
Dagbase: A Decentralized Database Platform Using
DAG-Based Consensus

Yepeng Ding
The University of Tokyo

Tokyo, Japan

youhoutei@satolab.itc.u-tokyo.ac.jp

Hiroyuki Sato
The University of Tokyo

Tokyo, Japan

schuko@satolab.itc.u-tokyo.ac.jp

Abstract—As the infrastructure to provide support for dis-
tributed database management systems, the distributed database
platform is very important to unify the management of data
distributed in intricate environments. However, a traditional dis-
tributed database platform with centralized entities faces diverse
and serious threats when the central entity is compromised.
Consensus mechanisms in distributed ledger technology (DLT)
can enhance the capability of defending threats by decentralizing
the platform, but the efficiency and cost of consensus mechanisms
in classic blockchain techniques are notable issues. In this paper,
we propose a novel decentralized database platform, named Dag-
base, with the support of an efficient and cost-effective consensus
mechanism that uses the directed acyclic graph (DAG) as the
structure. Dagbase decentralizes the management and distributes
data to prevent threats in untrustworthy environments, which
gains benefits from recent DLT. The performance of near-native
data reading and high-efficiency data writing is ensured by a
layered architecture and DAG-based consensus. Furthermore, we
ensure flexibility by decoupling the consensus mechanism from
the architecture. Dagbase is also easy-to-use and can be inte-
grated with mainstream database products seamlessly on account
of great interoperability. The implementation demonstrates our
work and the security and performance analysis are enforced for
evaluation.

Index Terms—distributed database, decentralization, decen-
tralized system, database platform, distributed ledger technology,
directed acyclic graph

I. INTRODUCTION

Nowadays, the utilization of data plays a pivot role in

information and communications technologies (ICT) such as

web services and the Internet of Things (IoT). To manage

data in an organized manner, the database is indispensable

and usually integrated into the database management system

(DBMS). For large-scale data management, it is imperative to

design a distributed database platform as an infrastructure to

support DBMS and unify control.

However, there are many sorts of threats to a distributed

database platform on account of intricate and untrustworthy

environments. It is quite a challenge to ensure security for a

distributed database platform, especially for a platform with

centralized enforcement or a central agency [1]. Typical threats

can be decomposed to confidentiality, integrity, and availability

[2]. For instance, information thefts try to hack the databases

to obtain data over illegal authentication and authorization [3],

This research was partially supported by KAKENHI (Grants-in-Aid for
Scientific Research) (C) 19K11958 and (B) 19H04098.

which violates the data confidentiality. Besides, many attackers

aim to tamper databases through unauthorized channels, which

brings great damage to data integrity [4]. If the platform

enforces a centralized database operation mechanism, attackers

can make a successful attack only by compromising this cen-

tralized enforcement. Furthermore, the whole platform can be

taken over and manipulated by attackers if the central agency

has the privileges of administrative management, which is a

serious threat to system integrity. Additionally, some attacks

are launched to obstruct the platform by overwhelming the

target central agency that provides services to the external,

which violates the system availability.

Distributed ledger technology (DLT) provides a set of

solutions with intrinsic capabilities of defending threats of

a distributed database platform to replicating, synchronizing

data and reaching consensus among multiple entities, which

has become crucial in many ICT solutions since the rapid

development of blockchain techniques alongside the rise of

cryptocurrencies. Although DLT can be regarded as a kind of

database with distinguishing features such as decentralization

and immutability, it faces many critical issues while being

applied to scenarios requiring efficiency such as the web

service. One of the main issues is the high-cost and low-

efficiency consensus algorithm in classic blockchain tech-

niques such as proof-of-work (PoW) [5], proof-of-stake (PoS)

as the improvement of PoW for public blockchain, practical

Byzantine fault tolerance (PBFT) [6], Raft [7] for private

blockchain. Hence, it is impractical to adopt the blockchain as

a replacement for the traditional distributed database directly.

Recently, some researchers focus on another branch of

DLT that is based on the directed acyclic graph (DAG) to

enhance the efficiency and cost-effectiveness of consensus

algorithms such as tangle [8], Hashgraph [9]. Furthermore,

these DAG-based techniques are free from mining and in-

centive mechanisms to save unnecessary computing costs and

improve a lot in scalability, which provides the possibility to

construct a decentralized database platform with efficiency,

cost-effectiveness and security benefits of DLT.

Problem statement.

• A distributed database platform must protect data from

serious potential threats associating with vulnerabilities

caused by centralized entities including the enforcement

798

2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC)

978-1-7281-7303-0/20/$31.00 ©2020 IEEE
DOI 10.1109/COMPSAC48688.2020.0-164

and the agency. It is an arduous work to build such a

platform with centralized entities.

• High efficiency is required. Besides security, the platform

must ensure the performance at best efforts. It is a

significant challenge to make a balance between security

and performance.

• As an infrastructure, the functionality must be consid-

ered in the design of the platform such as auditability,

resiliency, and interoperability.

Our contribution.
• We propose Dagbase, a decentralized database platform,

which circumvents issues caused by vulnerabilities of

centralized entities, especially integrity issues. Dagbase

can adapt to untrustworthy environments on account of

characteristics inheriting from DLT such as great fault-

tolerance and tamper-proof capability.

• We enhance the efficiency and constrain the cost by

designing the layered architecture with the feasible con-

currency control and integrating the DAG-based consen-

sus mechanism, which makes Dagbase have high perfor-

mance and present linear scalability and great stability

with the growth of the scale.

• We ensure the functionality of Dagbase by combining

traditional database techniques and DLT. Dagbase is

auditable and resilient while facing catastrophes. Fur-

thermore, we ensure interoperability to support various

database products seamlessly.

The remainder of this paper is organized as follows. Section

II briefly introduces the related work. Section III presents our

proposed scheme, followed by the implementation in Section

IV. Section V shows the evaluation of our work. We make a

discussion in Section VI. Section VII summarizes our work

and concludes the paper.

II. RELATED WORK

Although DLT has been widely applied to various fields

both in academia and industry, very few of them focus on

circumventing issues of a decentralized database platform by

DLT.

There are numerous researches on assuring security and pri-

vacy of data storage and sharing using blockchain techniques

in specific domains. For instance, a decentralized personal data

management platform was proposed in [10], which focuses on

protecting data privacy. For IoT applications, many researchers

apply blockchain techniques to ensure data integrity such as

[11] and [12]. Besides, the security of electronic health records

as a notable issue in health informatics also benefits a lot

from the application of the blockchain techniques such as [13].

These researches have addressed specific domain problems but

none of them can be used as a feasible distributed database to

provide general data services.

BigchainDB [14] is a solution to a decentralized system

acting as a database with blockchain characteristics, which is

complementary to both the traditional distributed database and

the blockchain. The consensus mechanism of BigchainDB is

based on Tendermint [15], a BFT consensus algorithm without

mining. The efficiency was improved a lot compared to

classic consensus algorithms in blockchain techniques. How-

ever, Tendermint can only be tuned in synchronous settings

such a Byzantine eventual synchronous setting with O(n3)
message complexity. With the increasing amount of nodes, the

messages for exchange increase exponentially. Hence, it is still

a notable problem while comparing to the practical distributed

database.

One of the closest solutions to a distributed database plat-

form was proposed in [16]. In this work, a decentralized

database based on a layered blockchain-based architecture was

implemented. The layered architecture consists of a fast first

layer blockchain and a secure second layer blockchain. The

first layer adopts a BFT consensus and a distributed hash

table as the solution while the second layer is based on PoW

consensus. The solution ensures strong data integrity but has

many obvious defects including low efficiency, huge consensus

cost, and delicate incentive mechanism.

III. ADVERSARY ANALYSIS

With the growth of the data value, the adversary can be

very strong to threaten the security of the database platform

by exploiting vulnerabilities with great resources. We mainly

consider the abilities of the adversary without considering the

concrete methods to reach the purpose.

1) The adversary can tamper all kinds of data in memory or

on disk on any node. Logically, both data in the database

and data for control are facing tampering threats.

2) The adversary can manipulate the behavior of any node.

In this manner, the adversary can make the node behave

in an unintended and impaired way.

3) The adversary can intercept and repackage any traffic

between two nodes. The malicious traffic among nodes

can be used to be against the normal nodes in the

network.

4) The adversary can obstruct any node, which means the

adversary is able to isolate any node from the network.

In Dagbase, all nodes are formally identical on account

of the decentralized mechanism. Hence, it is reasonable to

consider the equivalent difficulty of compromising each node

in Dagbase for simplicity. However, we consider that the cost

for adversaries to compromise the majority of nodes is higher

than the value.

IV. PROPOSED SCHEME

Firstly, we present the general scheme of Dagbase defining

the participants and devices, which is an overview of the archi-

tecture. The component scheme illustrates the static structure

of Dagbase from the internal view while the operation scheme

presents a dynamic perspective.

A. General Scheme

The general scheme of Dagbase is shown in Fig. 1.

Participants of Dagbase include data, consumer and

provider. Consumer is the user who interacts with data by

799

Fig. 1. General scheme of Dagbase.

conducting operations in a database. Provider provides ser-

vices for consumers to facilitate the database interaction.

Devices of Dagbase can be divided into client terminals and

server terminals. Client terminals are used by consumers to

submit data operations. Server terminals, also called nodes, are

controlled by providers to support a set of services including

enforcing actual data operations from client terminals directly

and making the response. Notably, the node is an abstract

concept, which means a node can infer one or a set of physical

or virtual machines.

B. Component Scheme

The component scheme of our work consists of three layers:

persistence layer (PL), image layer (IL), and application layer

(AL), which is shown in Fig. 2. PL stores data immutably by

a DAG-based consensus algorithm. IL supports a traditional

database that synchronizes with PL. AL provides a user

interface and controls interactions between consumers and our

platform. From the perspective of deployment, PL and IL are

deployed on every node controlled by providers while AL

is deployed on every client terminal accessed by consumers.

The communication between IL and PL is local while remote

communication is usually required between IL and AL.

1) Persistence Layer: This layer contains a DAG and acts

as a distributed immutable data repository, which is deployed

on every node. DAG is usually composed of a set of events

marked as circles in Fig 2. Generally, an event contains the

meta-information, one or more transactions, a timestamp, and

two pointers. The meta-information is auxiliary for the con-

sensus process. The timestamp identifies the created time point

of the event. There are two pointers pointing to two different

parents, which is adopted in many DAG-based consensus

algorithms such as [9], [17] and [18].

Fig. 2. Component scheme of Dagbase.

The transactions embedded in events are the information

required the consensus among all nodes. It is notable that a

transaction can also have a unique timestamp different from

the event to identify the actual happening time point of the

transaction. There are two kinds of transactions persisted in

this layer: system transaction and database transaction. These

two kinds of transactions are allowed to interleave persistence

in this layer.

The system transaction can be regarded as the built-in trans-

action that is responsible for persisting system-level informa-

tion. For instance, it is available to configure the system-level

identity management mechanism in Dagbase by adding a type

of system transaction to persist information of participants.

The database transaction contains database-oriented infor-

mation such as database configuration and statements. For a

database supporting SQL, the content in a transaction can be

a statement like CREATE DATABASE databasename.

All nodes can reach consensus in a distributed environment

by a DAG-based consensus algorithm integrated into PL.

Nodes can make deterministic decisions on consensus by

analyzing the local DAG.

2) Image Layer: This layer aims to ensure high perfor-

mance for database operations by building and interacting with

a traditional database, which is deployed with PL on every

node. It is a middleware for making the swift response to

requests from AL.

The image database acts as an image of the distributed

ledger in PL and executes statements submitted from AL.

Each image database keeps a consistent copy of database

transactions in PL in a theoretical manner. In a practical

situation, copies among image databases can be different.

However, the inconsistency can be detected and eliminated

to achieve final consistency by the DAG-based consensus

mechanism.

The synchronizer is responsible for executing a set of

programs, which encapsulates functions of interacting with PL

for operations on transactions such as submitting, retrieving,

processing transactions. It ensures that all executions are

independent of the environment variables and can run in an

unimpaired manner, which heavily depends on the implemen-

800

tation.

3) Application Layer: This layer is responsible for connect-

ing consumers to Dagbase and interacting with IL to submit

both system and database operations. AL does not need to

and cannot access to PL directly. Identity information such as

the private key of the consumer is stored in the application

database to enforce identity verification with IL. Besides,

AL also participates in consistency checking to facilitate the

execution and synchronization of database operations.

For providers in Dagbase, AL acts as a content management

system (CMS) to monitor and control the states of database

services they are maintaining. The whole chain of service is

traceable and immutable, which provides reliable management

for providers.

C. Operation Scheme

We present four main procedures in the operation scheme

including initialization procedure, reading procedure, writing

procedure, and concurrency control procedure. Some built-in

functions are encapsulated as the application programming

interfaces (APIs) to facilitate the integration with database

products and consensus algorithms.

1) Initialization Procedure: The initialization procedure is

enforced on every node at the beginning, which is illustrated

in Algorithm 1.

All nodes are set up with a set of the same initialization

statements and the hash value of them in PL, which composes

the genesis event by invoking the function CreateEvent. These

initializing statements include statements for configuration

and identity management such as a root account, which are

executed in the image database of IL. Then all nodes must

confirm the consistent initial world state Sinit by validating the

hash value of Sinit. The confirmation procedure must pass the

consistency checking with over the fraction of normal nodes.

After making the confirmation, Gj is persisted in PL. If the

confirmation fails, initialization failure error will be thrown

out.

The initialization procedure is done when the majority of

nodes have consistent initial information.

2) Writing Procedure: Assume a user with the identity ui

wants to execute a statement for writing data such as creating,

updating or deleting a database, a table or data.

Firstly, a consistency checking procedure is triggered in AL,

which sends the checking requests to a set of nodes to obtain

the latest hash values stored in PLs of them. The consistency

among these nodes can be determined by the comparison of the

hash values. If these nodes are not consistent, then Arbitration
function will be called to correct the consistency among them.

Otherwise, the writing request is distributed to a node nj

selected from checked nodes. The writing procedure of node

nj is illustrated in Algorithm 2.

The statement associating with the latest hash value of the

world state H(SAL) stored in AL, and the identity verification

information ui is submitted from AL to the node nj . The

synchronizer in IL can retrieve the latest hash value of the

world state H(SPL) from PL and calculate a new hash value

H(SIL) from the image database. A sub-procedure to match

H(SAL) and H(SIL) with H(SPL) is launched.

If H(SAL) and H(SIL) exactly match with H(SPL), the

authentication function will be invoked for access control. If

the identity ui passes the authentication validation, a new event

will be created by the function CreateEvent to persist the

writing statement and a new hash value H(S) based on the

current world state S. Then, DAG Gj of nj will be updated and

sent for consensus amongst the other nodes. If the consensus

succeeds, the writing statement will be executed in the image

database and the result will be returned with the new hash

value H(S). AL updates the application database with H(S).
If the matching fails, the function RecoverDatabase will be

invoked asynchronously with tampering detected error thrown

out. If the authentication fails, authentication failure error
will be thrown out. If the consensus fails, consensus failure
error will be thrown out. The errors prevent the execution

of writing statements. It is also possible to identify which

layer is compromised by comparingH(SAL) andH(SIL) with

H(SPL) respectively.

3) Reading Procedure: Assume a user with the identity ui

wants to execute a statement for reading data such as showing

or selecting the structure information or data. The same

with the writing procedure, a consistency checking procedure

is invoked. After successfully checking the consistency, the

reading request is distributed to a node selected from checked

nodes and the reading procedure is illustrated in Algorithm 3.

The statement associating with the latest hash value of the

world state H(SAL) stored in AL and the identity verification

information ui are submitted from AL to IL. After retrieving

H(SPL) and H(SIL), the matching sub-procedure starts.

If H(SAL) and H(SIL) exactly match with H(SPL), the

identity verification procedure will be triggered. If the identity

verification fails, authentication failure error will be thrown

out.

If H(SAL) does not match with H(SPL), it is very possible

that AL is compromised and authentication failure error will

be thrown out.

If H(SIL) does not match with H(SPL), the function

RecoverDatabase will be invoked asynchronously with tam-
pering detected error thrown out. The procedure will end with

executing the statement in the image database normally and

returning the result if no errors are thrown out.

4) Concurrency Control Procedure: Dagbase can support

one-user-one-node, multi-user-one-node, one-user-multi-node

and multi-user-multi-node modes. One-node modes mean that

one or more users can only access one node in the whole

network invariantly. Multi-node modes mean that one or more

users can select the arbitrary number of nodes for interactions

freely.

A message queue MQreq is used between AL and IL to

record the requests containing statements of database opera-

tions submitted from AL. MQreq is structured as a priority

queue to always peek and consume the request with the latest

timestamp. The peeking in MQreq means the procedure that

starts handling the latest request and marks the request as

801

Algorithm 1 Initialization Algorithm on Node ni

Require: (Sinit, Size(N)). ∃s ∈ Sinit, where s contains information of configuration and identity management. Size(N) is

the number of nodes. {Sinit is a set of initial states.}
Ensure: (Gi := {E0(ni)},H(S)) or error

1: Gi ← ∅, flag ← True {Gi is the directed acyclic graph of node i.}
2: E0(ni)← call CreateEvent(ni) {E0(ni) is the first event of node i.}
3: E0(ni)← E0(ni) � Sinit �H(Sinit) {H(S) is the hash value of S.}
4: randomly select an integer set M . {For ∀m ∈ M , 0 < m ≤ Size(N) and m 	= i. Size(M) =
(1 − θ)Size(N)� + 1,

where θ is the threshold of the fraction of faulty nodes.}
5: repeat
6: m← Pop(M) {Pop(M) returns and removes an element of M .}
7: if E0(ni).H(Sinit) 	= E0(nm).H(Sinit) then
8: flag ← False
9: end if

10: until Size(M) = 0
11: if flag = True then
12: Gi ← Gi ∪ E0(ni)
13:

14: return (Gi,H(Sinit))
15: else
16:

17: return initialization failure error
18: end if

Algorithm 2 Writing Algorithm on Node nj

Require: (ui, statement,H(SAL)) {ui is the identity verification information of user i. H(SAL) is the latest hash value of

the world state SAL stored in the application layer.}
Ensure: (result,H(S)) or error

1: H(SPL)← call RetrieveHPL()
2: H(SIL)← call RetrieveHIL()
3: if H(SAL) = H(SPL) and H(SIL) = H(SPL) then
4: V (ui)← call Auth(ui) {V (ui) is the result of authentication of user i.}
5: if V (ui) = True then
6: Ek(nj)← call CreateEvent(nj)
7: H(S)← Rehash(S) {S is the latest world state with the update of a new statement.}
8: Ek(nj)← Ek(nj) � S �H(S)
9: Gj ← Gj ∪ Ek(nj)

10: flag ← call Consensus(Gj) {Consensus(G) is the function to reach consensus on G amongst nodes.}
11: if flag = True then
12: result← Exec(statement)
13:

14: return (result,H(S))
15: else
16:

17: return consensus failure error
18: end if
19: else
20:

21: return authentication failure error.

22: end if
23: else
24: call async RecoverDatabase()
25:

26: return tampering detected error.

27: end if

802

Algorithm 3 Reading Algorithm on One Node

Require: (ui, statement,H(SAL)) {ui is the identity verification information of user i. H(SAL) is the latest hash value of

the world state SAL stored in the application layer.}
Ensure: result or error

1: H(SPL)← call RetrieveHPL()
2: H(SIL)← call RetrieveHIL()
3: if H(SAL) = H(SPL) and H(SIL) = H(SPL) then
4: V (ui)← call Auth(ui) {V (ui) is the result of authentication of user i.}
5: if V (ui) = False then
6:

7: return authentication failure error.

8: end if
9: else

10: if H(SAL) 	= H(SPL) then
11:

12: return authentication failure error.

13: end if
14: if H(SIL) 	= H(SPL) then
15: call async RecoverDatabase()
16:

17: return tampering detected error.

18: end if
19: end if
20: result← Exec(statement)
21:

22: return result

Active. The consumption in MQreq can be considered as the

procedure that AL gets a corresponding response from IL with

a finalized result r and pop the request out of MQreq . If the

statement embedded in the request is accepted by the network

and executed in the image database successfully, r = True.

Otherwise, r = False. There is a window Wreq controls the

rate of peeking, which improves the efficiency of handling

requests by parallelization. In this manner, all requests from

AL can get consumed eventually, which ensures fairness.

After parsing the request, the statement will be encapsulated

as the transaction and put into another message queue MQtx

that records the transaction sequence between the image

database and the synchronizer. MQtx is also structured as

a priority queue to align the transactions according to their

timestamps. MQtx ensures that given a transaction containing

a writing statement txj that is later than txi, txj will never

get executed in the image database if txi is not consumed.

The peeking in MQtx is the procedure that starts making the

consensus of the latest transaction in the queue and marks

the transaction as Active. The consumption in MQtx means

the procedure that the transaction reaches consensus and the

statement embedded in the transaction gets executed in the

image database or the transaction is aborted. In the meanwhile,

the transaction will be removed from MQtx. This can be

regarded as a pessimistic lock for writing the database. For

reading the database, it can be considered as a lock-free

situation. Another window Wtx is used to control the number

of parallel consensus processes by encapsulating multiple

transactions into an event or multiple events separately.

Dagbase can ensure the order of transactions in different

normal nodes. Formally, given two transactions txa
i and txa

j

stored in node na with τ(txa
i) < τ(txa

j) where τ(tx) denotes

the timestamp of the transaction tx. Assume that there exists

txb
k stored in node nb with τ(txa

i) < τ(txb
k) < τ(txa

j) and

txb
k starts the consensus before txa

i . In this situation, when the

event containing txb
k reaches the node na or any other nodes

participating the consensus of txa
i , the event can perceive

that txa
i is in the message queue and τ(txa

i) < τ(txb
k). A new

event created in node na will carry this new information and

return to node nb eventually. When node nb receives an event

containing such an information, it will check the consensus

status of txa
i . txb

k will get its turn when txa
i gets confirmed

with the consensus and executed in the image database of

node nb. In other words, txb
k will get consumed after txa

i gets

consumed in MQtx of node nb.

V. IMPLEMENTATION

For the proof of concept, we present the implementation

details of the prototype of Dagbase.

A. Database and World State

The application database in AL is a lightweight database

LevelDB to store the identity information and the hash value

of the current world state. We integrated the latest version of

MySQL as the image database in IL. The world state is a

set of MySQL statements associating with writing operations

803

such as CREATE, ALTER, INSERT INTO, UPDATE, DELETE.

We select MD5 as the hashing algorithm that hashes the

concatenation of the new statement and the old world state.

The asymmetric cryptography is used for identity verification,

which is well supported by authentication plugins of MySQL.

B. DAG-based Consensus

We implemented a DAG-based consensus algorithm ac-

cording to [9]. The transaction is regarded as an event that

is created by calling the function CreateEvent. Every event

has a self-parent pointer and an other-parent pointer, which

constitutes a DAG. The function Consensus is to share the

newly created event amongst all nodes by a gossip-about-

gossip protocol. Every non-faulty node can know the same

DAG and reach consensus efficiently. The consensus is asyn-

chronous BFT and does not need both mining and incentive

mechanisms.

C. Consistency Checking

Before the writing and reading procedures, consistency

checking is imperative to ensure the correctness of each

operation. In Dagbase, AL must collect checking responses

from at least 5 arbitrary nodes to determine whether there

exists inconsistency caused by faults or malicious behaviors.

If the inconsistency is detected, Arbitration function will

be invoked to fix the inconsistency among these nodes. We

implemented this function in AL to find a group of nodes

with consistent hash values. This group has a higher trust level

than the inconsistent group. Then RecoverDatabase function

will be called on nodes in the inconsistent group.

D. Database Recovery

When the function RecoverDatabase is triggered, the syn-

chronizer of IL will start rolling back the MySQL statements

from the latest executed statement according to the logs. Every

time after rolling back one statement, new hash value will

be calculated and compared with the latest hash value in

PL. Once a matching pair is found, the tampered point will

be detected, and the database will recover successfully by

executing statements persisted in PL from the tampered point

to the latest.

This function is invoked asynchronously during the writ-

ing procedure and reading procedure when the tampering is

detected. Hence, the recovery procedure will not affect the

overall performance very much because the operation from

AL can be migrated to other normal nodes.

E. Database Reconstruction

Dagbase can reconstruct the database from any world state

at any time. When IL receives the reconstruction instruction,

the function Reconstruction will be invoked to drop the

database and execute the statements persisted in PL until some

world state.

F. Communication

A routing table is shared among these three layers for peer

discovery. The communications among AL and IL are secured

by the transport layer security (TLS) protocol. IL and PL

communicate with each other in the local environment of a

node.

AL is set to select the nearest nodes with the highest trust

level as the master nodes to interact with ILs on them. The trust

level is determined by the frequency of inconsistency. A node

has a high trust level with a low frequency of inconsistency

and unavailability.

G. Deployment

AL is encapsulated as a software development kit (SDK),

which can be integrated with the client applications devel-

oped by Java or JavaScript. A user interface was developed

that integrates the SDK to connect to Dagbase. We use the

containerization techniques for the scalable and consistent

deployment of IL and PL, which makes the deployment of

nodes very efficient.

VI. EVALUATION

A. Security Analysis

1) Assumption: To analyze the security of Dagbase, we

make some assumptions firstly.

a) Reachability:

∀ni, nj ∈ Nnormal,Δtni→nj
≤ Δt (1)

Nnormal denotes the set of normal nodes. Δtni→nj
is the

time interval for node ni to reach nj . Δt is a negligible time

interval compared to processing procedures on a node.

We can also determine whether a node is not normal by

Reachability:

na ∈ Nnormal,Δtna→nb
> Δt⇒ nb 	∈ Nnormal (2)

b) Honesty:
|Nfaulty|
|N | ≤ θ (3)

Nfaulty denotes the set of faulty nodes while N = Nnormal∪
Nfaulty . θ is the threshold according to the DAG-based

consensus algorithm. In the prototype of Dagbase, θ ≤ 1
3 is

required to ensure BFT property.

The network composed by nodes presents macroscopic

honesty.

2) Property:
a) Strong consistency: Dagbase ensures strong consis-

tency by detecting the inconsistency with the probability

greater than 99% during all procedures, which means that the

probability of missing detecting the inconsistency is less than

1%.

In the initialization procedure, Dagbase requires checking

the hash values of initial world states from (
(1−θ)|N |�+1)
nodes. According to the Honesty assumption, it is enough to

initialize the node with consistent information.

804

For the data writing and data reading procedures, the

consistency checking is sensitive enough to identify the in-

consistency. Consistency checking procedure requires that AL

collects hash values of the current world state persisted in PLs

from at least 5 nodes. The probability of failing detecting the

inconsistency by getting the untrustworthy responses from f
faulty nodes can be calculated by (4).

f−1∏

i=0

(|Nfaulty| − i)

(|N | − i)
(4)

Consider the worst case that the fraction of faulty nodes

reaches the threshold θ, which is the extreme situation the

DAG-based consensus algorithm can endure. The case can be

described by (5) according to (3).

|Nfaulty|
|N | → θ (5)

When |N | is small with |N | ∈ [4, 15), the number of faulty

nodes f < 5. In this case, the probability of the detection

failure is 0. In other words, any inconsistency can be detected

successfully.

When |N | ≥ 15, we can obtain (6) easily.

(|Nfaulty| − i)

(|N | − i)
≤ |Nfaulty|

|N | , i ∈ [0, f) (6)

With (4), (5) and (6), we can obtain (7).

f−1∏

i=0

(|Nfaulty| − i)

(|N | − i)
<

f−1∏

i=0

|Nfaulty|
|N |

=⇒
f−1∏

i=0

(|Nfaulty| − i)

(|N | − i)
< θf

(7)

In our default case, f = 5 and θ = 1
3 . Even if the fraction

of faulty nodes reaches the extreme situation, the probability

of the detection failure is still less than 1% according to (7).

b) Conditional partition tolerance: Dagbase ensures

weak partition tolerance by the DAG-based consensus mech-

anism which means that Dagbase is allowed to lose connec-

tions among a conditional number of nodes. Hence, Dagbase

presents weak partition tolerance if normal nodes can compose

a complete graph with normal nodes Nnormal as vertices and

effective connections E as edges. The number of edges |E| of

a complete graph with |V | vertices can be calculated by (8).

|E| = |V |(|V | − 1)

2
(8)

Therefore, the number of the effective connections |E| must

satisfy (9) to ensure the composition of the complete graph

according to (8).

|E|min ≥
|Nnormal|(|Nnormal| − 1)

2
(9)

According to (2) in Reachability, nodes cannot be reached

are also marked as faulty nodes. Normal nodes can reach con-

sensus and ensure the consistency and availability so long as

Honesty holds, which means the fraction of partitioned nodes

together with other faulty nodes is less than the threshold θ and

a complete graph composed by normal nodes can be ensured.

c) Strong integrity: Dagbase can assure the strong sys-

tem and data integrity by inheriting decentralization and im-

mutability from DLT. The platform is decentralized, attackers

must control most of the nodes to conduct data tampering over

the platform. As for the database system, Dagbase integrates

a DAG-based consensus mechanism, which makes the plat-

form BFT. Even if attackers tamper the database systems on

some nodes, the overall data integrity can be still satisfied.

Therefore, all events persisted in PL cannot be tampered or

destructed without violating Honesty assumption.

d) Availability: Dagbase adopts a decentralized manage-

ment mechanism. Consumers obtain their services by inter-

acting with the nearest available nodes with the highest trust

level. If some nodes are crashed by attackers or internal

exceptions, consumers can still obtain services by interacting

with available nodes. The cost of disrupting the whole platform

is huge due to the requirement of disrupting over θ nodes.

e) Concurrency correctness: Dagbase can ensure the

concurrency correctness in one-node and multi-node modes.

Assume there are three transactions txa
i , txb

k, txa
j satisfying

τ(txa
i) < τ(txb

k) < τ(txa
j). Suppose a special case that

transactions can be right in the order of timestamps in one

node but appear to be the wrong order of timestamps in terms

of the whole network when node na does not participate in the

consensus process of txb
k and node nb processes neither txa

i

nor txa
j . But according to Honesty assumption, there must exist

a node nc that processes both txb
k and txa

i . Hence, the network

can still perceive and arrange the right order eventually.

B. Performance Analysis

A practical distributed database requires high efficiency to

ensure the support of some request-intensive scenarios such

as the demands of web services. Especially, query usually

occupies most requests. Dagbase can make the response as

efficiently as a native database cluster. Besides, the cost

of ensuring security properties is low compared to classic

consortium blockchain techniques.

1) Theoretical Analysis: Dagbase can ensure the near-

native data reading by the layered architecture. The time cost

of reading data is nearly the same as the execution time on

the database product deployed in IL. The response time of

reading tr can be factored as tr = tcc+thm+texec, where tcc,

thm and texec denote the time cost of consistency checking,

hash value matching and execution respectively. According to

the Reachability assumption, tcc << texec. The hash value

matching only needs negligible time cost for the judgement,

which indicates thm << texec. Therefore, we can obtain that

tr ≈ texec.

High-efficiency data writing is ensured by efficient DAG-

based consensus mechanism. The response time of writing tw

805

can be factored as tw = tcc+thm+tce+trehash+tcons+texec,

where tce, trehash, tcons denote the time cost of CreateEvent,
Rehash and Consensus respectively. Consensus and execution

are the most time-consuming sub-procedures that heavily

depends on the DAG-based consensus mechanism and the

database product deployed in IL. Therefore, tw ≈ tcons+texec.

Different from the classic consensus algorithms in

blockchain techniques, we introduce DAG-based consensus

algorithms in Dagbase that are more efficient and cost-effective

[18]. Without the mining mechanism, we constrain the cost by

eliminating the waste of computing resources.

2) Experiment: We conducted experiments to test the real

performance of the prototype of Dagbase. For the proof of

concept, all nodes are deployed on a powerful physical server

(Intel Xeon Phi CPU 7250, 96GB) to make the communication

cost negligible. Besides, we developed a MySQL cluster for

comparison. MySQL services encapsulated in containers are

deployed on the server with the same number and initial

statements as the nodes of Dabase. A synchronizer was im-

plemented as the central agency to ensure consistency among

these MySQL services by checking states of all services during

each operation.

We used iMac as the client terminal deployed with the

automatic test program that submits requests to Dagbase and

the MySQL cluster. The test program is integrated with the

SDK to interact with nodes of Dagbase and the driver to

interact with MySQL services of the cluster. The throughput

is calculated by the time cost of 1000 operations including

reading and writing respectively on each node or MySQL

service. A SQL statement is regarded as a transaction. Hence,

the throughput is measured in transactions per second (TPS).

The result is shown in Fig. 3.

Fig. 3. TPS of writing and reading of Dagbase compared with the MySQL
cluster.

From the result, we can obtain that the reading TPS of

Dagbase and the cluster are almost the same. The major time

cost is the actual execution time on the database. With the

increase in the number of services, the cost of consistency

checking of the synchronizer becomes higher and higher.

In the meanwhile, the consistency checking mechanism of

Dagbase is stable and is not affected by the number of nodes.

We also tested the TPS performance of Dagase with differ-

ent consensus algorithms. Another version of Dagbase with

PBFT was implemented for comparison. The result is shown

in Fig. 4.

Fig. 4. TPS of writing and reading of Dagbase with Hashgraph compared
with the PBFT version.

With the same architecture, the major difference lies in

the writing procedure. We can obtain that the PBFT version

faces a serious scalability issue while Hashgraph presents good

scalability.

C. Functionality Analysis

1) Definition:
a) Consensus order: The consensus order sorts the

timestamps of moments that transactions are accepted by the

consensus network, which may be different from the actual

order of submission timestamps of transactions.

b) Path: The path P in PL is a finite and world-state

sequence SinitS1 . . . Slatest starting with the initial world state

Sinit, ending with the latest world state Slatest, and organized

by the consensus order.

c) Subpath: A subpath P̂ is a subsequence SiSi+1 . . . Sj

of the path P .

d) Trace: A trace of a subpath P̂ = SiSi+1 . . . Sj is

defined as T (P̂) = H(Si)H(Si+1) . . .H(Sj).

2) Property:
a) Auditability: Given any trace T (P̂), an authorized

identity can obtain corresponding subpath P̂ .

Authorized identities can examine all writing statements

submitted by them by interpreting traces persisted in PL

because the world states in P contain all statements as trans-

actions. The authorized identity is authenticated by Dagbase

as a consumer or a provider. Furthermore, these records are

tamper-proof on account of strong data integrity guaranteed

by DLT.

806

b) Resiliency: ∀S ∈ S , it is always true that Post(S) =
{S′ ∈ S | S −→ S′} and Pre(S) = {S′ ∈ S | S′ −→ S} are

available. S denotes the universal set of world states. Post(S)
denotes the set of successors of a world state S while Pre(S)
denotes the set of predecessors of a world state S.

Dagbase can roll back the database to any world state while

suffering catastrophes, which is ensured by strong consistency
and strong integrity. The default setting is to roll back the

database to the latest known world state and all predecessors

of this world state can be recovered. The only boundary is that

the fraction of faulty nodes needs to be less than the threshold

required by the consensus mechanism.

c) Interoperability: Transactions in world states can con-

tain statements from different database products including both

SQL and NoSQL databases.

Providers can choose what kind of database products they

want to deploy on their nodes. The only coupling of Dagbase

and the database product is the log reading and API calling.

Therefore, Dagbase can integrate all kinds of mainstream

database products theoretically including SQL databases and

NoSQL databases.

Furthermore, it does not matter whether the database prod-

uct supports distributed features. The architecture of Dagbase

can support standalone database products owing to the built-in

concurrency control mechanism. In this manner, Dagbase can

distribute the databases and decentralize the management of

database products.

VII. DISCUSSION

Although we have proposed and implemented Dagbase

combining beneficial features from the traditional distributed

database and DLT, there are still some issues.

Confidentiality is not specially addressed in Dagbase. In a

practical database platform, unauthorized disclosure can not

be neglected.

The data integrity is ensured by the DAG-based consensus

algorithm which requires the fraction of honest nodes is greater

than the threshold. If the number of faulty nodes is over the

threshold, Dagbase can be compromised.

The current implementation of the consensus mechanism in

Dagbase still has some flaws because the swirlds hashgraph

has been protected by patents. We are implementing some

new DAG-based consensus algorithms such as [18]. The main

procedures in Dagbase are decoupled with the consensus

mechanism, which ensures the flexibility to alternate better

consensus solutions.

The performance of writing still needs to be optimized while

facing high-frequency writing scenarios. For now, Dagbase

supports the asynchronous writing procedure by writing into

the local node synchronously and making consensus asyn-

chronously. In this manner, tw ≈ texec though dirty buffers

may occur when multiple nodes write at the same time. The

final order of consensus is still deterministic. Hence, dirty

buffers can be consumed automatically after the consensus.

It is also significant to implement a sharding mechanism

and control the replications of data according to safety levels.

These extensions are promising to improve space utilization.

VIII. CONCLUSION

We have proposed Dagbase, a novel distributed database

platform possessing decentralized characteristics of DLT and

high efficiency with great functionality. Dagbase has been

implemented for the proof of concept and tested to show the

real performance. We still have some work to do such as

optimizing the architecture, implementing a better DAG-based

consensus algorithm and extending the functionality. It is

very promising to make Dagbase a sophisticated decentralized

database platform.

REFERENCES

[1] E. Bertino and R. Sandhu, “Database security-concepts, approaches, and
challenges,” IEEE Transactions on Dependable and secure computing,
no. 1, pp. 2–19, 2005.

[2] I. Basharat, F. Azam, and A. W. Muzaffar, “Database security and
encryption: A survey study,” International Journal of Computer Appli-
cations, vol. 47, no. 12, 2012.

[3] W. G. Halfond, J. Viegas, and A. Orso, “A classification of SQL-injection
attacks and countermeasures,” in Proceedings of the IEEE International
Symposium on Secure Software Engineering, vol. 1. IEEE, 2006, pp.
13–15.

[4] C. Anley, “Advanced SQL injection in SQL server applications,” 2002.
[5] C. Dwork and M. Naor, “Pricing via processing or combatting junk

mail,” in Annual International Cryptology Conference. Springer, 1992,
pp. 139–147.

[6] M. Castro and B. Liskov, “Practical Byzantine fault tolerance,” in OSDI,
vol. 99, 1999, pp. 173–186.

[7] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in 2014 USENIX Annual Technical Conference (USENIX-
ATC 14), 2014, pp. 305–319.

[8] S. Popov, “The tangle,” cit. on, p. 131, 2016.
[9] L. Baird, “The swirlds hashgraph consensus algorithm: Fair, fast,

byzantine fault tolerance,” Swirlds Tech Reports SWIRLDS-TR-2016-01,
Tech. Rep., 2016.

[10] G. Zyskind and O. Nathan, “Decentralizing privacy: Using blockchain to
protect personal data,” in 2015 IEEE Security and Privacy Workshops.
IEEE, 2015, pp. 180–184.

[11] B. Liu, X. L. Yu, S. Chen, X. Xu, and L. Zhu, “Blockchain based data
integrity service framework for IoT data,” in 2017 IEEE International
Conference on Web Services (ICWS). IEEE, 2017, pp. 468–475.

[12] H. Shafagh, L. Burkhalter, A. Hithnawi, and S. Duquennoy, “Towards
blockchain-based auditable storage and sharing of IoT data,” in Pro-
ceedings of the 2017 on Cloud Computing Security Workshop. ACM,
2017, pp. 45–50.

[13] N. Nchinda, A. Cameron, K. Retzepi, and A. Lippman, “MedRec: A
Network for Personal Information Distribution,” in 2019 International
Conference on Computing, Networking and Communications (ICNC).
IEEE, 2019, pp. 637–641.

[14] T. McConaghy, R. Marques, A. Müller, D. De Jonghe, T. McConaghy,
G. McMullen, R. Henderson, S. Bellemare, and A. Granzotto,
“BigchainDB: a scalable blockchain database,” white paper,
BigChainDB, 2016.

[15] E. Buchman, “Tendermint: Byzantine fault tolerance in the age of
blockchains,” Ph.D. dissertation, 2016.

[16] L. Aniello, R. Baldoni, E. Gaetani, F. Lombardi, A. Margheri, and
V. Sassone, “A prototype evaluation of a tamper-resistant high per-
formance blockchain-based transaction log for a distributed database,”
in 2017 13th European Dependable Computing Conference (EDCC).
IEEE, 2017, pp. 151–154.

[17] T.-Y. Chen, W.-N. Huang, P.-C. Kuo, H. Chung, and T.-W. Chao,
“DEXON: A Highly Scalable, Decentralized DAG-Based Consensus
Algorithm,” arXiv preprint arXiv:1811.07525, 2018.

[18] F. Xiang, W. Huaimin, S. Peichang, O. Xue, and Z. Xunhui, “Joint-
graph: A DAG-based efficient consensus algorithm for consortium
blockchains,” Software: Practice and Experience, 2019.

807

