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Abstract — Currently, there is an extensive set of bankruptcy prediction models, but almost all of them are classification based, 
i.e., they allow to estimate the posterior probability that a particular firm will fail, given its financial characteristics. The expected 
time to failure is not considered explicitly. On the other hand, there is a survival analysis that deals with the time of the occurrence 
of the event of interest (while this event may not occur during observation). However, despite its popularity in the medical and 
technical sciences, survival analysis is relatively rarely used in predicting financial failure. Even when it is applied, most authors 
use the simplest form of a model. The goal of our work is to evaluate the applicability of survival analysis to bankruptcy prediction. 
We compare a few state-of-art statistical and machine learning models using a real dataset. Our findings confirm that survival 
analysis allows (1) to extract from given data valuable information regarding the dynamics of risks and (2) to estimate the impact 
of features. 
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1 INTRODUCTION

HE prediction of business failure plays an essential role 
both in economics and society. The loss resulted from 

bankruptcies leads to a violation of the stability of the busi-
ness environment, so it becomes a particularly challenging 
and important issue for business actors to estimate the sus-
tainability of partners, customers, and financial institutes. 

Currently, there is an extensive set of bankruptcy pre-
diction models [1],[2], but almost all of them are classifica-
tion based, i.e., they allow to estimate the posterior proba-
bility that a particular firm will fail, given its financial char-
acteristics. The expected time to failure is not considered 
explicitly. For example, if a classification model is based on 
data taken one year before failure, the output from the 
model is the posterior probability that a particular firm will 
fail within one year. Decisions based on these probabilities 
may not be in time to prevent the failure that would occur 
in much less than one year [3]. 

On the other hand, there is a survival analysis that deals 
with the time of the occurrence of the event of interest 
(while this event may not occur during observation). How-
ever, despite its popularity in the medical and technical sci-
ences, survival analysis is relatively rarely used in predict-
ing financial failure. For example, Aziz and Dar (2006) [1] 
in the review of bankruptcy prediction models listed 12 
types of classification models (from discriminant analysis 
and logit to case-based reasoning, neural networks, and 
rough sets), but do not mention survival analysis. Accord-
ing to this publication, the prevalent techniques are multi-
ple discriminant analysis and logistic regression; more 
than 50% of works reviewed dedicate to these two models. 
Authors of a recent review published in 2018 [2] identified 
eight popular tools that include two statistical techniques 
(multiple discriminant analysis and logistic regression) 

and six machine learning models (neural network, support 
vector machines, rough sets, case-based reasoning, deci-
sion tree, and genetic algorithm). As we can conclude from 
this, survival analysis is not in the focus of researchers 
dealing with financial failure prediction. 

The goal of our work is to evaluate the applicability of 
survival analysis (SA) to bankruptcy prediction.  

SA models, as well as classification methods, can be di-
vided into two main categories: statistical and based on 
machine learning (ML). Historically, first statistical SA 
models appeared in the early 70, while machine learning 
SA models are the results of recent research. There is a lot 
of research confirming that ML models outperform statis-
tical ones in classification and regression tasks and, in par-
ticular, in classification-based bankruptcy prediction (e.g. 
[4]). Some publications also present similar results regard-
ing the superiority of ML applications in various areas of 
survival analysis [5]. However, despite these results, most 
authors of bankruptcy prediction methods, even applying 
SA, use the simplest statistical models [6],[7].   

Thus, we compare a few state-of-art statistical and ma-
chine learning SA models using a real dataset on 2457 Rus-
sian companies, 280 of which were going to bankruptcy in 
the one year after reporting. 

The last but not least goal of our research is to evaluate 
available open-source software tools for Python and R lan-
guages that implement different models of SA. 

The rest of the paper is organized as follows. After in-
troducing the SA models used in our research, we briefly 
review publications that apply survival analysis to the fi-
nancial failure problem. Next, we present a dataset and 
evaluate SA models, highlighting the valuable information 
that can be obtained using each of them. After it, we dis-
cuss the use of SA models in the classification task. Finally, 
we present some scenarios of how the SA technique can be 
used for bankruptcy prediction. 
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2 LITERATURE REVIEW 
2.1 Survival Analysis Models 
In general, the survival analysis problem formulates as fol-
lows. Suppose there are n subjects, each with m covariates, 
denoted by , for . For each 
subject, there is also a pair of variables , where  de-
notes the time when the event happens, and  is an indi-
cator representing whether the subject fails ( ) or not 
( ). In the last case, the subject is the right-censored 
one; it means that we have no information about the failure 
of this subject, except that it did not fail yet at the observa-
tion time. 

The classification problem can be represented as 
 

 
 

where  is the discriminant function,  is the vector 
of parameters determined by the training sample,  is the 
threshold. The equation  defines a margin, i.e., 

 is the probability that the event will happen some-
day. 

Survival models can take censored data into account 
and incorporate this uncertainty; this allows predicting the 
probability that an event happens at a particular time. 

Let  is the time from financial data publication to com-
pany bankruptcy, and  is a probability density function 
of . Cumulative distribution function  
gives us the probability that the bankruptcy occurred be-
fore . In other words,  defines the proportion of firms 
with the time to bankruptcy less than . 

Survival function  gives us 
the probability that the failure has not occurred by the time 
. 

Hazard function ( )= ( )/ ( ) is the rate at which 
event happens in the surviving firms at given time , i.e., 
it is a measure of risk: the higher the hazard between times  

1  and  2, the higher the risk of failure in this time interval. 
Wang et al. (2019) [5] argue that survival analysis mod-

els can be classified into two main categories: statistical 
methods and ML-based methods. The main difference be-
tween them is that the former focus more on characterizing 
the distributions of the event times and the parameter esti-
mation by estimating the survival curves; in contrast, the 
latter focus primarily on the prediction of event occurrence 
at a given time.  

In a set of statistical methods, the authors [5] distin-
guished non-parametric methods (e.g., Kaplan --- Meier 
model), semi-parametric (e.g., Cox’s regression), and para-
metric (e.g., Accelerated Failure Time model).  

According to the non-parametric Kaplan-Meier 
method, estimation  of  can be obtained as 

 

 

 
here are the subjects for which event is occurred at time 

 and  is the subjects at risk of bankruptcy prior to time 

Cox’s proportional hazard model [8] presumes that the 

log-hazard of an individual object is a linear function of its 
covariates  and a population-level 
baseline hazard  that changes over time, i.e. 

 
 

 
here  are the coefficients to determine. According to this 
model, the only the baseline hazard depends on time, the 
partial hazard is a time-invariant scalar factor that only in-
creases or decreases the baseline hazard. 

Aalen’s additive regression [9] is an alternative to Cox’s 
model. It allows investigating the effect of covariates on 
survival since the hazard rate is a linear function of the co-
variates with time-varying coefficients: 

 

 
While semi-parametric models do not specify the time 

component of the hazard function, parametric models as-
sume that its distribution is known. One of the most pop-
ular accelerated failure time models is based on Weibull 
distribution: 

 
 
with ,  and  the coefficients to find. 

The main challenge facing machine learning methods in 
SA is the difficulty of dealing appropriately with censored 
information and the time estimation of the model [5]. 

Wang et al. (2019) review the adaptation of four machine 
learning models to survival analysis, namely decision 
trees, Bayesian methods, artificial neural networks, and 
support vector machines [5]. 

Tree-based methods adaptively partition the covariance 
space into regions by setting a threshold for each feature. 
The partitioning of the covariate space creates ‘‘bins’’ of ob-
servations that are assumed to be approximately homoge-
neous. However, the original tree-based method can nei-
ther consider the censored information in the model. So, 
the primary difference between a survival tree and the 
standard decision tree is in the choice of splitting criterion. 

Wang et al. (2019) list a few splitting criteria used for 
survival trees. One of them uses the measurement of the 
node deviance on the local full likelihood estimation [10]. 
This survival tree can be used as a base model in the Ran-
dom Forest ensemble [11] when each estimator trains on 
bootstrapping samples drawn randomly from the given 
dataset with a random subset of covariates. The ensemble 
response is an averaging of estimators' predictions. 

The prevalent model of Random Survival Forest is pro-
posed in [12]. The node is split using the covariate that 
maximizes the survival difference between daughter 
nodes. The tree is growing to full size under the constraints 
that a terminal node should have no less than  
unique deaths. Then cumulative hazard function (CHF) is 
computed for each tree and averaged to obtain the ensem-
ble CHF. Finally, the algorithm uses out-of-bag data to cal-
culate prediction error for the ensemble CHF. The CHF es-
timate is the Nelson-Aalen estimator 
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Both of the described approaches include the specifics 

of right-censored data directly in the algorithm for the 
model training. Yet another possible approach is to look at 
survival analysis as a ranking problem. In that case, instead 
of modeling the probability that an event will occur, the 
model should predict whether the object has a high or low 
risk of experiencing the event. Such an approach opens the 
way to use support vector machines (SVM) for survival 
analysis. Currently, the applications of both linear and ker-
nel SVM's to SA are presented [13],[14]. 

Multi-task logistic regression (MTLR) [15] proposes yet 
another way to adapt the machine learning models to cen-
sored data. It is a series of logistic regression models built 
on different time intervals to estimate the probability that 
the event of interest happened within each interval. This 
approach was extended in [16] by using neural networks 
as part of the original MTLR design that should help work 
with nonlinear elements in the data. 

2.2 Bankruptcy Prediction on the Base of Survival 
Analysis 
In this Section, we will review some publications that ap-
ply the survival analysis to the bankruptcy prediction 
problem. 

Authors of one of the earliest publications in this scope 

[3] used Cox's model to analyze 130 failed and 334 non-
failed US banks on the base of 21 financial ratios. They 
noted that to be useful as a part of an early warning system, 
Cox's model must be able to discriminate between sound 
banks and those likely to fail. To check the classification 
ability of Cox's model, they compared it to that of multiple 
discriminant analysis (MDA). The findings show that, sta-
tistically, neither model dominates; Cox's model has a sig-
nificantly lower type I error while discriminant analysis 
possesses a lower type II error rate.  

Type I error is defined to be the misclassification of a 
failed subject as non-failed (false negatives), and a type II 
error is defined to be the misclassification of a non-failed 
subject as failed (false positives). Note that the balance be-
tween these two types of errors is a critical issue of bank-
ruptcy prediction since there is no reasonable basis for 
claiming that one kind of error can lead to higher losses 
than another. 

The Cox proportional hazard model is still one of the 

 

Fig. 1. Distribution of days to failure since the publication of the
financial report.  

 

Fig. 2. Kaplan-Meier estimation of the survival function.  

TABLE 1 
COVARIATES USED FOR BANKRUPTCY PREDICTION 
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most popular tools for analysis of survival rates for finan-
cial failures [6],[7]. However, the authors of work [17] use 
a model based on a Weibull distribution of failure time. 
They found that, for their data, a duration model identifies 
more significant variables than does the logit model. 

We should also note that sometimes researchers propose 
own modifications of hazard models for bankruptcy pre-
diction. Among recent publications, the work [18] tests Alt-
man's z-score, contingent claims, and discrete hazard mod-
els introduced in [19]. The authors show that this hazard 
model is best suited for the UK market. The z-score and the 
contingent claims-based model are miscalibrated; in con-
trast, hazard models have average default probabilities 
that are closer to observed default rates. Similar results are 
presented in [20] for the Japan market. 

In the conclusion of this brief review, it should be noted 
that some authors studying the effect of time on the prob-
ability of bankruptcy use other time-dependent models. 
For example, in [21] a model based on Markov chains was 
introduced, and in [22] self-organizing maps are used to 
represent the trajectories of firms in time. 

3 EXPERIMENT SETUPS 
3.1 Dataset 
We use an extended version of the dataset presented in 
[23]. It contains data on 2457 Russian companies, 280 of 
which went bankrupt a year after reporting for 2014. Fig. 1 
presents the distribution of days to failure since the publi-
cation of financial reports, the dashed line corresponds to 
mean time to failure. The minimum number of days passed 
before the official declaration of bankruptcy is 6, the maxi-
mum is 359, and the average is 153. Fig. 2 shows the esti-
mation of survival function according to the Kaplan-Meier 
model. As follows from Fig. 1, the most significant number 
of companies have declared bankruptcy in the interval 

from 75 to 175 days after reporting, this period corresponds 
to a sharp decrease in the likelihood that failure will not 
occur in the set of observed firms (Fig. 2). 

The original dataset contains 55 covariates that reflect 
various aspects of the firm activity, namely financial ratios, 
micro, and macroeconomics indicators, etc. Detail descrip-
tion of all covariates is presented in [23], here we will dis-
cuss only those that significant for models analyzed. Before 
training the models, we performed the feature selection us-
ing the Variance Inflation Factor (VIF) with threshold 3. Af-
ter this procedure, we get 28 significant covariates used for 
further experiments (cf. Table 1). 

3.2 Models 
Table 2 presents the list of survival models used in our re-
search. We analyze three statistical models: Cox's Propor-
tional Hazard (CPH) regression, Aalen's Additive Regres-
sion (AAR), and Weibull Accelerated Failure Time Models 
(WAF), also as a two machine learning models Random 
Survival Forest (RSF) and Multi-task Neural Network 
(MNN) that is an adaptation of Multi-task Logistic Regres-
sion [15],[16]. 

Since our goal is also to test open-source packages that 
implement various techniques of SA, we checked a few Py-
thon and R libraries. As a result, we selected CPH and WAF 
implemented in Lifelines for Python [24], since this li-
brary provides tools for analysis of the significance of re-
gression coefficients and AAR implementation in sur-
vival package for R [25] for the same reason. To run ma-
chine learning models, we used the software code of 
PySurvival library for Python [26]. 

To compare the SA-based approach with a classification 
technique that is more traditional for bankruptcy predic-
tion tasks, we also used a few classifiers implemented in 
the scikit-learn library [27]. We checked Logistic Re-
gression (LR) as a baseline model, and the ensembles such 
as AdaBoost (AB), Gradient Boosting (GB), Random Forest 
(RF), and Bagging Classifier (BC). Note that GB's loss func-
tion was defined as deviance (i.e., logistic regression) with 
probabilistic outputs since gradient boosting with expo-
nential loss is identical to the AdaBoost algorithm. 

3.3 Metrics 
The most popular metric used in survival analysis is the 
concordance index (CI) that generalizes the area under the 
ROC curve (AUC) to take into account censored data. It 
represents the model’s ability to correctly provide a relia-
ble ranking of survival times based on individual risk 
scores [28].  

Similarly to the AUC, CI = 1 corresponds to the best 
model prediction, and CI = 0.5 represents a random predic-
tion. 

4 RESULTS 
4.1 Comparision of Survival Analysis Models 
The first step in the design of the prediction model is the 
selection of its architecture, and the next one is tuning of 
hyperparameters.  

TABLE 2 
SURVIVAL ANALYSIS MODELS 

 

TABLE 3 
SIGNIFICANT VARIABLES IN STATISTICAL MODELS 
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For statistical models, it is essential to select just those 
covariates that are significant, i.e., their impact on the tar-
get variable is confirmed by the analytical testing. Table 3 
lists covariates whose coefficients are statistically signifi-
cant (p-value less than 0.005) for CPH, AAM, and WAF 
models. Sign '+' marks the significance of the correspond-
ing covariate for the relevant model. 

As we can see, for each kind of regression, only five co-
variates are significant; this immensely simplifies the final 
model without notable reduction of the concordance index 
and other performance metrics (e.g., log-likelihood). 

Note, the sets of significant covariates do not wholly 
match for all models. It reflects the fact that models are de-
rived on the base of different hypotheses on the relation-
ship between covariates and survival function. 

The primary hyperparameters of the Random Survival 
Forest model are the number of trees , maximal depth of 
the tree , and the number of features  to consider when 
looking for the best split. Using a grid search procedure, 
we found that combination , , and , 
where  is the number of features, provides the best re-
sults. The values of all other parameters were set by default 
as in the PySurvival software library. 

The primary hyperparameters that determine the be-
havior of the neural multi-task regression model (MNN) 
are the number of subdivisions of the time axis (bins), the 
structure of the Neural Network, and the learning rate. We 
should note that this model is very sensitive to these pa-
rameters, especially the learning rate.  Using a grid search 
procedure, we determined that the optimal number of bins 
is 24, the learning rate is 1E-18. As a base model, we used 
the single-layer Neural Network with 25 neurons in the 
hidden layer with the ReLU activation function. 

To compare all models listed in Table 2, we performed 
10-fold cross-validation. On each iteration, the dataset was 
split on ten folds, nine of whose were used for model train-
ing and last for testing. Table 4 shows the average values 
and standard deviations of the concordance index for all 
ten iterations. 

As we can see, the machine learning model (RSF) out-
performs statistical ones. To check the significance of this 
result, we conducted additional tests as proposed in [29].  

First, we conducted the Friedman test to compare the 
overall performance of models on different folds obtained 
in the cross-validation procedure. Results obtained (FF = 
19.44, the corresponding p-value is 6E-4, and the critical 
value of  distribution is 9.49) confirm that the null hy-
pothesis of the equivalent performance of all algorithms 
should be rejected at =0.05.  

If the null hypothesis is rejected, we can proceed with a 
post-hoc Nemenyi test [29]. Fig. 3 displays the results of 
this test for =0.05. Differences in performance between 
models whose average ranks on cross-validation folds are 
further than a critical distance (CD) are statistically signif-
icant. The obtained value of the CD is 1.929. In Fig. 3, mod-
els whose differences in performance are not statistically 
significant are connected with a solid line. 

As follows from the data presented in Fig. 3, according 
to the results of experiments, two groups of models are dis-
tinguished, models inside one group have statistically 
comparable results. The first group includes machine 
learning algorithm RSF and statistical model CPH, while 
RSF has an advantage within this group. The second group 
consists of the models CPH, MNN, WAF, and AAR; the 
CPH in this group shows the best results. 

4.2 Comparision with Classification Models 
How we stated above, classification as a subpart of super-
vised learning is the primary method of bankruptcy pre-
diction research. In this section, we discuss how to build a 
robust classifier based on survival models. 

As follows from the discussion in Section 2.1, the pri-
mary goal of survival analysis is to model hazard function. 
So, SA models can predict hazards for new objects.  How-
ever, the hazard function ( ) is rarely used in its original 
form. Most of the time, the time axis is subdivided into K 
parts, and the risk score of sample x is calculated as 

 

 

 
So, to convert the predicted risk of firm x to the posterior 

probability that it will fail, we have to determine the 
threshold . Thus, the probability of fail of firms with risk 
scores below the threshold will be zero. For firms with the 
risk scores above the threshold, the probability of bank-
ruptcy is one. Mathematically, this is equivalent to the clas-
sification problem 

 
 
Here  is the prediction of the classifier,  for 
bankrupts and  otherwise. 

TABLE 4 
10-FOLDS CROSS-VALIDATION: CONCORDANCE INDEX 

 

Fig. 3. Comparison of SA models performance against each other with 
the Nemenyi test. Groups of methods that are not significantly different 
(at =0.05) are connected with a solid black line. 
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This approach allows transforming survival analysis 
models to the classification models. Note that the reverse 
transformation of classifiers to SA models is impossible 
since the classifiers do not consider censoring data and 
time. 

To determine threshold , we realized a simple search 
procedure that should maximize the ROC AUC metric on 
training data. The obtained value is used later to convert 
the predicted risk to a classification label for new objects. 

Using this approach, we compared the best survival 
models (RSF and CPH) with standard classifiers listed in 
Section 3.2. We also used the 10-folds cross-validation pro-
cedure. Since the dataset is highly unbalanced, we used 
ROC AUC as a score. 

For each classification model, we performed a simple 
hyperparameter tuning. The number of estimators (deci-
sion trees) was set to 200 for each ensemble. In addition, 
class weights were set in accordance with the imbalance 
ratio for those models that support this function. For boost-
ing methods, we also tuned the learning rate. We had set 
the stump (decision tree with depth = 1) as a base model 
for AdaBoost, and maximal depth of tree = 3 for Gradient 
Boosting. 

Obtained results are presented in Table 5. These results 
show that machine learning survival models remarkably 
outperform all standard classification models except Ada-
Boost in this task. One possible reason for this is a high im-
balance of data since it is known that standard classifiers 
do not cope very well with this situation. 

We also conducted the Friedman and Nemenyi tests for 
these data. Results (FF = 45.5 at the p-value 4E-8 and the 
critical value of  distribution 12.59) confirm that the re-
sults of models are statistically different at =0.05.  

Fig. 4 presents the results of the Nemenyi test. Critical 
distance (CD) is 2.85. As we can see, Random Survival For-
est and AdaBoost demonstrate comparable performance in 

the classification tasks.  Two statistical models (Logistic Re-
gression from the classification model set and Cox regres-
sion from survival analysis set) also statistically belong to 
the best group; however, they show the worst results. 

Note, according to the Nemenyi test, the Random Sur-
vival Forest is slightly ahead of AdaBoost. It is due to the 
fact the predictions of the RSF on various cross-validation 
folds are more stable; this is evidenced by the low value of 
variation (see Table 5). 

As we noted above, the balance of false positives (Type 
II error) and false negatives (Type I error) predictions is es-
sential in bankruptcy prediction tasks. To estimate it, we 
can use sensitivity and specificity metrics 

 

 

 

 

 
Here  is the number of true positives (i.e., bankrupts cor-
rectly identified as bankrupts),  is the number of false 
negatives (bankrupts incorrectly identified as healthy 
firms),  and  are true negatives and false positives 
correspondingly. Thus, sensitivity is the probability of pos-
itive labeling given that the firm is going to bankruptcy or 
True Positive Rate (TPR); and specificity is the probability 
of negative labeling given that the firm is well or True Neg-
ative Rate (TNR). 

Figure 5 shows the average values of sensitivity and 
specificity obtained for classification models during the 10-
fold cross-validation testing. The dashed line corresponds 
to equal values of TPR and TNR.  

Presented data show that AdaBoost provides the most 
balanced combination of TPR and TNR. All other models 
that statistically comparable with AdaBoost (RSF, CPH, 
LR), also produce more or less acceptable results. Ensem-
ble models like GB, RF, and BC have very low sensitivity; 
it means that they ill distinguish firms with financial fail-
ures. It is the effect of the high imbalance of data; these 
models optimize to predict the majority class. 

 

Fig. 5. Mean values of sensitivity and specificity of classification mod-
els in 10-folds cross-validation testing.  

TABLE 5 
10-FOLDS CROSS-VALIDATION: ROC AUC 

  

Fig. 4. Survival analysis and classification models performance on 
classification tasks against each other with the Nemenyi test. Groups
of methods that are not significantly different (at =0.05) are con-
nected with a solid black line.  
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5 DISCUSSION 
Survival analysis gives yet another look at the bankruptcy 
prediction problem and can add valuable information for 
decision making. In this Section, we will discuss some sce-
narios based on SA. 

First, it is the ability to investigate the individual impact 
of covariates on hazard, risks, and survival function. First 
of all, this can be based on statistical models since they al-
low evaluating the significance of covariates (cf. Table 3). 

Interestingly, among more or less popular financial ra-
tios often used in bankruptcy prediction research (S3, S4, 
R2, R6, T2), all models select the covariate I4 that is the ra-
tio of the number of claims to the firm to the number of 
claims of the firm to other companies. To our knowledge, 
such a variable is rarely used in the analysis of bankruptcy 
indicators. 

Since survival regression models based on different as-
sumptions on the nature of covariates coefficients, it opens 
additional ways to analyze the impact of covariates on the 
hazard function. Cox's model implies that there is a base-
line time-dependent hazard function. Time-invariant coef-
ficients of covariates only increase or decrease this base-
line. Fig. 6 illustrates this for I4 covariate. As we can see, 
I4=0 corresponds to baseline survival, and growing of I4 
quickly reduces the probability of firm survival. We can 
conclude from this that the number of claims to the firm 
can be used as a very sensitive indicator of financial failure. 

According to Aalen's additive regression, covariates co-
efficients are time varying. Fig. 7 shows the dynamics of 
coefficients in time. Note that its value of the I4 coefficient 
sharply grows after day 153 that is the average time be-
tween financial reporting and failure. The values of the 
other two coefficients (T2 and R6) sharply decrease until 
this moment, and then remain unchanged. The impact of 
S4 more or less stably increases all the time, and the value 
of R2 decreases. It gives additional insight into how each 
variable impacts the survival function. Monitoring of the 
mutual behavior of these variables also can be used as an 
indicator of oncoming bankruptcy. 

The Random Survival Forest model also makes it possi-
ble to assess the importance of covariates. Table 1 lists this 
data in column 'RSF importance.' RSF estimation of covari-
ates' importance differs comparing to statistical models. 
Five most essential covariates in order of importance re-
ducing are 

• R1- Profitability of sold products. 
• I4 - The ratio of the claims. 
• S10 - The ratio of EBITDA to interest paid. 
• T1 - Receivables turnover ratio. 
• R2 - Return on assets (ROA).  
Note that RSF also ranks I4 as a critical indicator. Be-

sides, all the models considered the covariate R2 highly. 
It is curious that all models, including the RSF, exclude 

from consideration characteristics of the company, reflect-
ing its relationship with the Government. These are the 
variables I1, I2, I3, E9, E10. Although they have a low VIF 
value, they do not have the discriminatory ability. Perhaps 
this can be explained by the fact that companies closely as-
sociated with the Government always receive the support 
that helps them to avoid bankruptcy. 

The next useful tool of survival analysis is the ability to 
predict the values of survival or hazard functions at a given 
time for both individual firms and a group of firms of in-
terest. It may be of interest not only for individual compa-
nies evaluating suppliers and consumers but also for regu-
lators assessing the impact of decisions taken on the busi-
ness environment. From this point of view, it is crucial to 
have a method that can model survival/hazard functions 
with a high level of accuracy. 

Our results presented in the previous Session show that 
Random Survival Forest dominates other SA models. To 
demonstrate its ability to predict survival function, we 
split the dataset used above into two parts in the propor-
tion of 0.67:0.33. We trained the RSF model on the first part 
of data, and next compared the prediction with actual sur-
vival function derived from the second part. Fig. 8 present 
the results. As we can see, the RSF model produces a good 
prognosis in such conditions, the corresponding value of 
the concordance index is 0.827. 

 

Fig. 6. Impact of I4 covariate on baseline survival function according
to Cox’s Proportional Hazard Model.  

Fig. 7. Mean value and 95% confidence interval of time-varying coef-
ficients according to Aalen’s Additive Regression.  
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The data presented in Fig. 8 can be transformed into risk 
scores, as described in Section 4.2. Next, firms can be dis-
tributed to different risk groups, see an example in Fig. 9. 
On the base of this analysis, various strategies can be elab-
orated to act with these groups (for example, for suppliers 
ranking). 

The last but not least issue that we should discuss here 
is the readiness of open source software that implements 
SA models for industrial applications. In our opinion, all 
software libraries used in this work [24],[25],[26] have 
enough mature status and ready for application. Each of 
them has its strengths and weaknesses, but all are also in 
intensive development. 

6 CONCLUSIONS 
To summarize all of the above survival analysis is a handy 
tool that can be applied to bankruptcy prediction problem. 
It is especially true for machine learning models, such as 
the RSF.  

Survival analysis models not only allow to reasonably 
accurately identify potential bankruptcy but assess the de-
pendence of risks on times using censoring data. 

What is especially valuable, quite mature free tools are 
currently available, which could potentially reduce the 
cost of introducing SA models into industrial operation. 
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