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Derivative cloud

Chandra Prakash Deterministic Container Resource Management in Derivative Clouds 2 / 26



Dual control over resources

I Hypervisor and guest OS both control the same resources
I Hypervisor not aware of containers requirements
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Hypervisor mechanism under consideration

I Ballooning is used to achieve memory overcommitment1

I vCPU scaling is used to reduce scheduling overheads in over
committed situation 2

1
C. A. Waldspurger, "Memory resource management in vmware esx server," ACM SIGOPS Operating Systems Review, vol.

36, no. SI, pp. 181-194, 2002.
2

L. Cheng, J. Rao, and F. Lau, "vscale: automatic and efficient processor scaling for smp virtual machines," in Proceedings
of the 11th European Conference on Computer Systems, ACM, 2016.
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Undesirable effects due to ballooning

Happens Desired

Chandra Prakash Deterministic Container Resource Management in Derivative Clouds 5 / 26



Existing memory reclamation in containers

I Memory provisioning knobs: Hard-Limit and Soft-Limit
I exceed: difference between memory usage and Soft-Limit
I SMR (Soft Memory Reclaimed): memory reclaimed from local LRU
I GLR (Global LRU Reclaimed): memory reclaimed from global LRU
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Existing memory reclamation in containers
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Impact of ballooning

Set-up

I Memory reclamation rate: 2 GB every 30 seconds (generated
from host after 100 seconds)
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Impact of ballooning

Default configuration of four containers
Container Hard-limit(GB) Soft-limit(GB) Key size (# records)
Redis-Low 2 0.5 500K
Redis-High 4 1 1000K
Mongo-Low 2 0.5 500K
Mongo-High 4 1 1000K
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Impact of ballooning

I Existing knobs (limits) do not guarantee proportionate
memory allocation during memory pressure situations
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CPU provisioning Issues
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Impact of vCPU scaling

Experimental setup
VM configuration 7 vCPUs and 8GB Memory

Number of containers inside VM 3

CPU allocation ratio 1:1:4

Benchmark Sysbench

vCPU scaling down frequency 1 vCPU every 120s (vCPU1,2,3,&4)

vCPU mapping using cpuset.cpus C1: vCPU1, C2: vCPU2, C3: vCPU3,4,5,&6
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Impact of vCPU scaling

I Pinning and scaling =⇒ non-deterministic CPU utilization
I Desired goal: achieve pinning benefits + maintain CPU share
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Summary of issues in nesting setup

I Ballooning may fail to satisfy container requirements

I vCPU scaling may not respect cpu share with cpu pinning
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Our approach

I Native cloud provider can be public or private
I We can’t control or change hypervisor in case of public cloud
I We provide solution at guest OS level

Default approach Our approach
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Proposed memory policies

Proportionate memory allocation
I Allocate memory according to credit share of containers

Application-specific differentiated memory reclamation
I Protect memory sensitive container(s) from memory reclamation
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Proposed CPU policies

Maximize dedicated vCPU while maintaining allocation ratio
I To get maximum benefits of pinning

Provide pinned vCPU(s) to a subset of containers
I Based on application nature or user requirement
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Contribution

I Modified the memory reclamation logic in memory cgroup
subsystem

I Provided an additional definition of exceed

I Performed several modifications in Linux kernel
» Added extra parameters in memory and cpu cgroups
» Added control to maximize SMR
» Provided knob to control reclamation chunk size

I Created a cpuset calculator in user space
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Modified memory reclamation

» exceed = memory_usage – proportionate_share
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Effectiveness of memory policies

I Ratio of memory weights: 1:2
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I Able to maintain memory usage ratio when exceed of all
containers become less than or equal zero (after 300 second)
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Application specific reclamation
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I Memory is not reclaimed from YCSB application container
(memory sensitive) and it’s throughput remains intact

Chandra Prakash Deterministic Container Resource Management in Derivative Clouds 21 / 26



vCPU reallocation design
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Effectiveness of vCPU reallocation
Experimental setup

VM configuration 7 vCPUs and 8GB Memory

Number of containers inside VM 3

CPU allocation ratio 1:4:5

Benchmark Sysbench & Twitter

VCPU scaling down frequency 1 vCPU every 120s (vCPU1,2,3,& 4)
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I Able to maintain CPU share along with pinning
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Conclusion & future work

Conclusion:
I Quantified the impact of hypervisor actions on containers running

inside VM
I Proposed user-defined policies to mitigate the impact of

hypervisor actions
I Demonstrated the effectiveness of memory and CPU policies

empirically
Future work:

I Design an efficient algorithm for container placement in derivative
(nested) setup

Chandra Prakash Deterministic Container Resource Management in Derivative Clouds 24 / 26



Thank you
Questions???

Email id: chandrap@cse.iitb.ac.in
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Modifications in Linux kernel

I Added a weight parameter in memory cgroup and a pin
parameter in cpu cgroup.

I Modified the balance_pgdat() routine (Linux kernel version 4.7).
Listing 1 : Original reclamation logic

For every rec lamat ion request :
SMR( ) ;
GLR ( ) ;

Listing 2 : Modified reclamation logic

For every rec lamat ion request :
NoOfReclaimedPages = SMR( ) ;

i f ( NoOfReclaimedPages ==0) :
GLR ( ) ;

I Created a kernel module to control the reclamation chunk size.
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