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Abstract—Efficiency of security-by-design has become an im-
portant goal for organizations implementing software engineering
practices such as Agile, DevOps, and Continuous Integration.
Software architectures are (often manually) analyzed at design
time for potential security design flaws, based on natural lan-
guage descriptions of security weaknesses (e.g., CWE, CAPEC).
The use of natural language hinders the application of such
knowledge bases in an automated fashion. In this paper, we
analyze an existing catalog of 19 security design flaws in order
to identify conceptual, technology-independent requirements on
architectural models that enable automatically detecting these
flaws. This constitutes the first step towards automated assess-
ment of design-level security. Our findings are illustrated on an
IoT-based smart home system.

Index Terms—Security, design flaws, design analysis, design
inspection

I. INTRODUCTION

Many software engineering organizations are undergoing

major cultural changes and are adopting agile development

practices, cross-functional teams, continuous integration (CI),

combining development and operations (DevOps), etc. These

contemporary trends have the ambition to shorten the software

development life cycle and build good software faster. Release

cycles are often shortened to days, or even a few hours.

Automation is a key enabler for this paradigm shift, and

to ensure that security receives the attention it requires, it

needs to be part of this process. Current security practices

in this context are primarily aimed at the infrastructure and

code level, consisting of activities such as static and dynamic

application security testing [1]. Knowledge reuse is a key

enabler to increase the efficiency of this step and is supported

by multiple initiatives to collect software vulnerabilities [2],

weaknesses [3], flaws [4], and attack patterns [5].

On top of that, it has been known for decades that software

security cannot be dealt with only as an afterthought, i.e. by

only starting to add security after the initial implementation

has been constructed. Instead, it has to be planned for

and systematically considered in the early design phases of

the software development life-cycle [7]. Such a structured,

systematic approach is also demanded by recent legislation

such as the GDPR [8] and upcoming standards such as ISO

21434 for road vehicle security. Knowing that coercive pressure

is one of the key factors impacting organizational investment in

information security [9], an increasing demand for systematic

security-by-design methods is thus to be expected. A central

role in such methods is played by threat analysis activities

(also known as threat modeling or architectural risk analysis),

which serve to identify security threats and plan for appropriate

mitigations to these threats [10], [11].

The available resources, however, often limit the amount of

effort that can be spent on threat analysis (and on security in

general). Coupled with the contemporary development context

of automating the supporting activities such as software building

and testing, this creates a need for efficient security-by-design
approaches that are amenable to automation. A first-order

approximation for a full-fledged threat analysis can already be

obtained by detecting and flagging the presence of common

security design flaws. Such an analysis can be performed based

on a catalog of known security design flaws and an architectural

design model of the system under consideration.

However, while there are numerous resources available

that catalog the potential security issues [2]–[6], [12]–[14],

their application in a concrete system design context remains

a challenge. The purpose of this work is to identify the
necessary requirements for architectural models that allow
automatic detection of security design flaws, based on an

existing catalog of 19 security design flaws [6]. This particular

catalog was chosen because it includes the inspection guidelines

for assessing the flaws’ applicability. The focus here is

explicitly on the translation of this knowledge to support the

automated detection on concrete system designs. While this

necessarily requires a starting set of knowledge to translate,

the approach does not preclude the use of the other security

design flaw knowledge bases. To make the translation more

concrete, we identify the requirements for one particular

security design flaw (“Insecure Data Exposure”) in terms of

the information that needs to be added to architectural design

models in order to programmatically detect its presence. We

then generalize our findings to the other flaws from the catalog.

This paper contributes with: (i) technology-independent insights

regarding the modeling of data and security solutions [15]

for automatically detecting security design flaws, and (ii) an

illustrated translation of inspection guidelines of one security

design flaw (Insecure Data Exposure) into automated detection

rules in the context of an IoT-based smart home system.

This paper is structured as follows. Section II presents the

catalog of 19 security design flaws and extracts the concepts

that appear therein. Section III describes the requirements to

automate the detection of design flaws on one particular kind

of architectural model, namely data flow diagrams. Section IV

provides a concrete illustration of one flaw on an IoT-based
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TABLE I
SECURITY DESIGN FLAWS FROM THE CATALOG OF MALAMAS AND HOSSEINI [6]

Name Description

1 Missing authentication An absence of an authentication mechanism in the system.
2 Authentication bypass The authentication mechanism does not cover all possible entry points to the system.
3 Relying on single factor authentication The authentication mechanisms rely on the use of passwords.
4 Insufficient session management Sessions are not managed securely throughout their life cycle.
5 Downgrade authentication Possibility to authenticate with a weaker (or obsolete) authentication mechanism.
6 Insufficient crypto key management Keys are not managed securely throughout their life cycle.
7 Missing authorization An absence of an authorization mechanism in the system.
8 Missing access control An absence of access control in the system.
9 No re-authentication An absence of re-authentication during critical operations.

10 Unmonitored execution Uncontrolled resource consumption due to interactions with external entities.
11 No context when authorizing An absence of conditional checks for access control.
12 Not revoking authorization An absence of a process for revoking user access.
13 Insecure data storage Storage of sensitive data is in clear or weak access control mechanisms are in place.
14 Insufficient credentials management Credentials are not managed securely throughout their life cycle.
15 Insecure data exposure Sensitive data is transported in clear text.
16 Use of custom/weak encryption Generating small keys, using obsolete encryption schemes.
17 Not validating input/data Absence of validation checks when receiving data from external entities.
18 Insufficient auditing Access to critical resources or operations is not logged.
19 Uncontrolled resource consumption Uncontrolled resource consumption of internal components.

home monitoring system. Section V discusses the generalization

towards other security design flaws, as well as observations

related to the catalog and the architectural model. Section VI

covers the related work, and Section VII concludes the paper.

II. SECURITY DESIGN FLAWS

This work is based on the catalog of security design flaws

proposed by Malamas and Hosseini [6] (and later re-evaluated

by Tuma et al. [14]). We briefly summarize the contents

and origin of this catalog, and zoom into a single security

design flaw, namely “Insecure Data Exposure”, which is used

extensively throughout this paper.

The catalog contains 19 common security design flaws

that manifest themselves in software architectures, concerning

authentication, access control, authorization, availability of

resources, integrity, and confidentiality of data. Table I presents

the list of included security design flaws and their corresponding

descriptions. Each catalog entry (e.g., Snippet 1) consists of:

(1) a name, (2) short description, and (3) a series of detection
rules, which are closed questions used as guidelines for flaw

detection. The catalog is meant to be used for a manual

inspection of a system architecture. The analyst makes use of

the catalog by answering the closed questions for each of the

19 design flaws. There is a potential security design flaw if

any of the answers are negative for a particular location in the

architecture under consideration.

For a detailed account of the catalog compilation procedure

we refer the interested reader to Malamas and Hosseini [6].

In summary, the catalog was compiled by first systematically

filtering existing vulnerability database entries from CVE [2],

CWE [3], OWASP [13], and SANS [16], followed by manually

grouping the resulting entries and removing duplicates.

A. Manual detection rules

Consider the “Insecure Data Exposure” security design flaw

(Table I, flaw 15) as an example. Snippet 1 shows its full textual

Security Design Flaw 15: Insecure Data Exposure

Description Data is not transferred in a secure way. For example
a web application uses the HTTP instead of HTTPS. This
leaves the channel vulnerable to eavesdropping, Man In The
Middle (MITM) attacks etc.

Detection
• Locate the valuable information in the model.
• Track them through the architecture to determine where and

how they are transferred.
• At each step examine the following:

– Is the reuse of packets prevented (Replay attacks)?
– Is there any form of timestamping, message sequencing

or checksum in the exchanged packages?
– Is the traffic over an encrypted channel (SSL/TLS)?

Snippet 1. Textual description of security design flaw 15: insecure data
exposure, from the catalog of Malamas and Hosseini [6].

description. This flaw is present when data is not transferred

in a secure way, which may result in information disclosure

leaks. The description of the flaw shows that its manual

assessment is non-trivial. It involves both: (1) a systematic

exploration of the design model to locate valuable information

and tracking the flow of this information through the model, and

(2) evaluating several criteria at each point in the system where

such information is present. Therefore, automated support is

especially useful to ensure all relevant design locations are

systematically assessed.

B. Detection concepts

To enable the automated detection of a security design flaw

in a design model, it is necessary that the concepts referred to

by the flaw’s textual detection rules can somehow be identified

in the architectural design model. By inspecting the complete

catalog, we have observed that there are five major concept

types that appear in the inspection rules, namely information,
operations, countermeasures, attacks, and actions. We briefly

discuss each of these now.
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1) Information: Some rules are triggered by the presence

of certain information, with additional refinements on whether

the data is sensitive, whether the data is the encrypted form

of some other data occurring elsewhere, or whether the data

is a credential or cryptographic key. Hence, the design model

should support modeling data at this level of detail. For instance,

“valuable information” in Snippet 1 should correspond to data

elements in the model with the sensitivity property set to ‘true’.

2) Operations: Some rules require knowledge about the

types of operations that are being performed by certain pro-

cesses. For example, a rule in Flaw 9 (“No re-authentication”)

checks for the presence of an additional authentication step

before conducting a security-critical operation. Hence, such an

operation must be part of the design model.

3) Countermeasures: Some rules refer to the presence or

absence of certain countermeasures; hence, the design model

should enable an explicit representation of the applied security

solutions. For instance, “encrypted channel” in Snippet 1 should

correspond with the presence of a security solution that offers

protection against information disclosure, applied to a particular

communication channel.

4) Attacks: The catalog also contains rules that refer to the

possibility of a certain type of attack. This can be assessed

by checking for the presence or absence of countermeasures

protecting against the specified attacks.

5) Actions: Finally, the detection rules refer to certain

actions on the architectural model (i.e., locating, tracking,

finding, etc.). These actions define the operations on the design

model that are needed to evaluate the conditions. Actions are

not expected to be an explicit part of the design model itself, but

they may impose important constraints on their representation

and storage (e.g., for efficiency reasons). For instance, the

action “track (valuable information)” in Snippet 1 requires an

operation on the model to retrieve all elements that handle

sensitive data. Snippet 2 shows the mappings between the

textual descriptions and the model elements for flaw 15.

In the next section, the first four concepts are instantiated in

a concrete model representation, namely Data Flow Diagrams.

Afterwards, the translation of concept 5 enables the automated

detection of the security design flaws in the catalog.

III. TOWARDS AUTOMATED DETECTION

This section explores the technological support that is

required to enable the automated detection of flaws.

A. Data flow diagrams

First, a model representation of the system architecture is

required. Data Flow Diagrams (DFD) [17] are often used

to depict architecture design, particularly in the early stages

of the software development life cycle. Moreover, DFDs

are already extensively used in security and privacy threat

modeling contexts [10], [18]–[22]. The DFD notation is used to

graphically represent system architecture and how information

moves around in the system. It makes use of five element types:

processes for representing units of computation, data stores for

representing elements storing information, external entities for

Insecure Data Exposure Design Flaw

Detection
• locate valuable information in the model → [action: traverse

model for [data: sensitive]]
• track them → [action: track all elements [data: sensitive]]
• At each step examine the following:

– . . . prevented → [countermeasure: tampering]
– any form of . . . → [countermeasure: tampering]
– encrypted channel → [countermeasure: information dis-

closure]

Snippet 2. Mapping of the textual description to model elements. The snippet
shows how the textual elements from the Insecure Data Exposure design flaw
(Snippet 1) could be mapped to model elements.

representing users and external parties or services interacting

with the systems, data flows for carrying information between

the previous elements, and trust boundaries, representing

physical or logical divisions.

B. DFD extensions

A plain DFD does not explicitly support the concepts from

Section II. Hence, to use a DFD for automatically detecting

design flaws, the underlying meta-model and the tooling around

it need to be extended to support these concepts. This section

elaborates on the required (meta-)model extensions. The three

criteria for detecting security design flaw 15 (Snippet 2) are

used to illustrate the extensions.

The first criterion for detecting Flaw 15 is about sensitive
information in the model (see Snippet 2). The data flows of a

DFD are usually labeled with the data being sent. However,

the sensitivity of those data assets is not specified and is

not contained in the DFD model. Therefore, an explicit data

model is required to support the specification of the data type

sensitivity as a property of the information being transferred.

The second criterion requires tracking/finding all the ele-

ments in the model that process, contain, or transfer sensitive

data. The labels on the data flows in a DFD are the only

indicators of the information being transferred. To be able to

perform this action, it would be required to (i) ensure that all

labels are unique identifiers for the data being transferred, and

(ii) perform a graph traversal to obtain a full view on how

the data travels through the system. Alternatively, using an

explicit data model (where each data item is a separate entity,

and data flows refer to the data items that are transferred by

them) ensures that there is no need to rely on a unique naming

scheme. Additionally, all DFD elements that handle a certain

data element can easily by retrieved by navigating over the

model. Furthermore, such a representation of data supports

representing other operations on this data such as compositing

multiple data items.

The third criterion involves examining, for each instance

of sensitive data, whether there is any countermeasure that

protects against tampering and information disclosure threats.

This requires support for representing security solutions in the

DFD models, for example, following the approach of Sion et

al. [15]. While a security solution, such as a Secure Pipe [23],
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Fig. 1. Context Data Flow Diagram (DFD) of HomeSys. The diagram shows how external actuators and sensors interact with a gateway in the home, which
processed the data according to some rules. Users interact with the system using a front-end. The gray box is further decomposed in Figure 2.

Insecure Data Exposure Pseudocode

for (DFDElement e : DFDModel.elements) {
for (DataType d : e.dataTypes) {
if (d.isSensitive()) {
if (!e.solution.protects(d,tampering)

|| !e.solution.protects(d,infoDiscl)) {
triggerDesignFlaw15();

}}}}

Snippet 3. Conversion of the model element criteria to pattern pseudo-code.
The pseudocode shows how the iteration over the model elements and the data
types they process to verify whether an appropriate solution is present. The
pseudocode here assumes a single solution for simplicity. In practice, however,
all solutions affecting the considered element should be checked.

can provide the necessary protection against information

disclosure and tampering, data can also be protected by other

countermeasures. For example, data can be encrypted before-

hand, stored somewhere, and later transferred in encrypted

form. That data is then still protected against information

disclosure, without the presence of a secure pipe when the

data is transferred. Therefore, there should also be support for

representing information transformations in order to take these

kinds of effects on data into account. Representing encrypted

data can also be performed in the data model, by making the

encrypted data the result of an encryption transformation on

the original plain text data. This way, there is also a direct link

to the underlying data that is being protected by the encryption.

C. Automating Detection

After mapping the security design flaw criteria to specific

element types of the extended model, these can then be

leveraged to automate the detection of design flaws on concrete

models. Revisiting the example security design flaw 15 from

Snippet 2, the mapped criteria can be translated to code that

enables the automated assessment of the presence of this flaw.

A procedural example of such a translation in pseudocode is

presented in Snippet 3. It shows (i) the traversal through the

model elements, (ii) assessing whether any of the processed

data types are sensitive, and (iii) verifying the absence of an

appropriate solution.

While this illustration is suboptimal in terms of performance

(as it requires iterating over all model elements for each flaw

separately), multiple optimizations are possible to assess flaws

in parallel. Moreover, by using a language that supports the

declarative specification of patterns over the model elements

(e.g., VIATRA1 in Eclipse), it becomes possible to query a

model very efficiently for these patterns. The concepts presented

in this paper are independent of the particular language and

implementation that is used. Supporting them is a fundamental

requirement to detect security design flaws, though.

IV. ILLUSTRATION

This section illustrates one instance of the security design

flaw Insecure Data Exposure (Flaw 15 in Table I) on a reference

architecture for an IoT-based Home Monitoring System (named

HomeSys from now on). This system has been used multiple

years in software architecture courses. First, architecture of the

system is described, after which, the detection of the Insecure
Data Exposure flaw is illustrated.

HomeSys is a system for remote monitoring of households.

Figure 1 depicts high level (i.e., context) DFD of the HomeSys

system. The main purpose of HomeSys is to provide the

necessary tools for customers to receive information about

the state of their home. The system consists of a gateway,

sensors and actuators, and a cloud system. The gateway is a

hardware device which relays measurements to the cloud (via a

3G or Wi-Fi network) and manages the sensors and actuators in

the home. Analog and digital sensors produce measurements of

the temperature, humidity, barometric pressure, etc. Actuators

are hardware devices which receive and execute commands

from the gateway (e.g., taking a picture or activating a buzzer).

The HomeSys cloud is a software system that communicates

with the gateway, front ends, and manages the storage of sensor

1https://www.eclipse.org/viatra
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Fig. 2. HomeSys DFD decomposition of the Cloud process (marked in gray in the context DFD in Figure 1) to obtain a more detailed view of underlying
processes, data flows, and data stores. The diagram also visualizes the Section III extensions to express the presence of sensitive data and security solutions.

data. The front ends provide services for the users of the system

(customers, as well operators). The architectural documentation

of the system is available on-line (Lab Material [24]). In

contrast to the context diagram depicted in Figure 1, insecure

data exposure can be very hard to spot in larger diagrams with

many more elements. In what follows we illustrate one instance

of detecting insecure data exposure on a further decomposed

and more detailed model of HomeSys, shown in Figure 2.

Figure 2 shows the decomposition of the part marked in

gray on the context DFD (Figure 1). The decomposition is

extended with the model extensions described in Section III.

First, sensitive assets are explicitly modeled as such (e.g.,

Sensor Data). Second, security solutions are modeled and

linked to specific data flows (e.g., Authenticate←→ Customer).
The sensor data contains sensitive information about the

customer’s home. This data is sent insecurely from the Gateway
to the View Sensor Data, Set Rules process, which is still visible

on the DFD context diagram in Figure 1. However, upon

customer requests to view these data, they are retrieved from

the Customer DB database on a cloud platform in plain text

(i.e. without any security countermeasures to protect against

information disclosure). Such internal flows in the Cloud
process or not visible in context diagram, but only on the

more detailed decomposition. An attacker observing the traffic

within the network may thus be able to access the sensitive

data. Hence, the Insecure Data Exposure flaw applies between

the Customer DB and View Sensor Data, Set Rules process and

it is also present at any other location where Sensitive Data
is communicated without protecting the data (←→).

The credentials and token used by customers to log in

are also marked sensitive. However, the interactions between

the Authenticate process and the external entity Customer

are protected ( ). Specifically, the security solution specified

here protects the data from information disclosure threats

(e.g., by communicating over HTTPS). Thus, the data is not

exposed between the process Authenticate and the external

entity Customer, and the flaw does not apply there.

V. DISCUSSION

This section discusses: (i) to what degree the described

model extensions support the detection of the other security

design flaws in the catalog, (ii) catalog improvements, and

(iii) the impact of the system model on the detection of the

security design flaws.

A. Catalog Coverage and Extension Completeness

The detection of the insecure data exposure security design

flaw boils down to the identification of problematic interac-

tions between elements passing sensitive data. This generic

interpretation makes its detection mechanisms relevant and

reusable for the identification of other security design flaws.

For example, strong authentication relies on properly protecting

credentials; i.e. avoiding insecurely exposing this sensitive data

(flaw 15). Therefore, the security design flaws in Table I are not

disjoint. A combination of inspection conditions can be used

for assessing the presence of multiple similar design flaws.

Table II provides an overview of the model extensions

required for detecting the catalog’s security design flaws. The

table shows that many of extensions are useful for the detection

of a wide range of security design flaws.

In what follows, we discuss the extent to which the

presented model extensions (Section III) support the automated

assessment of all the catalogs’ flaws.

Similar flaws. Flaws in this category have very similar

criteria for detecting them, allowing reuse of detection support
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TABLE II
OVERVIEW OF EXTENSION REQUIREMENTS PER SECURITY DESIGN FLAW

Name Data
Sensitive Encrypted Cryptographic Keys Security Critical
Data Data & Credentials Solutions Operations

1 Missing authentication � � - - � -
2 Authentication bypass � � � - � -
3 Relying on single factor authentication � � - � � -
4 Insufficient session management � � � - � -
5 Downgrade authentication - - - - � -
6 Insufficient crypto key management � � � � � -
7 Missing authorization � - - - � -
8 Missing access control � - - - � -
9 No re-authentication � � - - � �
10 Unmonitored execution � - - - � -
11 No context when authorizing � - - - � -
12 Not revoking authorization - - - - � �
13 Insecure data storage � � � - � -
14 Insufficient credentials management � - � � � -
15 Insecure data exposure � � � - � -
16 Use of custom/weak encryption � - - � � -
17 Not validating input/data - - - - � -
18 Insufficient auditing � � - - � -
19 Uncontrolled resource consumption - - - - � -

The ‘�’ indicates the extension is required for detecting the flaw, ‘-’ indicates the extension is not necessary. Note that the ‘�’s in the security solutions
column do not imply the same solution everywhere. The security solutions column refers to the following solutions: secure pipe, secure pipe with
client authentication, authentication, key management (creation, replacement, destruction), secure logging, storage encryption, access control policies,
password policies, session management, authorization, credential management, input validation, and resource management.

with minimal efforts. Sets of flaws that can be detected using

similar criteria: (1, 2), (6, 16), (13, 15).
Adding security solutions. Several flaws require support

for different types of security solutions to detect them: (i) au-

thentication solutions (flaw 3), (ii) session management (flaw 4),
(iii) credential management (flaw 14), (iv) authorization (flaws

7 − 9, 11, 12) and access control policies (flaws 3, 5, 7 − 12
and 19), (v) input validation (flaw 17), and (vi) resource

management and availability (flaws 10 and 19).
Information on processing operations. A final extension

is support for marking the type of operations that are being

performed to be able to detect security-critical operations. This

extension supports detecting flaws 9 and 12.

B. Catalog Improvements

Translating textual security design flaw detection rules into

a more structured form can assist with improving the quality

of security design flaw catalogs.

First, this translation can assist in discovering similar security

design flaws that can actually be merged because the translated

detection rules are the same or very similar.

Second, the process of translating the textual detection

rules can assist in identifying ambiguous descriptions in the

catalog. The translation of the security design flaw’s rule

descriptions to concrete criteria on model elements does not

allow for textual ambiguities. Hence, the translation of these

textual descriptions can reveal ambiguity issues the descriptions

of existing catalog entries. Furthermore, the model concepts

introduced for detecting the security design flaws on concrete

models can also assist in improving the quality of the security

design flaw catalog. The introduced concepts can be used in

the revised descriptions of the flaws to ensure precise and

unambiguous formulations.

C. Impact of Modeling Detail

Another aspect influencing the assessment of security design

flaws is the level of detail in which a system under consideration

is being modeled. The assessment and discovery of security

design flaws depend on the detail of the model being analyzed.

A coarse-grained high-level representation of the system can

only lead to the detection of high-level security design flaws,

as the lower-level details of the system are abstracted away.

This is shown in the illustration in Section IV with Figures 1

and 2. The high-level representation (Figure 1) can only lead

to the detection of security flaws at the system context, since

other internal interactions are not shown on this diagram. It

is only with the decomposition (Figure 2) that these internal,

more detailed, interactions are visible and can be used for the

detection of security design flaws.

This effect on the analysis of certain level of abstraction

of the system under consideration implies an underlying

assumption that any elements in the system model used for the

analysis are themselves free from any internal security design

flaws. Only then, can high-level analysis provide guarantees

on the absence of security design flaws.

VI. RELATED WORK

The identification of problematic areas in design-level

representations of a system with architectural smells [25]–

[28] or anti-patterns [29], [30] has previously been used to

identify software engineering issues, such as maintainability,

and to assist in refactoring. For example, Garcia et al. [25]

introduce a catalog of architectural bad smells specified with
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UML diagrams. Similarly, Bouhours et al. [27] contribute with

a catalog of 23 “spoiled patterns” or, architectural design an-

tipatterns. Yet, the existing literature about architectural design

flaws [25], [27], [30]–[32] lacks a systematized knowledge base

about security-relevant architectural design flaws supporting

automated assessment.

Targeting security specifically, the report of the IEEE Center

for Secure Design [4] provides a set of 10 key security design

flaws to avoid. A similar goal is pursued by the OWASP

Top 10 Application Security Risks [13]. A more extensive

collection of issues can be found in the Common Architectural

Weakness Enumeration (CAWE) catalog by Santos et al. [12],

constructed by extracting the architecturally-relevant issues

from Common Weakness Enumeration (CWE) by MITRE [3]

and assessing their impact on security tactics [33]. Another

resource from MITRE is CAPEC [5] which provides this

information from an attacker perspective. Finally, the issues of

similar flaws (Section V-B) have led Tuma et al. [14] to do a

re-evaluation of the security catalog and they suggest several

improvements to reduce overlap between the flaws. While the

above catalogs provide an extensive set of issues to identify,

applying that knowledge a concrete application’s design model

requires translating this knowledge to practical detection rules,

linked to a suitable system description that supports automatic

assessment. None of these catalogs are currently amenable to

that level of automation.

The approach of Berger et al. [34] leverages Microsoft’s

threat modeling approach to detect architectural flaws by

translating CWE [3] and CAPEC [5] entries to graph queries.

Their extended DFD representation differs from ours, as it relies

upon element attributes instead of a separate representation

of security solutions. Sion et al. [15] have discussed the

benefits of explicitly representing complete solutions in order

to ensure the effect of complex solutions on multiple elements

are correctly and consistently incorporated into the model,

showing positive improvements in terms of semantic quality,

traceability, separation of concerns, and dynamism.

Almorsy et al. [35] presented an approach for formalizing

attack scenarios and security metrics in OCL and validated the

approach by translating NIST security principles [36] and attack

scenarios from CAPEC [5] in OCL signatures. For the analysis,

they rely on a system description model in UML, together with

a security specification model to capture security objectives,

requirements, architecture, and controls. Our approach relies

on a system description in a DFD, which already finds frequent

use in industry in security context [18], [22].

A final common class of design-level analysis approaches

for security is threat modeling, which starts from a data flow

diagram-based abstraction of the system to elicit security [10],

[19] or privacy [21], [37] threats. Both the security and privacy

threat modeling approaches support a systematic analysis of

the system under consideration by iterating over every element

(element-based [10], [19], [37]) or interaction (interaction-

based [19], [38]). The knowledge-bases used in these ap-

proaches can also be extended for detecting additional threat

types, but the element- or interaction-based approach limits

the complexity of the criteria to assess as they remain limited

to a single element or interaction. The security design flaws

from the catalog, however, can involve multiple interactions

as sensitive data traverses through the system, and can verify

the presence of multiple required solutions together to ensure

the absence of a single security design flaw. While such an

approach loses the systematicity of threat modeling, it does

enable the identification of more complex design issues.

VII. CONCLUSION

In this paper, we analyze a catalog of security design flaws to

identify the necessary features that would enable the automated

detection of the presence of these flaws in architectural models.

To this aim, we have analyzed the catalog’s 19 security

design flaws to obtain requirements for the system description

models. Based on these requirements, extensions are introduced

in DFD models, already commonly used in the context of secure

design analysis with threat modeling, to support the automated

detection security design flaws. A single flaw ‘Insecure Data
Exposure’ is used to illustrate the translation from a generic

flaw description to a precise set of criteria, which are applied

on a reference architecture for an IoT-based Home Monitoring

System. Afterwards, the catalog coverage of the introduced

extensions is assessed by verifying whether any additional

extensions would be required for supporting all the listed flaws.

We find that in order to support a systematic detection of

security design flaws, a model representation of the system is

required, as several detection rules require locating and tracking

elements in the system model. Furthermore, the architectural

models used in the analysis require the following two key

extensions: (i) the system model should explicitly support

information and transformations of information (as a result of,

for example, encryption), as well as the types of operations

that are being performed by processes (e.g., security critical

operations); (ii) the system model should also be extended with

support for representing security solutions to enable assessing

whether the system can resist certain types of attacks or has

the necessary countermeasures in place.

Besides the initial validation, we are currently performing

an empirical evaluation of these extensions with designers to

assess the effectiveness of the proposed DFD extensions to

assist in the detection of security design flaws.

It is with the implementation of the presented model

extensions, in combination with the translated set of security

design flaws, that design inspection for security flaws can

be automated and support continuous security design flaw

assessments in agile development contexts.
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