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Using blockchain technologies to improve security in Federated Learning Systems

Novel defense scheme against model poisoning attack
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Abstract—The potential of Federated Learning (FL)
deployment increases rapidly as the number of connected
devices increases, the value of artificial intelligence is recognized
and networking technologies and edge computing evolves.
However, as in any distributed system, a set of security issues
arise in FL systems. In this paper, we discuss the use of
blockchain technology to address diverse security aspects of FL.
systems and focus on the model poisoning attack for which we
propose a novel Blockchain-based defense scheme. An
assessment using data from the MNIST database has shown that
the proposed approach, which has been designed to be
implemented on blockchain technology, offers significant
protection against adversaries attempting model poisoning
attacks. The approach adopts a novel algorithm for evaluating
the model updates, by verifying each model update separately
against a verification dataset, without requiring information
about the training dataset size, which is often unavailable or
easily falsified.
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I.  INTRODUCTION

Federated Learning (FL) [1], [2] is a relatively new field
of study, whereby collaborating parties can jointly improve a
model which is maintained by the coordinator (usually a
central server). In this setup, the training is performed
individually using locally available data, and the participating
entities transmit their model updates to the coordinator. The
entities (either end-devices such as mobile phones, or
businesses contributing with their data) usually share the same
goal, i.e. to make use of the trained model or can otherwise be
motivated by financial rewards.

Machine Learning (ML) aims to build a mathematical
model by inference, using training data. ML can either be
supervised or unsupervised, depending on whether the
training data set is labeled or not [3]. In a typical centralized
Machine Learning setup, the training data needs to be
collected at a central location, which can pose security and
privacy risks. Other concerns include the unavailability of
training data of good quality, either because of data protection
regulations or because of the unwillingness of users to share
their private data due to privacy concerns.

Today, large amounts of data are being generated at the
edge. Federated Learning overcomes the need to transfer user
data to central servers, at the same time safeguarding user
privacy. Practical implementations of FL already exist, such
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as the FL powered application Gboard [4], a keyboard from
Google for Android devices, which is used to predict words
based on previous input and is improved by the small
contributions of each device. With the advent of edge
computing, it is foreseen that more machine learning
applications will run on edge devices. This is evident by the
use of Artificial Intelligence (Al)-specific CPUs in the latest
mobile devices from manufacturers, such as Apple and
Samsung.

FL improves on privacy, since participating entities
contribute with model updates rather than raw data, however
as training is performed at the edge, a new attack surface is
created. An adversary may intentionally send false model
updates in order to affect its performance, a method known as
model poisoning [5]. Since high quality datasets are an
important factor in training, it may be beneficial to reward
users whose model updates improve the overall model
performance.

However, a set of security attacks have already been
witnessed and countermeasures either rely on adding
intelligence or resort to Blockchain technology. Blockchain
belongs to the family of Distributed Ledger Technologies
(DLT) and as such allows for the operation of an immutable
database which can be distributed (and replicated) among
multiple nodes. These types of databases offer improvements
on security and trust, and offer a high level of transparency.
For these reasons, they can be exploited to defend against FL-
targeting attacks.

In this article, we present this vivid research landscape and
we expand on the model poisoning attack. We propose an
algorithm which is suitable to be run in a blockchain network,
and provide initial evaluation results. Although blockchain
technologies have been employed in FL, to the best of our
knowledge, they have not yet been exploited to defend against
this attack which we consider of high importance in various
application scenarios including also industry 4.0. More
specifically, we first describe the main components of any
federated learning system and explore the relevant security
issues (in section II). In section III, we explore the benefits
that the adoption of blockchain technology can bring to FL
and in section IV, we review already proposed blockchain
based FL solutions. In section V we present our approach and
algorithm and in section VI, we present the first results.
Section VII concludes the paper.
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II.  FEDERATED LEARNING AND ASSOSIATED SECURITY

ASPECTS

In contrast to the centralized nature of traditional ML
where data is collected in a large dataset (typically in the
cloud) and the model is trained centrally, FL proposes that the
ML model can reside on client devices and be trained locally.
An aggregation server is required in order to transmit the
global model and receive the model updates. Although the
individual models being trained on each end-device may have
an incomplete picture, considering that the insights of all
participating parties are accumulated and that this process is
repeated on several rounds, the end model tends to be of high
quality. Figure 1 shows the steps involved in FL. The
workflow starts by transmitting the initial model (initialized
with either random or proxy data) to end devices (blue arrow).
The end devices can now perform local training using locally
available data (yellow arrow). During the training process,
gradients are computed e.g. through a variant of Stochastic
Gradient Descent (SGD)[6] on a random portion of the
training dataset. In the end, these updates are received by the
aggregation server (orange arrow), which in turn computes the
updated model, typically by aggregating the model updates.
This process is repeated until predefined criteria are met.

Aggregation Server

>

Current model download
——

(w

Local training

Transmission of
individual updates

Device 1 Device 2 Device N

Figure |  Federated Learning Process

A major benefit of FL is that the end device is able to use
the model even when offline. Although the learning process
will be affected, the latest version of the global model will still
be available. In an FL setup, the data is kept at end devices
and never shared with the server. This alone offers a huge
improvement in privacy and helps meet requirements of
Regulations such as GDPR [7]. However, since even the
model update parameters can reveal sensitive information [8],
[9], ongoing research is focused on mitigating privacy
concerns. It is also worth mentioning that anonymization
alone is not an adequate measure for privacy. The process of
anonymization is usually carried out by the server and this
trust relationship is not always present. Furthermore,
researchers have been able to de-anonymize datasets by using
external knowledge [10], [11].

Two of the most widely adopted approaches regarding
privacy are Secure Multiparty Computation (MPC) [12] and
Differential Privacy [13],[14],[15]. MPC enables participating
parties to jointly compute an output of a shared function based
on their inputs in a way that no information on the inputs is
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revealed to each other. Several MPC protocols and their
effectiveness under different threat models are analyzed in a
study by D. Evans 2018 [16]. Differential Privacy aims to
conceal personal information in client model update
contributions by adding a small amount of noise. In this
approach, there is a trade-off between privacy and model
accuracy.

With respect to the security aspects of FL, the main
vulnerabilities of this scheme stem from the fact that the
learning process occurs on the edge, typically on users’
devices. This has created a new attack surface where a
compromised device could be manipulated in a way to affect
the learning process. Specifically, an adversary could either
attack the training data (data poisoning) or the model updates,
with the intention of affecting the global model (model
poisoning) so that its performance deteriorates and ultimately
lead to denial of service [17] or in order to make it perform a
certain way. It has been demonstrated that an attacker may use
malicious model updates in order to alter the behavior of a
global model and be able to control its behavior when certain
triggers appear (e.g. certain words in word prediction
applications), without otherwise affecting the performance of
the model on its main task [5]. Because the model still
performs well on its main task, this type of attack cannot be
easily detected by the aggregation server. In the worst case,
when MPC is used, the source of the attack cannot be
identified since the server does not have access to the
individual model updates. The same study [5] shows that the
attack is possible even with a 1% of compromised devices and
can survive multiple training rounds.

III. THE POTENTIAL BENEFITS OF BLOCKCHAIN

ADOPTION IN FEDERATED LEARNING

Distributed Ledger Technologies are a type of distributed
databases collaboratively built (many entities contribute data)
and replicated in a number of nodes (replicas of the whole
database are kept in many nodes). In essence, they provide a
shared and consistent data store, which usually allows
multiple entities to contribute data. In contrast to traditional
databases, the individual data records cannot be updated or
deleted and are usually cryptographically interconnected.
Most common categories of DLTs are Blockchains and
Directed Acyclic Graphs. Although both of these technologies
record transactions in the distributed ledger, they do so in
different ways. In the case of blockchain, transactions are
bundled into blocks, which once verified, are appended to a
chain of previously verified blocks [18]. These blocks
ultimately form a linear chain of blocks. In the case of DAGs,
each transaction is attached to multiple existing transactions
and during this process, these transactions are also being
verified. Due to branching of existing transactions, the DAG
usually resembles a tree. Furthermore, variants of DLT
technologies can be further classified as permissioned or
permission-less, allowing for other consensus types, which in
turn offer advantages in specific use cases.

Further on, we analyze the benefits of combining the two
technologies. In this section we use the term “blockchain” as
this is widely used to refer to DLT technologies in total. The
blockchain network can be used to store individual



contributions (in the form of model weights) inside blocks.
These blocks alter the network’s global state, which represents
the new global model. It is anticipated that these solutions
offer advancements in the following areas:

A. Data integrity and Reliability

Federated Learning describes a process for collaboratively
improving a shared model, and does not deal with security
aspects. In its basic implementation, the process is coordinated
from a single central server. The entity hosting the solution,
could alter the data, either with malicious intent or
unintentionally. Blockchain networks on the other hand are a
proven technology that is inherently secure. All blocks are
cryptographically interconnected, so in the case that a block is
altered, this would be easily identifiable.

B. Reliability

Since a blockchain network is decentralized, full copies of
the ledger are maintained by multiple nodes. For this reason,
there is no single point of failure since the ledger will be
available elsewhere even if a node goes down. In a centrally
managed FL scenario, one would need to implement a failover
setup, typically involving redundant servers (VMs,
Kubernetes), and a separate solution for backup.

C. Trust

A Dblockchain is a good candidate to act as a trusted
coordinator, because of its security and traceability properties.
Blockchain solutions make use of a consensus algorithm,
which guarantees that all nodes in a distributed ledger will
reach an agreement and converge. These properties can enable
trust between corporations in horizontal or federated learning
use cases. As a part of the fourth industrial revolution,
Industry 4.0 embraces data exchange and the creation of
digital twins of the manufacturing processes is at its hype.
Therefore, it is very likely that FL will become a priority for
manufacturing industries

D. Possibilities for incentives or rewards

In a Federated Learning setup, it may be important to
incentivize users that contribute with quality data. This is
crucial as the accuracy of the global model is directly
proportional to the quality of the training data. Blockchain is
the perfect medium to provide incentives in the form of
tokens, which can be exchanged for services or financial
rewards.

E. Auditability — Traceability - Accountability

A data engineer can inspect the model learning process, by
inspecting the individual blocks on the blockchain network.
This offers increased auditability which might be an essential
property in FL applications that require high level of trust on
Al decisions such as in the military and manufacturing sector.
Since the blocks on the network include the signature of the
user initiating the transaction, the user cannot deny the
authorship of this transaction. This property, known as non-
repudiation, can be used for accountability.
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IV. BLOCKCHAIN-BASED FEDERATED LEARNING
APPROACHES- RELEVANT WORK

H. Kim et al [19] have proposed an architecture
(BlockFL), where a blockchain solution is used instead of a
central server to facilitate sharing of model updates from
client devices. The proposed consensus algorithm is based on
Proof of Work (PoW). The blocks on the network contain the
model updates and miners are used to verify them and add
them to the network. The advantages include incentives for
devices that contribute to the training process with larger
amounts of data, as well as solving the single point of failure
in the case of a central server outage. They also study the
effects of a miner’s malfunction, imposed energy constraints
and number of participating devices in respect to end-to-end
latency and robustness.

U. Majeed et al [20] have proposed a similar architecture
(FLchain) that includes features from Hyperledger Fabric and
Ethereum, in which a separate fabric channel is used for each
global learning model. The global model state is calculated
after each new block generation. The suggested consensus
algorithm is a modified version of Practical Byzantine Fault
Tolerance (pBFT) and Proof-of-Word (PoW). The main focus
in this solution is to improve auditability and governance.

D. Preuveneers et al [21] have implemented Federated
Learning on a blockchain, for intrusion detection systems in
computer networks, in order to explore auditability and
accountability. Their setup relies on a permissioned block-
chained network, in order to orchestrate machine learning
models using federated learning. These models are then used
to classify traffic for Intrusion Detection. The non-repudiation
property of the blockchain network allows for enhanced
accountability of contributing parties. The implementation is
based on MultiChain, an opensource blockchain platform. The
calculated overhead of the proposed solution in relation to
traditional FL is estimated between 5%-15%.

More recently, similar research was performed by J. Weng
et al [22] who implemented a blockchain assisted Federated
Learning that focuses on incentive mechanisms and
auditability. The setup is implemented on Corda V3.0 (a
blockchain network sharing features of Bitcoin and Ethereum)
and uses a custom consensus protocol based on the work of
Algorand [23]. The learning environment is based on
TensorFlow and the results show how the training accuracy
increases with more participating parties.

Kang et al [24] have proposed a reputation-based approach
that acts as an incentive mechanism in a FL setup. A
reputation blockchain network is utilized in order to store
weighting reputation opinions from recommenders. Based on
these reputation weights and contract theory, an incentive
mechanism is designed in order to motivate high reputation
workers.

Dillenberger et al [25] in their publication have proposed
easy to use tools that can be used with Hyperledger Fabric (but
can also be applied to other blockchain solutions) in order to
query the ledger and retrieve analytics.

It is evident that none of the above approaches address data
or model poisoning attacks which are very important in the



Federated Learning process as they have great impact as
already presented above.

V. PROPOSED ALGORITHM TO ASSESS THE QUALITY OF

CONTRIBUTED MODEL UPDATES

In this section, we propose an algorithm for Federated
Learning, that can be incorporated in a blockchain
environment and run inside a smart contract, in order to
facilitate the learning process and provide protection against
model poisoning. We are also presenting a high-level
description of the algorithm and results based on its
implementation in open-source tools: Keras and TensorFlow.

The steps involved in the operation of the algorithm are
shown in Figure 2. As in the case of traditional FL, the process
starts with the initialization of the global model and its
relevant weights (with either random values or using proxy
data). The global model is then distributed to participating
parties. Local training is performed on end devices resulting
in the generation of model updates in the form of weights. The
coordinator upon receiving the updates, evaluates each update
separately against a known good validation data set and
records the accuracy. If the accuracy increases, the specific
model update is considered reliable. If the accuracy decreases,
the update is discarded. A qualitative measure for each update
can be derived by measuring the distance between the global
model accuracy and the accuracy of the global model when

averaged with the update.

Server, or
Blockchain
network

Client k

Weight
Initialization w,

Distribution of global model w,

Local Training and Computation
Ly | of model weights

Transmission of model weights w{‘ﬂ ,

Evaluation of ‘
individual updates |¢ |

Calculation of
model weights

Repeat process

Figure 2 Steps involved in the proposed algorithm

The pseudocode in Algorithm 1 is a high-level overview
of the implementation, based on the Federated Learning
algorithm and the use of stochastic gradient descent (SGD).
During averaging, it intentionally does not take into
consideration the clients’ data sample size, since in real use
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cases this would not be known by the server and could be
easily falsified by an adversary in order to maximize his effect
on the global model. This approach does not measure the
quality of each update; instead it only measures if each update
increases accuracy in a Boolean logic. Further improvements
could be made in order to measure the quality and use this as
a metric for an incentive or rewards mechanism.

Algorithm 1 — Discarding of unreliable model updates

wo are the weights of the initial model, A is the learning rate
of the global model, 1 is the learning rate of the local model,
K contains all Clients, Pk contains all data samples of client
k, B is the local batch size, GetAccuracy is a function which
returns the accuracy of the specified model against the
verification dataset, r,, is the received (candidate) update
from end-device k to be used in the next model update, and
w4, 18 the weighted average of all verified updates.

procedure SERVER
initialize wo
for eachroundt=1,2,... do
for each client k in parallel do
¥, « ClientUpdate(w,)
if VerifyUpdate(w,,r. ;) then
wk =k
t+1 = Tt+1
end if
end for
K 1 k
Werr = AW + (1 = 2) Xgoq  Wea
end for
end procedure
procedure ClientUpdate(w;,)
B « split Pk to smaller sets
for all b € B do
Wew-nVi(w,,b)
end for
return W (computed weights obtained by minimizing
loss function f{(wy,b))
end procedure
procedure VerifyUpdate(w,,1{ 1)
Pesr = Awe + (1= Dy
a = GetAccuracy(p;41)
b = GetAccuracy(w;)

if a > b then

return True
else

return False
end if

end procedure

The SERVER procedure initializes the module weights by
either random numbers, or created using proxy data. Then, for
each round, it distributes the current model version (w) to all
clients. After the local training process is finished, the
individual candidate model updates rf,, are retrieved and
verified by the procedure VerifyUpdate. In the simplest form,
this procedure will return a Boolean value, depending on
whether the model update improved the overall model



performance against a verification dataset. The new model
version w;,, is calculated by averaging all the model updates
for which the VerifyUpdate procedure returned True. The
configurable parameter A is used to specify the learning rate,
affecting the impact of the training round on the global model.

The ClientUpdate procedure is responsible for the local
training process. First, the data samples Pk are split into
smaller batches of size B, which are then used to minimize a
loss function f. The reason for choosing a smaller batch size
for training is because it speeds up the training process
significantly, especially when the end device is low powered
such as a mobile phone. The method of splitting a large sample
size in smaller batch sizes for training is known as Stochastic
Gradient Descend (SGD)[6]. The configurable parameter 0, is
used to specify the local learning rate, and affects the impact
of the training process on the specific model update.

The VerifyUpdate procedure is used to compare the
performance of the current model w,, against the performance
of the weighted average of w, with the candidate update ¥, ;.
The performance is evaluated against a verification dataset
which is chosen before-hand, and remains the same
throughout all rounds.

The novelties of the proposed scheme are: a) we propose
an alternative way to evaluate the model updates, i.e. based on
the accuracy improvements they bring, which obviates the
need to know the dataset size each device possesses which can
be falsified, b) due to the execution of the logic in a smart
contract, the logic cannot be compromised, c) we exploit the
traceability capacity of the blockchain to discourage malicious
users which could try to poison the model.

When implementing the algorithm inside a smart contract,
the following should be considered with respect to the
blockchain framework: a) the smart contract must be able to
execute external tools, such as libraries used for model
evaluation, b) all nodes must have access to the same
verification dataset and c) this dataset should be kept private
from clients. The above requirements suggest that a private
permissioned blockchain network such as Hyperledger Fabric
is a better candidate.

VL

The following simulation uses Tensorflow and Keras to
measure the effectiveness of the above algorithm. We perform
FL using the popular MNIST database consisting of a
database of 60.000 handwritten digit images and 10.000
verification images and corresponding labels. The model
consists of an input layer (receives flattened images of size
28x28), a fully connected layer, and an output layer of size 10
which is used as the classifier. The optimizer selected is
Adam[26], an adaptive learning rate algorithm that is based on
SGD with default base learning rate of 0.001. The simulation
assumes 10 participating parties. In each simulation round, a
(changing) subset of the nodes are honest and the rest are
adversaries. The training images are first split into 10 chunks
which are used by the 10 parties respectively. While both
honest and adversaries train on their corresponding training
images, the honest use the correct training labels while the
adversaries use an altered label set. The labels in this

EXPERIMENTAL SETUP AND SIMULATION RESULTS
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malformed set were assigned to a static number. The intention
of the adversary in this scenario is to make the global model
always predict this number. During simulation, we
experimented with additional malformed label sets such as
randomly chosen labels; however, the static number approach
was found to have greater negative impact on the model
accuracy. Each simulation runs for 10 rounds and each local
training is performed over 1 epoch. After each round, the
model weights are averaged and distributed to the other
parties.

Figure 3 shows the degradation of accuracy in this FL
setup with varying percentage of adversaries when individual
updates are not verified (traditional FL). We notice degraded
model performance, both in terms of speed (training rounds)
and convergence. Specifically, when more than 10% of
participants are adversaries, the model accuracy is below
90%, with little or no convergence.
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Figure 3  Performance with traditional FL algorithm in the presence of

adversaries

Figure 4 shows how the algorithm has correctly identified
the falsified model updates and the model accuracy is able to
converge in the presence of 30% adversaries. During the first
2 rounds, the difference in accuracy levels is noticeable and is
attributed to the fact that the model is trained with less data
(since a considerable amount is discarded). The situation is
rectified with each successive round.
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In this paper, we have examined the current research
related to the use of Blockchain Technologies in the field of
Federated Learning and we have identified a potential for
blockchain technology to improve security of the FL process.
We have further proposed an algorithm that is able to run
inside a smart contract of a blockchain network. In contrast to
the techniques currently available, where researchers relied on
the use of data sample size[19],[22] or reputation[24] as a
quality metric, our solution measures the accuracy of the
model update directly. In this way, we do not need to assume
that participants of the Federated Learning process are honest.
The first results show that the algorithm provides a high level
of protection against model poisoning attacks. We anticipate
that results obtained can be considered as a baseline when
implementing the algorithm on various blockchain
technologies and that the algorithm can be extended in order
to offer rewards on a blockchain network, relative to the
quality of each contribution. In our next steps, we will a)
perform exhaustive tests to study our algorithm along different
parameters and b) implement it in an open source blockchain
platform.

CONCLUSIONS AND FURTHER WORK

REFERENCES

[1] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated
Machine Learning,” ACM Trans. Intell. Syst. Technol., vol.
10, no. 2, pp. 1-19, Jan. 2019, doi: 10.1145/3298981.

J. Koneény, H. B. McMahan, F. X. Yu, P. Richtarik, A. T.
Suresh, and D. Bacon, “Federated Learning: Strategies for
Improving Communication Efficiency,” pp. 1-10, 2016.
Z. Ghahramani, “LNAI 3176 - Unsupervised Learning,”
pp- 72-112,2004.

A. Hard et al., “Federated Learning for Mobile Keyboard
Prediction,” 2018.

E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V.
Shmatikov, “How To Backdoor Federated Learning,” Jul.
2018.

L. Bottou, “Large-Scale Machine Learning with Stochastic
Gradient Descent,” COMPSTAT, vol. 19th Inter, 2010, doi:
10.1007/978-3-7908-2604-3_16.

European Parliament and Council of the European Union,
“Regulation on the protection of natural persons with
regard to the processing of personal data and on the free
movement of such data, and repealing Directive 95/46/EC
(Data Protection Directive),” Off. J. Eur. Union, vol. L 119,
pp. 1-88, 2016.

M. (University of M. A. Nasr, R. (National U. of S. Shokri,
and A. (University of M. A. Houmansadr, “Comprehensive
Privacy Analysis of Deep Learning,” Sp, pp. 1-15, 2018.
L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov,
“Exploiting unintended feature leakage in collaborative
learning,” Proc. - IEEE Symp. Secur. Priv., vol. 2019-May,
pp. 691-706, 2019, doi: 10.1109/SP.2019.00029.

A. Narayanan and V. Shmatikov, “How To Break
Anonymity of the Netflix Prize Dataset,” 2006.

A. Narayanan and V. Shmatikov, “Robust de-
anonymization of large sparse datasets,” Proc. - IEEE

(10]

[11]

1188

[12]

[16]

[17]

[18]

(19]

(21]

[22]

(23]

[24]

(23]

(26]

Symp.  Secur.  Priv., 111-125, 2008, doi:
10.1109/SP.2008.33.

K. Bonawitz et al., “Practical Secure Aggregation for
Privacy-Preserving Machine Learning,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and
Communications Security - CCS ’17, 2017, vol. 9, pp.
1175-1191, doi: 10.1145/3133956.3133982.

M. Abadi et al., “Deep learning with differential privacy,”
Proc. ACM Conf. Comput. Commun. Secur., vol. 24-28-
Octo, mno. Ccs, pp. 308318, 2016, doi:
10.1145/2976749.2978318.

R. C. Geyer, T. Klein, and M. Nabi, “Differentially Private
Federated Learning: A Client Level Perspective,” no. Nips,
pp. 1-7,2017.

C. Dwork, F. McSherry, K. Nissim, and A. Smith,
“Calibrating Noise to Sensitivity in Private Data Analysis,”
J. Priv. Confidentiality, vol. 7, no. 3, pp. 17-51, May 2017,
doi: 10.29012/jpc.v7i3.405.

D. Evans, V. Kolesnikov, and M. Rosulek, “A Pragmatic
Introduction to Secure Multi-Party Computation,” Found.
Trends® Priv. Secur., vol. 2, no. 2-3, pp. 70-246, 2018,
doi: 10.1561/3300000019.

M. Fang, X. Cao, J. Jia, and N. Z. Gong, “Local Model
Poisoning  Attacks to Byzantine-Robust Federated
Learning,” no. August, 2019.

S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash
system,” in 21st Century Economics, 2008.

H. Kim, J. Park, M. Bennis, and S.-L. Kim, “Blockchained
On-Device Federated Learning,” IEEE Commun. Lett., vol.
PP, no. c, pp- 1-1, 2019, doi:
10.1109/LCOMM.2019.2921755.

U. Majeed and C. S. Hong, “FLchain: Federated Learning
via MEC-enabled Blockchain Network,” in 2019 20th
Asia-Pacific Network Operations and Management
Symposium (APNOMS), 2019, no. September, pp. 1-4, doi:
10.23919/APNOMS.2019.8892848.

D. Preuveneers, V. Rimmer, I. Tsingenopoulos, J. Spooren,
W. Joosen, and E. Ilie-Zudor, “Chained Anomaly
Detection Models for Federated Learning: An Intrusion
Detection Case Study,” Appl. Sci., vol. 8, no. 12, p. 2663,
Dec. 2018, doi: 10.3390/app8122663.

J. Weng, J. Weng, J. Zhang, M. Li, Y. Zhang, and W. Luo,
“DeepChain: Auditable and Privacy-Preserving Deep
Learning with Blockchain-based Incentive,” IEEE Trans.
Dependable Secur. Comput., vol. PP, no. 8, pp. 1-1, 2019,
doi: 10.1109/tdsc.2019.2952332.

Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N.
Zeldovich, “Algorand : Scaling Byzantine Agreements for
Cryptocurrencies,” 2017.

J. Kang, Z. Xiong, and D. Niyato, “Incentive Mechanism
for Reliable Federated Learning: A Joint Optimization
Approach to Combining Reputation and Contract Theory,”
IEEE Internet Things J., vol. PP, no. c, p. 1, 2019, doi:
10.1109/J10T.2019.2940820.

D. N. Dillenberger et al., “Blockchain analytics and
artificial intelligence,” IBM J. Res. Dev., vol. 63, no. 2,
2019, doi: 10.1147/JRD.2019.2900638.

D. P. Kingma and J. Ba, “Adam: A Method for Stochastic
Optimization,” pp. 1-15, Dec. 2014.

pp-.



