
OPTiC: Opportunistic Graph Processing
in Multi-Tenant Clusters

Muntasir Raihan Rahman, Nokia Bell Labs

Indranil Gupta, University of Illinois Urbana-Champaign

Akash Kapoor, Princeton University

Haozhen Ding, Airbnb

1

Distributed Protocols Research Group (DPRG)
http://dprg.cs.uiuc.edu/

OPTiC: Opportunistic graph Processing on Multi-
Tenant Clusters

• OPTiC is the first multi-tenant system for graph processing

• OPTiC bridges the gap between graph processing layer and cluster
scheduler layer

• Key techniques
– New algorithm for graph computation progress estimation

– Smart prefetching of resources

• We implemented our system on top of Apache Giraph + YARN stack

• We obtain 20-82% improvement in job completion time for realistic
workloads under realistic network conditions

2

Graphs are Ubiquitous

3

Biological
• Food Web
• Protein Interaction Network
• Metabolic Network

Man-made
• Online Social Network (OSN)
• Web Graph
• The Internet

Graphs are Massive Scale: Facebook Graph: |V|=1.1B, |E|=150B (May 2013)

Protein Interaction Network The Internet Graph

Distributed Graph Processing

4

Apache Giraph Dato PowerGraph

Databricks GraphX

PowerLyra

Google Pregel

Anatomy of a Graph Processing Job

5

Graph
Preprocessing

(1) load from disk
(2) partition

Graph
Computation

(Gather-Apply-
Scatter)

Synchronize at barrier

Termination
(1) write results to disk

(2) teardown

• Preprocessing time included
in total job turnaround time

• Can be significant
[LFGraph@Trios 2013]

Graph Processing on Multi-tenant Clusters

6

Apache Giraph

Apache YARN

GraphX

Mesos

Graph Processing Engines do not take advantage of multi-tenancy in
cluster scheduler

Cluster Schedulers un-aware of graph nature of jobs
• Only assume map-reduce or similar abstractions

GAP

OPTiC: Opportunistic Graph Processing on Multi-
Tenant Clusters

7

Key Idea: Opportunistic Overlapping of
(1) Graph Preprocessing Phase of Waiting Jobs with

(2) Graph Computation Phase of Current Jobs

System Assumptions
• Synchronous graph processing (workers sync periodically)
• Over-subscribed cluster (always a waiting job)
• No pre-emption
• All input graphs stored in Distributed File System (e.g., HDFS)
• Disk locality matters

Key Idea, Simplified: Opportunistic Overlapping

8

Cluster Scheduler

Job 2

Job 1

Job 3

90% complete

70% complete

50% complete

Start preprocessing phase of next waiting job
at cluster resources running maximum progress job (MPJ)

Benefits:
• MPJ most likely to free up cluster resources first
• When the next waiting job is scheduled,

preprocessing phase is already underway

1# Prefetching Resources

2# Estimating Progress
Challenges

Challenge # 1: How to Prefetch

9

Desired Feature: Minimal Interference on Current Running Jobs

Progress-Aware Memory
Prefetching
• Prefetch graph of waiting

job directly into memory of
MPJ server(s)

• MPJ server memory being
used to store and compute
on MPJ graph

• Interferes with MPJ,
potentially increase MPJ
run-time

Progress-Aware Disk
Prefetching (PADP)
• Prefetch graph of waiting

job into disk of MPJ
server(s)

• No interference with MPJ
memory

• When MPJ done, waiting
job loads graph from local
disk instead of remote disk

MPJ=Max Progress Job

• Local disk fetch avoids network contention
• DARE@IEEE Cluster data (Amazon 20 server virtual cluster)

• Amazon EC2 disk bandwidth mean 141.5 MB/s
• Amazon EC2 network bandwidth mean 73.2 MB/s

• Cheaper to fetch from local disk than from network

Architecture: OPTiC with PADP

10

Cluster Scheduler

Graph Processing Engine

Distributed File System

Central Job Queue

Progress
Estimation Engine

Replica
Placement Engine

OPTiC Scheduler

OPTiC-PADP Scheduling Algorithm

11

Running Job
• Periodically send progress

information to OPTiC

OPTiC scheduler
• For next waiting job in queue

o Fetch progress information
of running jobs

o Determine server(s) S
running MPJ (Maximum
Progress Job)

o Tell DFS to create additional
replica of next waiting job
graph in disks of S

Cluster Scheduler
• Scheduled next waiting job

when MPJ finishes

Next Waiting Job
• Scheduled on S
• Fetch graph from local disk

instead of remote disk in DFS

1. Creating additional replicas in disk increases the (non-zero) storage performance cost
2. But there is a lot of available space on disks, which are mostly under-utilized
3. So the actual dollar cost of the system is close to zero

Challenge # 2:
Estimating Progress of Graph Computation

1. Profiling:
– Profile the run-time of various graph algorithms on different cluster

configurations for different graph sizes

– Huge overhead, job details dependent (-)

2. Use Cluster Scheduler Progress Estimator:
– For example Giraph programs are mapped to map-reduce programs

– Use cluster map-reduce progress estimator to estimate graph
computation progress

– Cluster dependent (-)

12

Profile-free, Cluster-agnostic Progress Estimation

Use Graph Processing Layer Metrics:

– Track the evolution of active vertex count (AVC)

• A vertex is active as long as there are some incoming messages from previous
iteration

– At termination AVC = 0

– Profile-independent, Cluster-agnostic (+)

13

Evolution of AVCP=AVC/N

14

Decreasing

Decreasing

Increasing

Decreasing

Flat

Decreasing

Pagerank SSSP

K-core decomposition
Connected Comp

(1) Initial non-decreasing phase: AVCP at or going towards 1
(2) Decreasing phase: AVCP going towards 0

Progress Measure: How far from final AVCP=0%

Flat

Progress Comparator Algorithm

15

AVCP 0% 100% 0%

AVCP 0% 100% 0%

70%

Non-decreasing Decreasing

Job1

Job2
50%

Job2 in 2nd Decreasing Phase: MPJ

CASE 1: Jobs in different phases

MPJ = Max Progress Job

Progress Comparator Algorithm (2)

16

AVCP 0% 100% 0%

AVCP 0% 100% 0%

70%

Non-decreasing Decreasing

Job1

Job2
20%

Job1 closer to 100% in first phase: MPJ

CASE 2: Both jobs in Non-dec phase

L M H

CASE 3: Both jobs in Dec phase (similar)

The intervals introduce some randomness for jobs with AVCP
close to each other (e.g., if Job 2 was at 60% (M) instead)

MPJ = Max Progress Job

Evaluation Setup

• Testbed
– 9 Quad-core servers with 64GB memory, 200GB disks, running Ubuntu

14.04

• Test Algorithms: Single source shortest path (SSSP), K-core
decomposition (KC), Page-rank (PR)

• Graphs: Uniform Randomly Generated Synthetic graphs
• Performance Metric: Job completion time
• Compared Scheduling Algorithms:

– Baseline (B): default YARN FIFO policy (RF=3)
– PADP (P): OPTiC PADP policy (RF=3 + opportunistically created replica (at-

most 1))

17

Facebook Production Trace Workload

18

• Job size distribution from Facebook Trace (Vertex count proportional to map count)
• Most jobs in cluster are small
• Poisson arrival process with mean 7s, Network delay LN(3ms)

95th percentile TAT improves by 54%

Median TAT improves by 73%

(seconds)

Yahoo! Production Trace Workload

• Map-reduce job trace
from Yahoo! Production
cluster of several
hundreds of servers

• Trace has 300 jobs with
job size and job arrival
times

• Bursty arrival process

• Heterogeneous jobs:
mixture of SSSP, KC, PR

19

Median TAT improves by 78%

95th percentile TAT improves by 70%

Scale and Graph Commonality Experiment

20

Baseline (B)

PADP (P)

• Graph commonality (degree of graph sharing among jobs) increases left to right
• Average graph size also increases from left to right

B B

B

B

PPPP

Related Work
• Cluster Schedulers (Map-reduce abstraction, multi-tenant)

– YARN, Fair Scheduler

– Mesos, Dominant Resource Fairness

– Multi-tenancy with fairness for sharing cluster resources

– OPTiC scheduler aware of graph computation progress

• Graph Processing (Single-tenant)

– Pregel, first message passing system based on BSP

– GraphLab proposes shared memory computation

– PowerGraph optimizes for power-law graphs

– LFGraph improves performance with cheap partitioning and publish-subscribe message flow

– OPTiC improves performance for multi-tenant graph processing

• Progress Estimation

– Many systems for estimating progress of map-reduce jobs, e.g., KAMD

– SQL Progress Estimators, e.g., DNE (Driver Node Estimator), TGN (Total Get Next)

– OPTiC progress estimator based on graph processing level metrics

21

Summary of OPTiC

22

• OPTiC is the first multi-tenant graph processing system

• Key techniques
– Prefetching: we overlap graph pre-processing phase of waiting jobs with

computation phase of running jobs

– Progress Estimation: we propose a new algorithm for estimating progress of
graph processing jobs using a graph level metric independent of the underlying
cluster and job details

• We obtain 20-82% improvement in job completion time for realistic
workloads under realistic network conditions
– Cost of increased replication of input graph in DFS (3 to 3 + opportunistically created

replica (at-most 1))

