An Online Virtual Machine Placement Algorithm in an Over-Committed Cloud

Sigi Ji*, Ming Da Li, Niannian Ji, Baochun Li

Virtual Machine Placement

- Select the most suitable physical machine (PM) to host each virtual machine (VM).
- It is crucial to balance PM resources among multiple dimensions during the placement and minimize the number of activated PMs.

Resource Over-Commitment

- by allocating more resources to VMs than they actually have.
- Limitation of existing works:
 - could cause PM overloading.

Over-committed cloud: widely used for solving the wastage problem

Did not consider resource over-commitment in VM placement, which

PM Overloading

- Total resources utilized by VMs do exceed the PM's actual capacities.
- Memory of the PM is 36GB and it is sold as 72GB:

ble.

(a) Packing VMs as tightly as possi- (b) Setting a 80% threshold for placement.

Our Solution: Min-DIFF

- An threshold-based online VM placement algorithm that considers multiple dimensions of resources:
 - Reduce resource fragmentation
 - Reduce the risk of PM overloading

Threshold-based placement

Strategy 1: Place VMs below the threshold:

Strategy 2: Place VMs without considering the threshold

Min-DIFF

Resource Threshold

- Warning line: providers do not expect the utilization of over-committed PMs is higher than a specific percentage.
- Reserve space for large VMs above the threshold.

$$T\mathbf{h}_{j}^{d} = \min\left\{\frac{PM_{j}^{d} - L^{d}}{\mathrm{PM}_{j}^{d}}, w^{d}\right\}.$$

Choose the Best PM

 Utilized PMs: Choose the PM that has the largest resource fragmentation reduction.

$$RF_j = \frac{\sum_{p,p \neq m} \left(NR_j^p - NR_j^m \right)}{\sum_{d=1}^D NU_j^d},$$

Empty PMs: Choose the most balanced PM after the VM is placed.

$$RF_j_empty =$$

$$\delta_{RF_j} = RF_j_bef - RF_j_aft.$$

$$\sum_{\substack{p,p\neq m}} \left(NR_j^p - NR_j^m \right).$$

- Schemes for comparison:
 - First Fit algorithm
 - ► EAGLE [1]
 - Max-BRU algorithm [2]
- Three datasets we generated and one real-world workload Trace.

[1] X. Li, Z. Qian, S. Lu, and J. Wu, "Energy Efficient Virtual Machine Placement Algorithm with Balanced and Improved Resource Utilization in a Data Center," Mathematical and Computer Modelling, vol. 58, no. 5, pp. 1222–1235, 2013. [2] N. T. Hieu, M. Di Francesco, and A. Y. Jaaski, "A Virtual Machine Placement Algorithm for Balanced Resource Utilization in Cloud Data Centers," in Proc. IEEE International Conference on Cloud Computing (CLOUD), 2014.

Architecture of the simulator:

- If we do not consider the over commitment issue:
 - The number of used PMs and resource fragmentation

- ► The warning line is 80% along each dimension.
 - than 80%

Resource fragmentation and the percentage of PMs that CPU utilization is higher

Thank you! Q&A