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Inter-Datacenter Traffic
‣ Interactive 

‣ Highly sensitive to loss and delay 

‣ Should be delivered instantly with strictly higher priority 

‣ Elastic 

‣ Requires timely delivery— prior to a deadline 

‣ Background 

‣ No explicit deadline or a long deadline



Why we need to consider deadlines?
‣ Total demand for inter-DC transfers typically far exceeds the available 

capacity 

‣ Cloud providers set different data replication SLAs (or deadlines) based on 
delay tolerance. 

‣ Customers are willing to pay more for guaranteed deadlines.



Multicast Transfers
‣ Deliver data from one datacenter to multiple datacenters 

‣ Fault tolerance, availability and high service quality. 

‣ Examples: data replication, database synchronization… 

‣ Most of them have deadlines.



The Problem?
‣ Scheduling and allocating bandwidth for multiple inter-datacenter multicast 

transfers. 

‣ Meet deadline requirements. 

‣ Maximize throughput.



Motivation Example



Previous Work
‣ Unicast transfers:  

‣ SWAN [sigcomm’13], B4 [sigcomm’13], BwE [sigcomm’15], Tempus 
[sigcomm’14], Amoeba [eurosys’15] 

‣ DCCast [hotcloud’17] and DDCCast[tech report]: 

‣ Did not maximize throughput 

‣ Not effective for requests that require high bandwidth



Deadline Transfers
‣ Considering there are n transfers, a transfer request    can be specified 

as a tuple                    : 

‣    : source datacenter of request   

‣    : destination datacenters of request 

‣     and     : data volume and deadline requirements of request  

‣ Objective: Maximize throughput for all transfers with the consideration of 
meeting deadlines.
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Linear Program

Maximize throughput: the sum  
of flow rates in all selected trees

The summation of trees’ flow rates 
that use edge e should not exceed 
the edge capacity
All transfers will complete prior to 
deadlines



Sparse Solution
‣ Reduce splitting and packet reordering overhead 

‣ We add a penalty function at the objective to get a sparse solution



Sparse Solution
‣ We can linearize the penalty function by using a l1-norm weighted 

heuristic. 

‣ In each iteration we recalculate the weight function       where:W i



Sparse Solution
‣ Upon convergence,  

‣ Eventually, the transformed problem approaches the original problem and 
yield a sparse solution

xi t( )( )k ≈ xi t( )( )k+1 = xi t( )( )*
,  for i = 1, ..., n, t ∈T i



An example of the optimal solution obtained by our 
linear program:
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‣ Assume all link capacities are 15MB/s 

‣ If we use only one tree, the shortest 
completion time is 20s, all requests will 
miss their deadlines 

‣ Maximize throughput, request R2 can 
even finish the transfer before its 
deadline.



Implementation
• We have completed a real-world implementation in a software-

defined overlay network testbed at the application layer.
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How a transfer is routed and completed through 
our application-layer SDN testbed?

‣ Destinations: subscribe to a specific channel 

‣ Source: publish its data, destinations and deadline requirements to 
the channel 

‣ Aggregator: consult the controller for routing rules 

‣ Controller: routing rules — next hop and sending rate to each 
datapath node



Experiment
‣ Google Cloud Platform 
‣ Six Virtual Machines (VM) instances located in six different 

datacenters, and one of the VMs is also launched as the central 
controller.   
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Experiment
‣  We use file replication as inter-datacenter traffic 

‣ The volume of each file is set to be 300MB 

‣Deadlines: generate from a uniform distribution between 

‣      represents the tightness of deadlines for generated transfers α

[T ,  αT]



Performance Evaluation
‣ Comparison of different solutions as the tightness factor increases:



Performance Evaluation
‣ Comparison of different solutions as the number of destinations increases: 



Performance Evaluation
‣ Throughput comparison of different solutions:



Performance Evaluation
‣ Comparison of different solutions as the number of requests increases:



Conclusion
‣ Our solution performs better in maximizing throughput and meeting 

transfer deadlines than related work. 

‣ Future work: 

‣ Dynamic resources 

‣ Different request arrival rates



Thank you! 
Q&A


