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Abstract—Cinematographic shot classification assigns a cate-
gory to each shot on the basis of the field size, which is determined
by the portion of the subject and of the environment shown in
the field of view of the camera. This task is very important
in the context of the creative field and can help freelancers
in their daily activities when it is performed automatically.
Novel and effective approaches capable of processing large
volumes of images/videos and analyzing them effectively are
becoming increasingly important. This paper presents a data-
driven methodology to automatically classify cinematographic
shots through deep learning techniques.

In our study, we consider four classes of film shots: full figure,
half figure, half torso and close up and we discuss three different
scenarios in which the proposed work can be helpful. A new
dataset of images was created to evaluate performances of the
proposed methodology and to compare them with state-of-the-art
techniques. Experimental results demonstrate the effectiveness of
the proposed approach in performing the classification task with
good accuracy.

Index Terms—Machine learning, image classification, creative
field.

I. INTRODUCTION

The research activities discussed in this paper have been

carried out to solve a problem of practical nature in the context

of the creative field. People, who work in the creative field,

usually deal with a considerable amount of unstructured data,

such as images or video files, that are often unorganized

and not classified properly. For example, in the video editing

process, the editor has all the video files inside the same folder

with no information regarding what type of content there is

inside. Now the editor of the video has two choices. The

first choice consists of using the video files even if they are

disorganized, which implies that when the editor needs a new

video a certain amount of time will be lost while looking for

the file. This choice is somewhat efficient if the video files are

few, however with more video files, the time that the editor

has to waste looking for a specific file grows sharply. The

second choice is to organize the video files manually, which

is an operation that requires a certain amount of time too.

Thus, both choices involve a loss of time that grows with

the number of files considered. It is important to notice that

with medium and big video production it is not thinkable to

work with unorganized material, so if someone wants to have

organized material it has to be sorted manually. The video

editing is just an example to show the problem of unorganized

material, which is an issue that emerges also in other areas of

the creative field, from the arrangement of stock material to

the creation of websites. In this scenario the need for effective

and efficient data-driven engines capable of processing large

volumes of unstructured data and analysing them effectively

is becoming increasingly important. To this aim, machine

learning algorithms can be used since they have the ability to

acquire knowledge from a large amount of data and perform

different kinds of data classifications/predictions based on the

acquired knowledge.
This paper proposes a data-driven methodology to automat-

ically classify cinematographic shots through machine learn-

ing techniques Among the different algorithms of supervised

learning convolutional neural networks (CNN) are able to

capture key properties in analyzing unstructured data such

as images [1], [2] or videos [3]. Specifically, CNNs have

had great success in large-scale image and video recognition,

achieving state-of-the-art accuracy on classification and local-

isation tasks, also thanks to very deep architectures [1]. The

main limitation of CNNs exploitation in many practical use

cases is due to the large amount of data to train accurate

models.
To overcome the above limitation, we decided to fine tune

[4] a VGG-161 [1] to address the cinematographic shots, due

to its excellent trade-off between training time and accuracy.

The VGG-16 was pre-trained on the ImageNet dataset [5],

which contains images belonging to 1 000 classes,ranging

from vehicles to animals and people, and then fine tuned

with our dataset, which contains the four classes of cine-

matographic shots considered for this study. We evaluated the

proposed approach by running different experiments, changing

the properties of the dataset under analysis and comparing

the obtained performance with other models proposed in the

literature. Specifically, we used two datasets with the same

set of images, either monochrome or with an RGB profile.

Such choice was made in order to investigate if and how

1The name VGG stands for Visual Geometry Group, the Oxford team that
created this architecture, while 16 indicates the number of layer from which
the network is composed.
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Fig. 1. The 4 types of cinematographic shots considered for this study.

colours impacted the performance of the fine-tuned VGG-16

(see Section III-A1). We compared the performance of the

proposed approach with others state-of-the-art methodologies

to demonstrate the effectiveness of the fine-tuned VGG-16 in

performing the classification task.

As a first attempt the network was trained only on images

and not videos, but, since a video is nothing more than a

sequence of images, if the network is able to classify images it

might be generalized to work with videos. Someone may think

that time, for instance, would be an extra feature to take into

account, and generally it is, but not in this case. If a video shot

is a close up it remains a close up, unless the video contains

a camera movement, like the dolly shot2. In this scenario time

becomes a relevant feature, but if the network is not capable

of recognizing cinematographic shots it cannot recognize a

camera movement.

This paper is organized as follows. Section 2 analyses in

a deeper way the VGG-16 used, along with the presentation

of some scenarios in which the proposed methodology for

cinematographic shot classification could result useful. Section

3 discusses the preliminary experimental results, the dataset

creation and the comparisons between the performance of

the VGG-16 and the performances of other state-of-the-art

methodologies. Section 4 discusses similar works available

in literature, while Section 5 contains the conclusions and

presents future research directions.

II. TAILORING THE VGG-16 TO THE CINEMATOGRAPHIC

SHOT CLASSIFICATION

In this work we proposed to exploit a fine-tuned VGG-16 to

address the cinematographic shot (i.e., images) classification

on the basis of the field size, which is determined by the

portion of the subject and of the environment shown in the

field of view of the camera. The 4 types of shots considered

for this study are shown in Figure 1. The discriminant in order

to decide whether an image belongs to a class or another is

the presence of the human figure or not and which portion of

the human figure is shown. Unfortunately the cinematographic

shot classification changes slightly from nation to nation3. We

have chosen these four classes because they are taken into

account by almost everybody. However, since the dataset used

is small, we focused only on these four classes instead of

2It is a shot in which the camera moves either away or toward the subject
filmed.

3It is sufficient to change the language on the Wikipedia page concerning
the cinematographic shots and the number of classes changes.

considering other shots, such as the american shot or the long
shot.Our classes are: the full figure, the half figure, the half
torso and the close up.

The classification task has the role to learn from a given

(historical) dataset a classification model to automatically

identify the correct label for a new image. Since our dataset

has small dimensions we have decided to use a pre-trained4

model in and fine tune it. We have decided to do so because

otherwise the small dimensions of the dataset could have

led to overfitting. By fine tuning the model it is possible

to exploit part of the ”knowledge” that it has acquired on

another dataset and, after training part of the model on the

new dataset, use that knowledge to solve a different task. In

our case we have used a VGG-16 trained on the ImageNet

dataset. The VGG-16 is a particular type of convolutional

neural network (CNN). A CNN is a deep, feed-forward

artificial neural network composed of many specialized hidden

layers i.e. convolutional layers, pooling layers, fully connected

layers and normalization layers. The concatenation of these

types of layers multiple times lead to the creation of a deep

convolutional neural network (DCNN), which has a state-of-

the-art performance [1], [6], [7], such as the VGG-16.

A. Fine-tuned model building

The first step to fine tune the model is to remove the fully

connected layers5 on top and to replace them with new fully

connected layers. At this point there will be all the remaining

convolutional and pooling layers that still hold the knowledge

gathered from the previous dataset. Before training the model

on the new dataset some of these layers have to be frozen,

in order to keep the knowledge gathered previously, while

some others will be left ”unfrozen”. The ”unfrozen” layers

will change their filters during the training phase on the new

dataset, while the ”frozen” layers won’t. By doing this the

model keeps the ability to recognize simple patterns inside

the images while at the same time it learns to recognize more

complex patterns specific to the new images. Also the fully

connected layers update their weights during the training phase

with the new dataset. It was necessary to replace the old

fully connected layers with the new ones because the VGG-16

trained on the ImageNet does not perform the cinematographic

shot classification. After choosing how many layers to ”freeze”

and substituting the fully connected layer the training phase

4A pre-trained model is a model that is already trained to solve a specific
task.

5The fully connected layers are the one responsible for the classification.
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on the new dataset can begin. During the training phase only

the ”unfrozen” convolutional layers and the fully connected

layers are affected by the back propagation algorithm and

change, while the ”frozen” layers remain unchanged. After

the training phase the now fine tuned VGG-16 is capable of

classifying images into cinematographic shots.

There are three main factors that justify the use of the

convolution operator instead of a plain machine learning

system, which are: (i) sparse interaction, (ii) parameter shar-

ing, and (iii) equivariant representation. Due to the reduced

dimension of the kernel, compared to the input shape, the

CNNs interaction between the input and the output unit is

sparse, which is very different with respect to traditional neural

network layers.

B. Classification phase

The model resulting from the training phase is ready to clas-

sify new images into the different classes of cinematographic

shots. When the fine tuned VGG-16 receives new images,

the filters inside the convolutional layers slide across the new

image creating feature maps that go to the following layer,

that can be another convolutional layer or a pooling layer. The

pooling layer extracts the most active values and gives them

to the following convolution layer and so on until the flatten

layer is reached. The non linear activation operation happens

before the pooling operation and it is done in order to prevent

an exponential growth of the values, which could potentially

lead to evaluation errors from the VGG-16. The flatten layer

reduces the dimensionality of the data to a vector that goes to

the fully connected layers. Inside the fully connected layers,

thanks to the weights, the data gets classified and is given to

the output layer, the final layer, the one that makes predictions

(more information concerning the specifics of the fine tuned

VGG-16 created can be found at the beginning of Section III).

C. Application 1

The first scenario involves the reorganization of the material

contained inside photographic archives. Suppose that a new

set of old photos has been digitized. These new photos are

intended to be used as stock material. Instead of labelling them

one by one they could be labelled automatically.

D. Application 2

Let’s now consider the scenario mentioned in the introduc-

tion with a little more background. After a full day of shooting

all the video files are sent to the editor, who now has to edit

the whole scene. He has his storyboard6 to follow and now

he just has to find the right video files to use. Unfortunately

for the editor, the order in which the shootings were made

does not coincide with the chronological order of the scene.

Such a thing happens because on set there are a lot of people

with different roles and commitments, so the shooting order

is decided based on staff availability. Usually scenes in which

more roles are needed take precedence, so when there is no

6A storyboard is a sequence of images or illustrations that allows to pre-
visualize a motion picture, an animation and so on...

further need for a professional role, for instance an actor, he

or she is free to go7. Now if the scene is a short one the

editor will have to deal with a few hundreds of video files,

but if the scene is a long one, he or she will have to deal

with thousands of video files. If the video files are already

divided into their classes the time needed to find a video file

is sharply reduced. This is just an example of a possible use of

the cinematographic shot classification through deep learning,

however if this type of classification is implemented with other

types of classifications, such as interior exterior classification,

or good shot bad shot it would be possible to reduce even

more the editing time of a video.

E. Application 3

Another possible implementation of the cinematographic

shot classification through deep learning is the genre recog-

nition of a movie. Since the shots used in a movie have a

narrative function, different genres of movies use a certain

type of shot more frequently than another. For instance in a

horror movie the close ups are usually a lot more frequent than

the long shots due to the fact that the director wants to focus

the attention of the viewer on the distressed expressions of the

characters. However the ability of recognizing the frequency

of the different types of shot by itself may not be sufficient in

order to determine if a movie is a comedy, a documentary or

something else. On the other hand if such information were

to be used with other types of features, such as the color

grading8 and/or the soundtrack used, it would be possible for

an algorithm to understand with certainty the genre of a movie.

III. EXPERIMENTAL RESULTS

Here we discuss the experimental evaluation of the proposed

approach by exploiting two datasets including the same set of

images, either monochrome or with an RGB profile. Dataset

details are described in Section III-A. We first evaluate the

performance of the proposed approach in terms of accuracy

(see Section III-B) then, we compare our results with respect

to the ones obtained by other approaches in the state-of-the-art

(see Sections III-C).

The traditional architecture of a VGG-16 consists of 5

blocks made of two or three convolutional layers followed

by a pooling layer. After these five blocks of convolutional

and pooling layers there are three fully connected layers in

charge of the classification, of which the last one is the

one that implements the softmax activation and is the one

in charge of making predictions. As previously stated, we

have used a fine tuned VGG-16, so the last convolutional

block was retrained with our dataset as well as the fully

connected layers that follow. To evaluate the accuracy of

the proposed approach we used the Stratified K-Fold Cross

validation strategy (with K=10) and we analyzed the values

7This is also an advantage for the production because in this way it doesn’t
have to pay someone for a full day if he or she is needed for just a couple
of hours.

8The color grading is a process that aims to strengthen the emotional impact
of a scene through the use of colors.
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of different metrics: accuracy, precision, recall and f1-score.

While the accuracy evaluates the performance of the model

globally, the others (very useful in presence of unbalanced

datasets) are computed for each class separately. Specifically,

precision is a measure of exactness since it represents the

percentage of images labeled as belonging to class c that

actually belong to it [8]. Recall, instead, is a measure of

completeness because it captures the percentage of images

of class c that are labeled as such. f1-score (also known F-

measure), used to compactly summarize precision and recall

metrics, is the harmonic mean of precision and recall.

The computer used to run the simulations was a MacBook

Pro from 2018 with a 2.6 GHz Intel Core i7 6 core processor.

A. Dataset

The dataset used to train the VGG-16 was labelled manually

for this study. The classes of film shot considered are the

following: full figure (FF), half figure (HF), half torso (HT)

and close up (CU). The number of classes of interest should

be enriched easily by labelling a large number of images.

As a first proof of concept of the proposed methodology, we

labelled a set of cinematographic shots of 3 000 images. To

balance the number of images with the number of classes we

selected only 4 classes. In order to perform a classification

with more classes a much larger dataset is required.

The labeled dataset of 3 000 images includes 750 full
figures, 744 half figures, 758 half torsos and 750 close ups.

Half of the dataset was built through data augmentation by

flipping horizontally the images. The original 1 500 images

were gathered from different sources. More than half of the

dataset, more precisely 840 images (56%), consists of movie

frames downloaded from Internet, while the remaining images

were photos. Out of those 660 photos, 425 (28.33%) were

made by a professional photographer, while the remaining 235

(15.67%) were taken by an amateur photographer. The images

gathered had different aspect ratios, however when they were

fed to the network their shape had to be the same, so they

were converted into images with an aspect ratio of 16:9. The

16:9 aspect ratio was chosen for two reasons. The first reason

was that the 16:9 is the most used aspect ratio in both videos

and images, so most of the samples had already such shape.

The second reason, as shown by Kerns Powers9, is that the

other aspect ratios can be converted into the 16:9 without

altering10 the image too much. After reshaping the images,

but before feeding them to the network, it was necessary to

treat them a little more. The next step, after gathering, labelling

and reshaping all the images, was to reduce their size, in order

to reduce the number of features that the network had to take

in as input. The size chosen was 160x90 pixels.

1) Monochrome vs Color Images: Since the colors in-

side an image are relevant but not determinant in order to

understand if an image is close up or something else, we

wanted to investigate how much the presence or absence

9The creator of the 16:9 aspect ratio.
10Here altering means distorting, removing or adding pixels to the image

in order to obtain the 16:9 aspect ratio.

of colors influenced the performance of the network. Thus,

we used two datasets: (i) DatasetRGB, which had all the

images with the original colors while (ii)DatasetBW includes

monochrome (black and white) images. The monochromatic

images use only the gray scale while rgb uses the red scale,

the green scale and the blue scale. The values on the gray

scale correspond to different shades of gray, with the 0 that

corresponds to completely black and the 255 that corresponds

to the absolute white. For instance, if all the values are zeros

the image corresponding would be a completely black image.

The fact that every value corresponds to a pixel is true only

for monochrome images. With colored images things change a

little bit. For instance, RGB images have three scales: the red

scale, the green scale and the blue scale. So, when a computer

reads an RGB image, for every pixel it receives three values,

one for the red scale, one for the green scale and one for the

blue scale. When the values of all the three scales are the same,

the color resulting corresponds to a shade of gray, otherwise

the color resulting depends on the magnitude of those values

and the proportion between those values. We have used in both

cases the VGG-16 to run the experiments. Since the VGG-16

needs to receive images with three channels as input we tripled

the gray channel. By doing so the VGG-16 was able to work

with monochromatic images.

With the DatasetRGB the VGG-16 accuracy grew up

consistently with respect to the accuracy reached with the

DatasetBW, which was 74.56%, reaching an overall accuracy

of 81.29%. The increase in performance is mainly due to the

detailed content of images in color with respect to monochro-

matic images.

B. VGG-16 performance

To evaluate the performance of the proposed approach we

first run experiments on DatasetBW including four cinemato-

graphic shot classes: full figure, half figure, half torso and close
up. Table I shows the classification report of the performed

experiments by using a stratified K-Fold Cross validation

strategy with K=10. The VGG-16 reaches an average accuracy

of 81.30%, while precision and recall for each class are in

the range 77%-90% and 76%-85%. Figures 2 and 3 show the

trends of the accuracy and of the values of the loss function.

While Table I reports the average performance of the 10

evaluated folds, Figures 2,3 and 4 refer to a fold that has an

average performance w.r.t. the whole set. As the reader can see

these are pretty good results considering the small dimension

of the dataset used.

C. Comparisons with state-of-the-art approaches

Here we discuss the comparison of the proposed method-

ology with other types of state-of-the-art networks to better

evaluate the quality of our fine-tuned VGG-16. We tested

two state-of-the-art approaches: a multilayer perceptron (MLP)

network and a generic CNN, with a simpler architecture

compared to the VGG-16. Both ths MLP and the CNN were

trained with the cross validation technique with a Kfold=50,
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TABLE I
VGG-16 CLASSIFICATION REPORT

precision recall f1-score support
Full Figure 0.90 0.84 0.87 75
Half Figure 0.82 0.85 0.83 74
Half Torso 0.77 0.76 0.76 76
Close Up 0.81 0.81 0.81 75
Accuracy 0.81 300

Macro Avg 0.82 0.81 0.81 300
Weighted Avg 0.82 0.81 0.81 300

Fig. 2. Training accuracy

however every fold of the CNN was trained for 30 epochs,

while the number of epochs for the MLP is 60.

The first comparison between the VGG-16 and the MLP

concerns the accuracy and the VGG-16 clearly outperforms

the MLP, since the training accuracy of the VGG-16 starts

to float between 95% and 100% before the twentieth epoch,

while the training accuracy of the MLP reaches the 85%

neighborhood after 60 epochs. The test accuracy is not as

high as the training accuracy for both the VGG-16 and the

MLP, however the mean of the VGG-16 at the end of the

simulation is 81.29%, while the mean of the MLP test accuracy

is 55.43%. The next evaluation compares the trends of the loss

functions characterizing both models on the training set. The

loss function used for both models is the categorical cross
entropy. The VGG-16 mean of the values of the training loss

function is a little less than 0.6 while the corresponding MLP

mean is 1.6. Comparing the classification reports (see Table

I for the VGG-16 performance and Table II for the MLP

performance) of the two models it is clear that the VGG-16

Fig. 3. Training loss

Fig. 4. Roc curves of the VGG-16

performs better by far.

The next comparison is between the VGG-16 and a generic

CNN model. The generic convolutional neural network built

for this study has two convolutional layers, the first one

applies 64 filters, while the second one applies 128 filters.

Each convolutional layer is followed by a pooling layer that

performs a max pooling operation. The convolution filters have

dimensions of 3x3 pixels, while the pooling windows have a

size of 2x2 pixels. The other layers implemented are the input

layer, which has 43 200 nodes, which is the same number of

features of every image (160x90x3), the output layer, which

has 4 nodes, one for each class considered in this study, and

two fully connected layers. The first fully connected layer has

128 nodes, while the second one has 64 nodes. Every layer

uses the ReLU activation function with the exception of the

output layer that uses the softmax function. The number of

epochs on which the CNN was trained is 30, while the batch

size was 10. As well as the VGG-16 also this CNN was trained

through the cross validation technique, with a Kfold=50. The

loss function used was the categorical cross entropy, while the

optimizer was the stochastic gradient descent Also in this case,

although the generic CNN performs better than the MLP, the

difference between the CNN performance and the VGG-16 is

substantial. For what concerns the values of the loss function

both models reach values floating around 0.6, however the

CNN accuracy is much worse than the accuracy of the VGG-

16. The value of the average accuracy of the generic CNN

on the test sets reaches the value of 65.44% a value that

pales compared to the 81.29% obtained by the VGG-16. It

is interesting to notice that all of the models used have issues

in identifying half torsos. Such result however is not surprising

considering the fact the half torso is a class between the

half figure and the close up, and in some cases they can be

misclassified by humans too. Figure 4 shows the Roc curves

for the VGG-16 model. As the reader can see the area under

the half torso Roc curve is the smallest.
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TABLE II
MLP CLASSIFICATION REPORT

precision recall f1-score support
Full Figure 0.60 0.63 0.61 15
Half Figure 0.66 0.57 0.61 15
Half Torso 0.48 0.48 0.48 15
Close Up 0.57 0.54 0.55 15
Accuracy 0.55 60

Macro Avg 0.58 0.55 0.56 60
Weighted Avg 0.58 0.55 0.56 60

TABLE III
GENERIC CNN CLASSIFICATION REPORT

precision recall f1-score support
Full Figure 0.74 0.75 0.75 15
Half Figure 0.71 0.62 0.66 15
Half Torso 0.55 0.59 0.57 15
Close Up 0.68 0.67 0.68 15
Accuracy 0.65 60

Macro Avg 0.67 0.65 0.66 60
Weighted Avg 0.67 0.65 0.66 60

IV. RELATED WORK

Only a few studies [9]–[11] centered on possible interactions

between the shot classification and machine learning have been

made in the past years While authors in [9] addressed the

classification of images shot types as long shots, medium shots
and close ups, in [10] a specific type of cinematographic shot,

the Over-the-shoulder has been targeted. A large number of

shot classes has been considered in the study presented in [11]

where images are classified as one of the seven shot types:

extreme long shot, long shot, medium long shot, medium shot,
medium close up, close up and extreme close up. Since in all

of these types of shot there is the human figure they used as

discriminants the head size and its position in order to decide

which shot is what. To this aim a semi-automatic face tracker

is used to estimate the head size with respect to the whole

image and its position. These two features were then fed to

an SVM that classified the images into cinematographic shot

types. The work proposed in this paper differs from those just

introduced mainly for the methodology used. None of the cited

papers used a fine tuned VGG-16 to classify the images into

cinematographic shot classes. Most importantly the method

proposed in this paper classifies the images automatically by

itself, it does not need external interventions from humans or

other algorithms. Thanks to its autonomy it would be more

helpful to users who are outsiders to the world of machine

learning.

V. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

In this paper we have used a fine tuned VGG-16 to

address the cinematographic shot classification and we have

performed different experiments on two real datasets. The

results obtained so far are promising and we believe that they

can be significantly improved by expanding the datasets under

analysis in order to have more images for each class and also

images related to all the cinematographic shot classes. The

proposed approach could be also extended by integrating other

machine learning techniques, such as feature boosting [12]

and semantic segmentation [13]. We also intend to implement

visual explanation techniques such as LIME [14] or Ebano

[15] in order to understand which parts of an image have the

most relevant influence on the network predictions.
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