major difference in performance, different views on implementation complexity
- > Highly political discussions!
- LDPC for MBB data (PDSCH / PUSCH)
- Polar coding for control signaling UCI/DCI (>11 bits) & PBCH

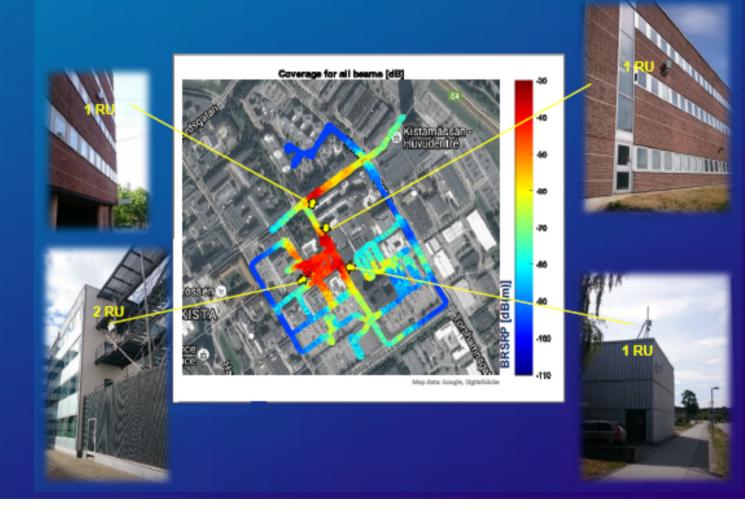
H =


CONNECTED-MODE "MOBILITY"

> (RRC) mobility

- Typically between (beams of) different transmission points
- Based on periodic downlink reference signals (CSI-RS, SS)
- Slower L3 (RRC) reporting


- Update the beams used for transmission and reception
- Typically between beams within a transmission point
- Also including beam-adjustment, beam-refinement, ...
- Based on CSI-RS, uplink measurements, ...
- L1/L2 reporting


MULTI-SITE CONNECTIVITY

- Joint connectivity to multiple sites
- Intra-layer connectivity
 - Joint transmission/reception: Enhanced coverage
 - Distributed MIMO: Higher peak data rates
- Inter-layer connectivity
 - Enhanced connectivity robustness
 - Intra-RAT or inter-RAT (LTE+NR)

ERICSSON 5G TRIAL SYSTEM

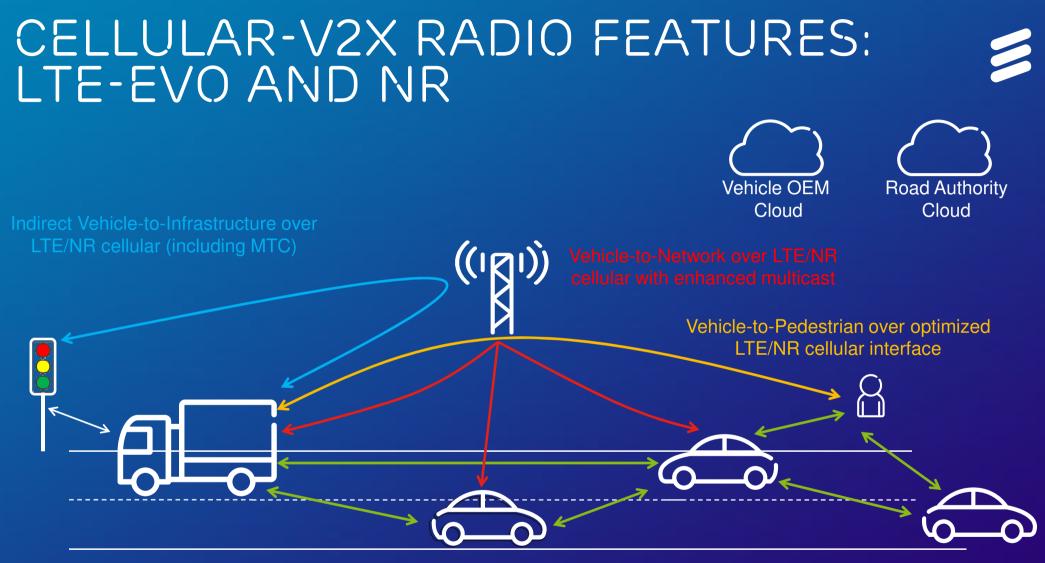
- High-frequency operation
 - 15 GHz / 28 GHz
- › Very wide bandwidth
 - 800 MHz
- Massive beam forming
 - 4x128 antennas
- Ultra-lean transmission
- › OFDM-based
- Interworking with LTE

THE AUTOMOTIVE CASE

AUTOMOTIVE AND ITS TODAY

Automotive services

- Focus on value add services to owners of connected car, brand loyalty
- Proprietary solutions (based on industry standards)


LTE MBB evolution

Intelligent Transportation System (ITS)

- Focus on traffic light management, road hazard warnings, collision avoidance, etc
- Standardized solutions

Complementary technology options: DSRC/G5, LTE-V, NR-V

Vehicle-to-Vehicle//Pedestrian/Road Infrastructure over enhanced LTE sidelink interface E.g., using unlicensed ITS spectrum at 5.9GHz

FIRST <u>SAFETY</u> USE CASES IN EU (2019) 💋

Standard messages: CAM and DENM

- Communication types
 - V2V, V2I or V2X (V=vehicle, I=infrastructure, X=anything, e.g. pedestrian)
- Primary purpose of the service
 - Road safety, traffic information, freight services, etc.

#	Day 1 Services		
1	Emergency electronic brake light	V2V	Safety
2	Emergency vehicle approaching	V2V	Safety
3	Slow or stationary vehicle(s)	V2V	Safety
4	Traffic jam ahead warning	V2V	Safety
5	Hazardous location notification	V2I	Motorway
6	Road works warning	V2I	Motorway
7	Weather conditions	V2I	Motorway
8	In-vehicle signage	V2I	Motorway
9	In-vehicle speed limits	V2I	Motorway
10	Probe vehicle data	V2I	Motorway
11	Shockwave damping	V2I	Motorway
12	GLOSA / Time To Green (TTG)	V2I	Urban
13	Signal violation/Intersection safety	V2I	Urban
14	Traffic signal priority request by designated vehicles	V2I	Urban

#	Day 1.5 Services				
1	Off street parking information	V2I	Parking		
2	On street parking information and management	V2I	Parking		
3	Park & Ride information	V2I	Parking		
4	Information on AFV fuelling & charging stations	V2I	Smart Routing		
5	Traffic information and smart routing	V2I	Smart Routing		
6	Zone access control for urban areas	V2I	Smart Routing		
7	Loading zone management	V2I	Freight		
8	Vulnerable road user protection (pedestrians and cyclists)	V2X	VRU		
9	Cooperative collision risk warning	V2V	Collision		
10	Motorcycle approaching indication	V2V	Collision		
11	Wrong way driving	V2I	Wrong Way		

RADIO TECHNOLOGY OVERVIEW

- > Up to 70MHz of license-exempt ITS spectrum in the 5.9GHz band:
 - Limited to "short range" communication \rightarrow typically 100-300m due to emission limitations
 - 802.11p (DSRC, ITS-G5) is likely to be deployed in US and EU, despite being an aged technology
 - LTE-V and NR-V are the choice in China and the likely future at least in EU
 - Very controversial technology choice at 5.9GHz!
- > Licensed spectrum:
 - Can accommodate both "long range" and "short range" communication
 - Reuse 4G and 5G mobile networks and smartphones base
 - Best technology but new business models including mobile Operators are needed!
- New 63-64GHz ITS spectrum in EU
 - A lot of spectrum, interesting for NR-V, but blocking might limit its usability to very short LoS links

5G FOR AUTOMOTIVE

1

ITS evolution Autonomous driving Remote driving > Platooning - See-through Advanced driving assistance - Collective perception/sensor sharing € C - Cooperative intention sharing Redundant info → Improved safet > Traffic safety Sensors range - Vulnerable road user protection Building - Intersection assistance P1 Road infrastructure equipped with sensors Accurate positioning 500 s and a set œ∽, € [™] Sensor detection Message transmission

THE AUTONOMOUS DRIVING EXAMPLE

- Autonomous vehicles drive based on own sensors
 - What is the purpose and value of 5G in autonomous driving?

Some examples:

- Communication extends the vehicle sensors beyond their physical limitations
 - > E.g., cooperative perception, sensor sharing
- Communication enables distributed and centralized decision making
 - > ML, continuous algorithms updates
 - Improved performance and safety
- Communication enables virtualization of decisions for improved safety, control and computational offloading in the vehicle
 - > E.g., pre-process aggregated data in the (distributed) cloud

TECHNOLOGY EVOLUTION FOR 5G AUTOMOTIVE

- > The first real challenge to 5G automotive is cost-effective network coverage in rural areas:
 - Enhancements to physical channels for improved coverage
 - Combination of multihop and cellular access
 - Deployment and processing optimizations for "highway" deployments
 - Seamless interoperability with LTE
 - "Predictive QoS" to assist applications
- > The second challenge is cost of connectivity for enormous amounts of background data
 - Cloud distribution
 - Predictive mobility and optimizations to optimize resource utilization
 - Smart use of licensed and unlicensed spectrum
 - Multicast delivery when applicable
- The third challenge comes from ultra-reliable low-latency connectivity in high mobility

SOME OPEN ISSUES

- Modernization and digitalization of the transport sector implies radical changes also in the regulatory domain
 - Liability
 - Privacy
 - Data ownership
 - -...
- For safety ITS, a sustainable business model involving both private and public sector needs to be found
- Market scale is essential, especially for highly customized devices with demanding requirements such as in the automotive world

CONCLUSIONS AND FINAL REMARKS

- > In addition to evolved MBB use cases, 5G directly addresses industries and verticals
- A common flexible technology to accommodate very different requirements
- Industries, telecom companies and public research are cooperating to define 5G technology jointly
- The automotive vertical is one of the most promising and at the same time challenging ones for 5G
- > 5G will be soon soon reality, from 2018!

ERICSSON