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Abstract—Predictive services nowadays play an important role
across all business sectors. However, deployed machine learning
models are challenged by changing data streams over time which
is described as concept drift. Prediction quality of models can be
largely influenced by this phenomenon. Therefore, concept drift
is usually handled by retraining of the model. However, current
research lacks a recommendation which data should be selected
for the retraining of the machine learning model. Therefore, we
systematically analyze different data selection strategies in this
work. Subsequently, we instantiate our findings on a use case in
process mining which is strongly affected by concept drift. We
can show that we can improve accuracy from 0.5400 to 0.7010
with concept drift handling. Furthermore, we depict the effects
of the different data selection strategies.

I. INTRODUCTION

Machine learning plays a major role in the recent develop-

ments of artificial intelligence [1]. It is widely considered to be

one of the most disruptive technologies in the last decades. Its

fast progress is fueled by both the development of new learning

algorithms and the huge availability of low-cost computation

and data [2]. Machine learning is applied across all sectors

and in all functional business areas, such as research and

development, marketing or finance [3]. Many companies rely

on machine learning models for offering new services or for

improving their existing ones [4]. As Davenport [5] has shown,

companies leveraging their data sources achieve a substantial

competitive advantage. Especially in the area of services, there

seems to be large untapped potential in both, research and

practice [6], [7].

To address this promising gap, predictive services offer

the possibilities to implement machine learning into differ-

ent application fields [8]. Typically, techniques of supervised

machine learning provide the basis for such predictive services

[2] which are trained by using historical data of input features

and a label. Subsequently, the model is used to continuously

compute predictions on a stream of incoming data. However,

data streams typically change over time. This is one of the

major challenges for applying machine learning in practice

[9] since the prediction quality is very sensitive to the input

data [10]. Therefore, the problem of changing data stream over

time has been examined under the term “concept drift” [11].

Usual strategies for handling concept drift rely on dedicated

drift detection algorithms [12]. As soon as a drift is detected,

the corresponding machine learning model will be retrained.

However, it remains an open research question which data

instances for the retraining of the machine learning model

should be applied (e.g. data before or after the detection).

Therefore, we aim at systematically examining the difference

between different retraining options which is expressed in

RQ1.

RQ1. Which data should be used for the retraining of a
machine learning model when a concept drift is detected?

Subsequently, we apply our findings of RQ1 in a real-life

use case in business process mining, a typical example of a

predictive service. Business process management in general,

and business process mining in particular, have received a lot

of attention recently in top management because it improves

decision making in organizations [13], [14]. New applications

are extended by the use of predictive analytics [15]. Since

business processes are inherently dynamic, those new features

are largely exposed to concept drift [16]. This requires the

adaptation of existing methods to ensure their validity over

time. Therefore, we want to examine the effects of the different

data options on this use case which is regularly confronted

with concept drift in the second research question.

RQ2. What are the effects of the different retraining options
in a real-life use case in business process mining?

The remainder of the paper is structured as follows: Sec-

tion II presents related work on which we base our re-

search. Section III introduces different aspects which can be

considered for the retraining of a machine learning model

after detection of a drift. Section IV presents the chosen

use case as well as the evaluation of the different options

discussed in the previous section. The final section discusses

our results, describes theoretical and managerial implications,

acknowledges limitations and outlines future research.

II. RELATED WORK

This section gives a brief overview of related work about

concept drift as well as its detection. Furthermore, related work

regarding process mining is introduced.

A. Concept Drift

Machine learning can create ongoing value when the corre-

sponding prediction models are deployed in connected infor-

mation systems and deliver ongoing recommendations on con-

tinuous data streams. However, data streams usually change
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and evolve over time. This is also reflected in changes in the

underlying probability distribution or their data structures [17].

The challenge of changing data streams for machine learning

tasks has been described with the term “concept drift” [11] in

computer science. A concept p(X, y) is defined as the joint

probability distribution of a set of input features X and the

corresponding label y [12]. In real applications, concepts often

change with time [10]. This change can be expressed in a

mathematical definition as follows [12]:

∃X : pt0(X, y) �= pt1(X, y)

This definition explains concept drift as the change in the

joint probability distribution between two time points t0 and

t1. Therefore, machine learning models built on previous

data (in t0) might not be suitable for making predictions on

new incoming data (in t1). This change requires the frequent

adaptation of the prediction approach.

Changes in the incoming data stream can depend on a

multitude of different internal or external influences. Usually,

it is impossible to measure all of those possible confounding

factors in an environment—which is why this information

cannot be included in the predictive features of a ML model.

Those factors are often considered as “hidden context” of

a predictive model [11]. Concept drift is usually classified

into the following categories [18]: Abrupt or sudden concept

drift where data structures change very quickly (e.g. sensor

failure), gradual and incremental concept drift (e.g. change

in customers’ buying preferences) or seasonal and reoccurring

drifts (e.g. A/C sales in summer). There exists also a more fine-

grained taxonomy [19] which also considers the magnitude of

the drift for instance.

A wide variety of approaches for the handling of concept

drifts has been proposed [12]. However, most approaches rely

on an explicit drift detection which detects changes in the data

distribution and triggers corresponding adaptations. Two of the

most popular algorithms are Page-Hinkley [20] and ADWIN

[21]. Page-Hinkley works by continuously monitoring an input

variable (e.g. the input data or the prediction accuracy). As

soon as the variable differs significantly from its historical

average, a change is flagged. ADWIN, in contrast, is a change

detector which relies on two detection windows. As soon as

the means of those two windows are distinct enough, a change

alert is triggered, and the older window is dropped.

B. Process Mining

Business process mining is a research discipline that orig-

inates from business process modeling and analysis on the

one side and data mining on the other side [22]. The goal of

process mining is to discover, monitor and improve operational

processes by extracting data from event logs [23]. This way,

business processes are analyzed in the way as they are really

executed [24]. These event logs can be created by extracting

the digital traces of business processes that are stored in

today’s information systems, e.g. ERP or CRM systems [25].

The minimum information needed for an event log is therefore

a unique CaseID to identify and differentiate each case and

an event with relating timestamp to define the activity of

the process. This combination is important, so that the real

sequence of the events can be ensured.

Process mining can be differentiated into three types [16]

where the first type is discovery. After extraction of the

event logs, a process model can be built. This also allows

to understand different variants of business processes [26].

The second type is conformance. In this case, existing process

models can be compared with an event log of the same

process and discrepancies between both can be discovered.

The third type relates to enhancement where existing process

models are extended. This can also refer to operational support

where predictions and recommendations based on prediction

models from historic information can be used to optimize

running cases [27]. An application could be the prediction

of the remaining time of a case [28] or the prediction of

the next executed activity in a case [29].Furthermore, there

are approaches predicting whether a case will be completed

[30]. With such predictions, the organizational procedures can

be optimized, and personnel planning is more accurate. For

instance, it can be very valuable for a customer to know the

remaining process time of his insurance claim or when his

product order will arrive.

A very important challenge in process mining is the occur-

rence of concept drift [16] which refers to processes that are

changing while being analyzed. For instance, the sequence of

events can change, e.g. two events that occurred in parallel

are now occurring one after another. Processes may change

due to a variety of reasons, from seasonal effects over market

changes to organizational adjustments. Business processes are

inherently dynamic over time and therefore prone to change.

Nevertheless, concept drift research in business process mining

is rather scarce. Sudden concept drift in process mining,

such as rearranging or replacing activities, has been examined

[22]. The authors propose to detect those drifts by computing

correlation between event classes. Another approach proposes

a framework which computes dedicated features on the event

logs and subsequently compares those features over different

windows to detect concept drift [31]. In this context, this

method to detect drifts is similar to traditional concept drift

approaches described in Subsection II-A. More advanced

options use an adaptive approach based on a Chi-square test

which also allows to detect different types of process drift

[32]. Other research aims at better understanding the type or

the degree of change [33] or providing more robustness to

process drift detection methods [34].

The approaches described above focus on concept drift in

the type of event or their order in a process. This is related

to the first type of process mining (discovery) that focuses

on deriving a process model. The ultimate objective of this

analysis is to identify and better understand the activities that

trigger process drift in the first place.

However, this analysis does not contain any predictive

component. Existing work has not yet considered concept drift

in the enhancement type of process mining where predictions

based on machine learning are computed to optimize oper-
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Fig. 1. Depiction of learning mode retraining

ations [27]. Compared to previous work, this also requires

strategies for an adaption of prediction models over time.

III. DATA SELECTION FOR RETRAINING

This section introduces the two different learning modes for

machine learning models and provides an overview on which

data can be used for the retraining of a model if the training

process has to be started from the beginning.

A. Learning mode

In the context of data streams and ongoing predictions,

two learning modes for machine learning models can be

differentiated: retraining and incremental learning [8].

The method of retraining is illustrated in Figure 1. The

figure shows that in the beginning the model is trained on

an initial batch of data. After the initial model has been

trained, new incoming data instances X result in predictions

y (e.g., y1 in Figure 1). This happens iteratively for every

new data instance in the data stream until the drift detection

method issues an alert which requires an adaptation of the

prediction model. Correspondingly, the old model is discarded,

and a completely new prediction model is trained which is

subsequently applied to every incoming data instance (e.g.,

the new prediction model after retraining is applied for the

first time by predicting y378 and the following data instances

in Figure 1 ).

Incremental learning, in contrast, works by continuously

updating the prediction model. Comparably, the starting model

is trained on an initial data set. When new data instances arrive,

the model issues a prediction. However, as soon as the true

target label of this data instance is known, this information

is used to incrementally improve the prediction model. The

main advantage of this approach is that every new labeled

instance arriving will be used for model improvement and

thus, the model automatically adapts to changing concepts.

This approach is comparable to a sliding window approach.

In general, the incremental updates will not be computed after

a single new data instance has arrived but rather after the

reception of a small batch of data instances (e.g. 10 or 20).

This reduces the computational complexity. Unfortunately,

only few machine learning algorithms such as Naı̈ve Bayes,

Neural Networks or Hoeffding Trees [35], [36] implement the

opportunity for incremental updates.

Despite the continuous updates of the prediction model, this

approach might be confronted with degrading performance

over time. For instance, the incremental updates of the model

cannot adapt to very quick changes which occur during sudden

concept drifts. In this case, it might be also necessary to

discard the current model and train a new model. This would

depict a combination of both learning modes retraining and

incremental updates.

B. Data Selection for Retraining of the Machine Learning
Model

In case of concept drift, the previous model will be dis-

carded, and a new model is trained as depicted in Figure 1.

However, when implementing this approach, we need to select

the data that is used for the retraining of the machine learning

model. So far, literature does not provide any knowledge on

which data of the data stream should be used for the retraining

of the prediction model. Therefore, we implement and evaluate

three different data selection strategies which we call next,
mixed and last. The difference between these approaches is

depicted in Figure 2.

The approach next is displayed in the upper part of Figure 2.

As soon as a concept drift is detected, the model collects the

next batch of instances with corresponding labels (e.g. two

new data instances in the figure). When this next batch is

complete, the retraining is started and subsequently the new

model is applied. This also means that the previous model is

used to predict the next batch after the concept drift since it is

also necessary to issue predictions for those instances (and the

new model has not been learned yet). The intuition guiding

this approach is that data following a concept drift, complies

with the new concept and is therefore an optimal basis for a

new model.

The other approaches mixed and last are also displayed in

Figure 2. In case of the mixed approach, the model retrain-

ing relies on data from before and also after the detection.

Compared to the first approach (next), the new model can be

applied faster since it requires less data after the concept drift.

The last approach entirely relies on data which was acquired

before the concept drift detection alert. This means that the

new prediction model will be applied right on the next data

instances after the detection of a drift. This approach might

work well because drift detection algorithms usually work with

a slight delay. Therefore, the data batch before the alert might

already belong to the new concept.

During the application of our use case, we aim to sys-

tematically test all three approaches in order to quantify the
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Fig. 2. Three different approaches for retraining of model

differences between those and also to give recommendations

for future implementations.

IV. USE CASE IN PROCESS MINING

A process mining solution provider gives us access to a

data set of the purchase to pay (P2P) service process of a

large German company. This process contains all activities

related to the procurement of a product or service. A simplified

P2P process starts with the creation of a purchase order

and is followed by the reception of the respective goods

by the logistics department and the invoice which is then

processed over various financial departments in the company.

An exemplary process of this P2P process can be seen in

Figure 3.

Fig. 3. Typical process variant for a P2P process

In this use case, we want to predict the throughput time

or delivery time (marked in bold) between the creation time

of the purchase order and the reception of the goods. This

information is quite important for the company since all

subsequent process steps such as production can be optimized,

and significant cost savings can be realized. The data is

extracted from the business intelligence platform Qlik and then

preprocessed in Python. The foundation of the data set is an

event log that is enriched with numerous additional attributes

to fully describe the process. The attributes are anonymized

and transformed to ensure that the data is not retraceable.

In total, we receive data about 70,774 purchase transactions

from 2016 until 2018 which we can use to train and evaluate

the machine learning approach. Importantly, those transactions

are displayed in chronological order, which is a necessary

prerequisite for an analysis of concept drift over time.

We use the package scikit-mulitflow [37] as the basis of our

analysis since it extends the machine learning package scikit-

learn with a stream data framework. It allows to process data

sets and simulate them as a data stream. Furthermore, different

concept drift detectors are implemented and can be evaluated.

We extend the package by implementing the different training

modes (last, mixed, next) which we discussed in Section III.

A. Data Analysis

We first perform an exploratory data analysis to analyze

the available features and build a predictive model that can

be used for the analysis of concept drift in process mining.

Table I gives an overview on available features of the data set.

Categorical features are one-hot-encoded for the subsequent

data processing. Material class refers to the product category

of the purchased product. Regarding this feature, we only

use the first four numbers of the material class in order to

reduce the number of different categories resulting in 123

different categories in total. Furthermore, we have information

about the purchase order value. The purchase order value

is an important feature for our endeavor since it is a clear

indicator of the relevance of the respective purchase order for

the company. However, the distribution of the order value is

highly skewed which might pose a problem for the prediction

model. Therefore, the values are transformed with a Box-Cox

transformation [38] into a gaussian distribution.

Other features included in the data set are the country of the
bank were the payment is executed and the document type of

the purchase order. The document type includes information

about different ways to create a purchase order: e.g., the
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TABLE I
OVERVIEW OF PREDICTIVE FEATURES

Feature Type Number of items /
Range of values

Material class categorical 123
Document type categorical 7
Plant code categorical 4
Purchase order value numerical 1 – 458,079
Supplier categorical 799
Bank country categorical 18
Supplier country categorical 14
Purchasing group categorical 75

Throughput time [h] (Target) numerical 1 – 120,000

order is created manually by an employee in the purchasing

department or is based on existing long-time contracts. Other

options include the automatic creation by an MRP-system.

The country of the supplier is also relevant for the analysis.

Obviously, a purchasing process requires more time if the

supplier is located in another country because this leads to

additional steps during the sales process such as customs

papers, currency conversion or additional insurance of the

transport. The feature plant code stores information about the

plant which initiated the purchase process. Purchasing group is

the department or group at which the purchase order is created

and processed. Furthermore, we also have information about

the supplier itself who is distributing the requested product.

The target variable in this use case is the throughput time
or delivery time of a purchase order. This refers to the amount

of time between the first two steps depicted in Figure 3.

By considering the delivery time, we ensure that the start

of the purchase process is considered as well as the most

important event for production and workforce scheduling,

namely the arrival of the ordered goods. The prediction of

the estimated arrival time of a product is important because

planning processes can be optimized with this information.

This might result in significant cost savings as well as the

minimization of production time due to the optimization of

waiting time.

A histogram of the throughput time can be seen in Figure 4.

For approximately 50% of all purchase orders, respective

products and goods are received within 14 days (<336h).

Regarding the remaining purchase orders, another 25% of

those have a delivery time within 60 days. The other purchase

orders even have a larger delivery time, up to 537 days.

Due to the challenging distribution of the target variable, we

transform the use case into a multi-class classification problem.

Although this leads to an abstraction and loss of information,

this step is meaningful for an initial analysis of the use case. To

transform the target variable, all purchase orders are divided

into three equally sized classes of throughput times as can be

seen in Table II. Therefore, the first class contains purchase

orders with a delivery time of up to 6 days. The second class

contains purchase orders with a delivery time between 7 and

39 days and the last class contains all cases for which the

delivery takes more than 40 days. We train a machine learning

Fig. 4. Histogram of the throughput time [h]

model which predicts whether a purchase order will belong to

the short, medium or large throughput time class.

TABLE II
OVERVIEW OF MULTI-CLASS TARGET VARIABLE

Short time Medium time Large time

Delivery time 0 – 6 days 7 – 39 days > 39 days

B. Evaluation of prediction

We first perform a pretest with various machine learning

algorithms in their standard parameter configuration [39]:

Naı̈ve Bayes, Neural Network, Support Vector Machine and

Decision Tree. The results depicted in Table III are computed

by performing a 70%-30% train-test-split on the first 2,000

data instances. We assume that those data instances all belong

to the same concept as there is no significant change observ-

able in the input data. Therefore, we can safely apply the

machine learning algorithms without considering and handling

concept drift. Note that prediction performance on later parts

of the data set might be lower due to the challenges induced

by concept drift.

TABLE III
PRETEST WITH DIFFERENT MODELS ON SUBSET OF DATA

Model Accuracy

Naı̈ve Bayes 0.767
Neural Network 0.805
Support Vector Machine 0.697
ecision Tree 0.740

Naı̈ve Bayes, Neural Networks and Decision Trees all

achieve similar accuracy values. We choose Naı̈ve Bayes

classifier as the prediction algorithm which is due to two

reasons: First, Naı̈ve Bayes implements incremental learning

which allows incremental uptates of the prediction model.

Second, computational complexity of Naı̈ve Bayes is rather

low compared to other machine learning algorithms which
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allows frequent retraining of the model without the necessity

for a large computational infrastructure.
Our work mainly focuses on the quantification and handling

of concept drift. However, we do not have any knowledge

whether there are any drifts at all in the data set or at which

point in time they are occurring. Therefore, first of all, we

analyze the impact of concept drift by applying a Naı̈ve Bayes

classification without any concept drift detection method—

called “static model”—to the entire data set of 70,774 data

instances. Subsequently, we apply Naı̈ve Bayes classifier in

combination with a Page-Hinkley test and ADWIN as drift

detection methods. As evaluation metric, we use the accuracy

by measuring how often the algorithm predicts the appropriate

throughput time class. This metric is chosen since the instances

are distributed equally over all three target classes.
The course of the accuracy of the static model without

concept drift detection and incremental learning can be seen

in Figure 5. The first 2,000 data instances are used for the

initial training. Subsequently, we compute the first predic-

tions and the accuracy level moves at around 0.7. Then,

there is a first drop in accuracy after approximately 25,000

instances. However, the prediction performance recovers to

around 0.7 shortly after. Subsequently, after approximately

35,000 instances, the prediction quality of the model decreases

significantly. Supposedly, a concept drift has occurred because

the model that is only trained on an initial data batch does not

issue any useful prediction anymore. The accuracy over all

predictions reaches 0.5400.

Fig. 5. Accuracy of Naı̈ve Bayes without retraining and no drift detection
method

As usual, it is difficult to determine the underlying reasons

for this concept drift with certainty [36]. However, after a

thorough analysis of additional data—which is not available

the moment when the prediction is computed—we identify a

possible explanation. The feature automation contains infor-

mation about the percentage of process steps in the entire P2P

process which are executed automatically by corresponding

information systems, while the other steps are executed man-

ually. Thereby, the feature automation contains information

about the level of automation in all processes. In order to

analyze the development of this feature over time, we compute

and plot a rolling mean (window = 1000) of this feature

which is depicted in Figure 6.
At first, the rate of automation is rather stable before it rises

abruptly and then fluctuates at a higher level. This plot clearly

indicates on how the automation rate in the organization

increases over time and thus, this may be one of the causes for

concept drift and according changes in product delivery times.

Fig. 6. Rolling mean (window 1000) of feature automation

The sudden rise in automation maps rather well to the decrease

in prediction accuracy in Figure 5. Relating to Section II, this

abrupt change can be seen as a sudden concept drift. Since

this feature is not known at the time of prediction, it can be

interpreted as a hidden context influencing the prediction.

Due to the detected drift, we apply a Page-Hinkley test as

concept drift detection method in combination with the Naı̈ve

Bayes classifier. In case of drift, the model is retrained. The

course of the accuracy of the model can be seen in Figure 7.

Fig. 7. Accuracy of Naı̈veBayes with Page-Hinkley

At the beginning, the figure looks similar to the model

without drift detection (Figure 5 above). After approximately

35,000 instances, this model performs better because the drift

is detected, and a retraining of the Naı̈ve Bayes is triggered.

The accuracy rises again and then stays same level with its

corresponding fluctuations leading to an overall accuracy of

0.6732 (see Table IV). This is equivalent to a performance

increase of 24%. Furthermore, we extend this approach by

activating incremental learning. This means that the model

is constantly updated with new training data after it has

issued prediction for those data. The application of incremental

learning alone leads to a performance of 0.6717. With both

retraining and incremental learning, the overall prediction

accuracy reaches 0.6938.

We perform a grid search on the first 10,000 data instances

in order to optimize the parameters of the drift detection

method ADWIN (δ = 0.001) and Page-Hinkley (λ = 0.6).

With those parameters, we evaluate the different data selection

strategies as discussed in Section III. Table V depicts the

accuracy score of a Naı̈ve Bayes classifier with incremental

learning in combination with a Page-Hinkley test or ADWIN

as drift detection. Furthermore, we examine the influence of
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TABLE IV
PERFORMANCE OF DIFFERENT DATA SELECTION STRATEGIES ON ENTIRE

PROCESS MINING DATA SET

Change detection
Incremental

Accuracy
Performance

learning increase

None (baseline) No 0.5400 –
None Yes 0.6717 24.39%

Yes (Page-Hinkley) No 0.6732 24.67%
Yes (Page-Hinkley) Yes 0.6938 28.48%

four different batch sizes (500, 1000, 2000, 5000) on the

overall prediction accuracy. This refers to the amount of data

instances which are provided to the model in case of retraining.

The best results are marked in bold in Table V.

As depicted in the table, the data selection strategy last
performs always best. For our use case, Page-Hinkley appears

to be the more suitable drift detector resulting in higher

performance. Interestingly, the prediction accuracy decreases

with increasing batch size which might indicate that the

approach does not adapt fast enough with larger batches for

retraining. Furthermore, the performance difference between

the different data selection strategies also rises with the size

of the batches. For instance, the difference between last and

next for Page-Hinkley with batch size 500 equals 0.0073 in

comparison to 0.0164 for Page-Hinkley with batch size 5000.

TABLE V
PERFORMANCE OF DIFFERENT DATA SELECTION STRATEGIES ON PROCESS

MINING DATA SET

Change detection Incremental
Last Mixed Next

(batch size) learning

Page-Hinkley (500) Yes 0.7010 0.6961 0.6937
Page-Hinkley (1000) Yes 0.6965 0.6920 0.6903
Page-Hinkley (2000) Yes 0.6938 0.6845 0.6821
Page-Hinkley (5000) Yes 0.6842 0.6757 0.6678

ADWIN (500) Yes 0.6856 0.6849 0.6843
ADWIN (1000) Yes 0.6854 0.6838 0.6825
ADWIN (2000) Yes 0.6803 0.6775 0.6750
ADWIN (5000) Yes 0.6758 0.6704 0.6675

In general, the evaluation section clearly shows how the

prediction performance can be increased by implementing drift

handling strategies. Both, incremental learning as well as drift

detection with retraining, have significant influence on the

accuracy. Best results are achieved with the combination of

both approaches.

V. CONCLUSION

Process mining relies more and more on techniques of

machine learning. This work explores the challenge of concept

drift for ongoing value creation in process mining. Specifically,

we apply a concept drift detection algorithm on a use case

which aims at predicting the delivery time for all purchase

orders of a company. With this information, the company

can optimize its internal service processes. We can show that

concept drift handling significantly outperforms a static model

in the given use case. Best results are achieved by combining

incremental learning with retraining in case of concept drift.

Regarding the best training data selection strategy for retrain-

ing, the last approach appears to be the best performing option.

This means that data scientists should rely on the last collected

data batch for the retraining of the prediction model.

The contribution of this paper is twofold. First, we sys-

tematically explain and depict the options for training data

selection for the retraining of machine learning models in case

of concept drift. Second, we apply and evaluate those options

in a real-life use case in process mining where we can measure

a significant increase in prediction performance from 0.5400

to 0.7010. Regarding the managerial implication, this work

clearly shows the importance of a continuous monitoring and

adaptation scheme of predictive services in operation. Other-

wise, they can quickly lose their validity and corresponding

service offerings will not deliver expected benefits.

However, more research is required to understand the full

effects of concept drift and the best strategies to deal with

this problem. This work only describes and evaluates three

options for the training data selection in case of retraining.

Future work needs to evaluate more sophisticated approaches.

Additional limitations regarding the use case arise through the

transformation of the target variable from a regression problem

into a multi-class classification problem. Furthermore, we only

evaluate the data selection on one use case. More general

recommendations could be derived by applying those options

onto more use cases and benchmark data sets.

This paper clearly shows the importance of constant moni-

toring of predictive services for the detection of concept drifts.

Frequent retraining and adaptations of a machine learning

model are necessary requirements to keep and guarantee a high

prediction performance. If practitioners consequently imple-

ment necessary monitoring activities, the economic benefits of

predictive services and supervised machine learning solutions

can still even be increased.
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[9] L. Baier, F. Jöhren, and S. Seebacher, “Challenges in the deployment
and operation of machine learning in practice,” in Proceedings of the
27th European Conference on Information Systems (ECIS), 2019.

82



[10] A. Tsymbal, “The problem of concept drift: definitions and related
work,” Computer Science Department, Trinity College Dublin, vol. 4,
no. C, pp. 2004–15, 2004.

[11] G. Widmer and M. Kubat, “Learning in the presence of concept drift
and hidden contexts,” Machine Learning, vol. 23, no. 1, pp. 69–101,
1996.
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