
Deadline-Aware Scheduling and Routing 
for Inter-Datacenter Multicast Transfers 

Siqi Ji*, Shuhao Liu, Baochun Li

IC2E’18



Inter-Datacenter Traffic
‣ Interactive 

‣ Highly sensitive to loss and delay 

‣ Should be delivered instantly with strictly higher priority 

‣ Elastic 

‣ Requires timely delivery— prior to a deadline 

‣ Background 

‣ No explicit deadline or a long deadline



Why we need to consider deadlines?
‣ Total demand for inter-DC transfers typically far exceeds the available 

capacity 

‣ Cloud providers set different data replication SLAs (or deadlines) based on 
delay tolerance. 

‣ Customers are willing to pay more for guaranteed deadlines.



Multicast Transfers
‣ Deliver data from one datacenter to multiple datacenters 

‣ Fault tolerance, availability and high service quality. 

‣ Examples: data replication, database synchronization… 

‣ Most of them have deadlines.



The Problem?
‣ Scheduling and allocating bandwidth for multiple inter-datacenter multicast 

transfers. 

‣ Meet deadline requirements. 

‣ Maximize throughput.



Motivation Example



Previous Work
‣ Unicast transfers:  

‣ SWAN [sigcomm’13], B4 [sigcomm’13], BwE [sigcomm’15], Tempus 
[sigcomm’14], Amoeba [eurosys’15] 

‣ DCCast [hotcloud’17] and DDCCast[tech report]: 

‣ Did not maximize throughput 

‣ Not effective for requests that require high bandwidth



Deadline Transfers
‣ Considering there are n transfers, a transfer request    can be specified 

as a tuple                    : 

‣    : source datacenter of request   

‣    : destination datacenters of request 

‣     and     : data volume and deadline requirements of request  

‣ Objective: Maximize throughput for all transfers with the consideration of 
meeting deadlines.

Si ,  R i ,  Qi ,  Di{ }

Si

i

i

Di

i

Qi

Ri

i



Linear Program

Maximize throughput: the sum  
of flow rates in all selected trees

The summation of trees’ flow rates 
that use edge e should not exceed 
the edge capacity
All transfers will complete prior to 
deadlines



Sparse Solution
‣ Reduce splitting and packet reordering overhead 

‣ We add a penalty function at the objective to get a sparse solution



Sparse Solution
‣ We can linearize the penalty function by using a l1-norm weighted 

heuristic. 

‣ In each iteration we recalculate the weight function       where:W i



Sparse Solution
‣ Upon convergence,  

‣ Eventually, the transformed problem approaches the original problem and 
yield a sparse solution

xi t( )( )k ≈ xi t( )( )k+1 = xi t( )( )*
,  for i = 1, ..., n, t ∈T i



An example of the optimal solution obtained by our 
linear program:

1

54

32

Steiner Trees for Request 1
Steiner Trees for Request 2

Request 1 Request 2

2 1 4

2 5
4

1

15

12.06

10.44

Trees TreesRate Rate

5 1 3 4.56

15

5 4
1

3
2.94

2 4 1 5 3 1

‣ Assume all link capacities are 15MB/s 

‣ If we use only one tree, the shortest 
completion time is 20s, all requests will 
miss their deadlines 

‣ Maximize throughput, request R2 can 
even finish the transfer before its 
deadline.



Implementation
• We have completed a real-world implementation in a software-

defined overlay network testbed at the application layer.

aggregator

Datapath node 1

aggregator

Datapath node 1

aggregator

Datapath node 1

Controller
Making routing decisions

Data Data Data



How a transfer is routed and completed through 
our application-layer SDN testbed?

‣ Destinations: subscribe to a specific channel 

‣ Source: publish its data, destinations and deadline requirements to 
the channel 

‣ Aggregator: consult the controller for routing rules 

‣ Controller: routing rules — next hop and sending rate to each 
datapath node



Experiment
‣ Google Cloud Platform 
‣ Six Virtual Machines (VM) instances located in six different 

datacenters, and one of the VMs is also launched as the central 
controller.   

US West
(Oregon)

US Central
(IOWA)

US East
(North Virginia)

Europe West
(London)

Asia Pacific
(Singapore)

Asia Pacific
(Tokyo)



Experiment
‣  We use file replication as inter-datacenter traffic 

‣ The volume of each file is set to be 300MB 

‣Deadlines: generate from a uniform distribution between 

‣      represents the tightness of deadlines for generated transfers α

[T ,  αT]



Performance Evaluation
‣ Comparison of different solutions as the tightness factor increases:



Performance Evaluation
‣ Comparison of different solutions as the number of destinations increases: 



Performance Evaluation
‣ Throughput comparison of different solutions:



Performance Evaluation
‣ Comparison of different solutions as the number of requests increases:



Conclusion
‣ Our solution performs better in maximizing throughput and meeting 

transfer deadlines than related work. 

‣ Future work: 

‣ Dynamic resources 

‣ Different request arrival rates



Thank you! 
Q&A


