Deadline-Aware Scheduling and Routing for Inter-Datacenter Multicast Transfers

Sigi Ji*, Shuhao Liu, Baochun Li

Inter-Datacenter Traffic

- Interactive
 - Highly sensitive to loss and delay
 - Should be delivered instantly with strictly higher priority
- ► Elastic
 - Requires timely delivery prior to a deadline
- Background
 - No explicit deadline or a long deadline

Why we need to consider deadlines?

- capacity
- delay tolerance.
- Customers are willing to pay more for guaranteed deadlines.

Total demand for inter-DC transfers typically far exceeds the available

Cloud providers set different data replication SLAs (or deadlines) based on

Multicast Transfers

- Deliver data from one datacenter to multiple datacenters
 - Fault tolerance, availability and high service quality.
- Examples: data replication, database synchronization...
- Most of them have deadlines.

The Problem?

- Scheduling and allocating bandwi transfers.
 - Meet deadline requirements.
 - Maximize throughput.

Scheduling and allocating bandwidth for multiple inter-datacenter multicast

Motivation Example

Requests	Source	Destinations	Volume (MB)	Deadlines (seconds)
R_1	1	3, 4	200	40
R_2	4	2, 3	200	40

Previous Work

- Unicast transfers:
 - [sigcomm'14], Amoeba [eurosys'15]
- DCCast [hotcloud'17] and DDCCast[tech report]:
 - Did not maximize throughput
 - Not effective for requests that require high bandwidth

SWAN [sigcomm'13], B4 [sigcomm'13], BwE [sigcomm'15], Tempus

Deadline Transfers

- Considering there are n transfers, a transfer request i can be specified as a tuple {Sⁱ, Rⁱ, Qⁱ, Dⁱ}:
 - S^i : source datacenter of request *i*
 - R^i : destination datacenters of request *i*
 - Q^i and D^i : data volume and deadline requirements of request i
- Objective: Maximize throughput for all transfers with the consideration of meeting deadlines.

Linear

 $T^{i} = \{t \mid t \text{ is a Steiner tree (or multicast tree})\}$ maximize χ subject to $\chi \leq \sum x^{i}(t), \forall i = 1, ..., n,$ $t \in T^i$ $\sum \sum x^{i}(t) \phi(t, e) \leq C(e), \forall$ $i=1 t \in T^i$ $D^{i} \sum x^{i}(t) \ge Q^{i}, \forall i = 1, ..., n$ $t \in T^i$ $x^{i}(t) \geq 0, \chi \geq 0, \forall t \in T^{i}, \forall i =$

where ϕ is defined as:

$$\phi(t, \mathbf{e}) = \begin{cases} 1, & \text{if } \mathbf{e} \in t, \\ 0, & \text{otherwise.} \end{cases}$$

Program						
e) from S^i	to I	$\{R^i\}.$				
	(1) (2)	Maximize throughput: the sum of flow rates in all selected trees				
$e \in E,$	(3)	The summation of trees' flow rates that use edge e should not exceed the edge capacity				
1 ,	(4)	All transfers will complete prior to deadlines				
1,,n.	(5)					

Sparse Solution

- Reduce splitting and packet reordering overhead
- We add a penalty function at the objective to get a sparse solution

maximize χ –

$$g\left(x^{i}\left(t\right)\right) =$$

$$\mu \sum_{i=1}^{n} \sum_{t \in T^{i}} g\left(x^{i}\left(t\right)\right),$$

$$\begin{cases} 0, & \text{if } x^{i}(t) = 0, \\ 1, & \text{if } x^{i}(t) > 0. \end{cases}$$

Sparse Solution

We can linearize the penalty function by using a 11-norm weighted heuristic.

In each iteration we recalculate the weight function W^i where:

 $W^{i}(t) =$

maximize
$$\chi - \mu \sum_{i=1}^{n} \sum_{t \in T^{i}} (W^{i}(t) \cdot x^{i}(t)),$$

$$\frac{1}{\left(x^{i}\left(t\right)\right)^{k}+\delta}.$$

Sparse Solution

- ► Upon convergence, $(x^{i}(t))^{k} \approx (x^{i}(t))^{k+1}$ $W^{i}(t) \cdot (x^{i}(t))^{*} = \frac{(x^{i}(t))^{k+1}}{(x^{i}(t))^{*}}$
- Eventually, the transformed proble yield a sparse solution

$$^{-1} = (x^{i}(t))^{*}$$
, for $i = 1, ..., n, t \in T^{i}$

$$\frac{(t))^{*}}{(t)^{k} + \delta} = \begin{cases} 0, & \text{if } (x^{i}(t))^{*} = 0, \\ 1, & \text{if } (x^{i}(t))^{*} > 0. \end{cases}$$

Eventually, the transformed problem approaches the original problem and

An example of the optimal solution obtained by our linear program:

Request 1		Request 2	
Trees	Rate	Trees	Rate
2 → 1 → 4	15	5 → 1 → 3	4.56
2 → 4 → 1	12.06	5 → 3 → 1	15
$2 \rightarrow 5 \begin{pmatrix} \bullet & 1 \\ \bullet & 4 \end{pmatrix}$	10.44	$5 \rightarrow 4 \stackrel{\checkmark}{\sim} \frac{3}{1}$	2.94

Requests	Source	Destinations	Volume (MB)	Deadline (sec- onds)
R_1	2	1, 4	300	8
R_2	5	1, 3	300	18

Assume all link capacities are 15MB/s

 If we use only one tree, the shortest completion time is 20s, all requests will miss their deadlines

 Maximize throughput, request R2 can even finish the transfer before its deadline.

Implementation

• We have completed a real-world implementation in a softwaredefined overlay network testbed at the application layer.

our application-layer SDN testbed?

- Destinations: subscribe to a specific channel
- Source: publish its data, destinations and deadline requirements to the channel
- Aggregator: consult the controller for routing rules
- Controller: routing rules next hop and sending rate to each datapath node

How a transfer is routed and completed through

Experiment

- Google Cloud Platform
 - Six Virtual Machines (VM) instances located in six different controller.

datacenters, and one of the VMs is also launched as the central

Experiment

- We use file replication as inter-datacenter traffic
 - The volume of each file is set to be 300MB
 - Deadlines: generate from a uniform distribution between $[T, \alpha T]$
 - α represents the tightness of deadlines for generated transfers

Comparison of different solutions as the tightness factor increases:

Comparison of different solutions as the number of destinations increases:

Throughput comparison of different solutions:

Comparison of different solutions as the number of requests increases:

Conclusion

- transfer deadlines than related work.
- Future work:
 - Dynamic resources
 - Different request arrival rates

Our solution performs better in maximizing throughput and meeting

Thank you! Q&A