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Abstract—Controller Area Network (CAN) is one of the in-
vehicle network protocols that is used to communicate among
Electronic Control Units (ECUs) and has been de-facto standard.
CAN is simple and has several vulnerabilities such as unable
to distinguish spoofing messages because it doesn’t support any
authentication or sender identification properties. In previous
work, some voltage-based methods to identify the sender node
have been proposed. The methods can identify ECUs with high
accuracy. However, the accuracy of source identification depends
on a feature that is extracted from a continuous function of
voltage use sampling. In general, as the sampling rate increases,
the accuracy of identification is improved. Though the amount of
data used for the identification increases too. Hence, it is desired
to create an Intrusion Detection System (IDS) that identifies
ECUs using few sampling features as there is a limited computing
resource in vehicles. In this paper, we propose a delay-time
based sender identification method of ECUs. We confirm that
the proposed method achieved a true positive rate of 96.7% in
CAN bus prototype against spoofing attack from a compromised
ECU, detecting spoofing attack from an unmonitored ECU with
a true positive rate of 98.0% in real-vehicle.

Index Terms—Automotive Security, Controller Area Network,
Physical-Layer Identification, Intrusion Detection.

I. INTRODUCTION

Due to the increase in the number of automobiles that con-

nect to the internet, cyberattacks on automobiles are becoming

a severe problem [1], [2]. These attacks abuse vulnerable

Controller Area Network (CAN) [3] which is one of the

in-vehicle network protocols that is used to communicate

among Electronic Control Units (ECUs) and has been de-facto

standard. Nie et al. successfully controlled some automotive

functions, exploiting the vulnerabilities in a CAN and a

browser in the in-vehicle system implemented by WebKit of

the old version [1]. Therefore, cybersecurity countermeasures

for automobiles are urgently required.

Countermeasures such as encryption and authentication

have been proposed to prevent spoofing, sniffing and replay

attacks. Since CAN has only a short data field of 8 bytes

and limited bandwidth, adding a Message Authentication Code

(MAC) is not practical. Moreover, since some authentication

methods [4], [5] require pre-shared keys and does not con-

cern itself with key exchanges. Therefore, these methods are

impractical in automobiles that are already widespread.

While the Intrusion Detection System (IDS) has a good

advantage in terms of effectiveness and high compatibility in

automotive security different from encryption and authentica-

tion. One such case is, IDSs based on characteristics of digital-

level (e.g. frequency, entropy, ID sequence). The approach can

be adapted easily to the CAN bus of modern automobiles.

However, these approaches typically have higher false posi-

tives for some attack types. For instance, ID sequence-based

IDS [6] cannot detect replay attacks, in which an adversary

sends messages of the same ID sequence. Hence, we should

consider an IDS that can detect various attack types.

An IDS based on physical-level features such as the voltage

has been proposed. The methods based on voltage use result of

sampling continuous function as features. Thus, the accuracy

of identification depends on the sampling rate. In general,

as the sampling rate increases, the accuracy of identification

is improved [7]. However, the amount of data used for the

identification increases too. Hence, it is desired to create

an IDS that identifies ECUs using few sampling features in

vehicles limited computing resources. Therefore, we focus on

identifiable characteristics with few sampling. In this research,

we propose a delay-time based sender identification method.

The proposed method can identify the ECUs with a sampling

count less than the voltage based because the delay-time is

observed only from each rising edge of the CAN message.

The main contributions of this study can be summarized as

follows:

1) We propose delay-time based sender identification

method called Divider. Our method uses new character-

istics in the identification of ECUs. Divider does not use

continuous characteristics such as voltage, but the delay-

time to be observed in each rising edge of the CAN

message. Hence, Divider can identify the ECUs with

a sampling count less than the voltage based method.

Besides, the delay-time can be observed at only one

probe point.

2) Divider achieved a true positive rate of 96.7% in CAN

bus prototype against spoofing attack from a compro-

mised ECU and a true positive rate of 98.0% in real-

vehicle against spoofing attack from an unmonitored

ECU.

1490

2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC)

978-1-7281-7303-0/20/$31.00 ©2020 IEEE
DOI 10.1109/COMPSAC48688.2020.00-44



(a) An example of CAN signal.

(b) CAN data frame format.

Fig. 1: CAN data frame.

II. CONTROLLER AREA NETWORK

CAN is one of the in-vehicle network protocols that is

widely used to communicate among ECUs and has been

a de-facto standard. Typical CAN node consists of Micro

Controller Unit (MCU), CAN controller and CAN transceiver.

The CAN controller processes various frames according to

the CAN protocol. The CAN transceiver converts the logical

level (low and high) and the CAN bus level (dominant and

recessive) between the CAN bus and the CAN controller.

ISO 11898 gives the High-Speed CAN bus specification. The

specifications are given for the maximum baud rate of 1Mbps
and a maximum bus length of 40m with up to 30 nodes can be

connected. A twisted-pair cable is used to ensure robust noise

immunity on the CAN bus. The two wires are called CAN-L

and CAN-H respectively. If dominant (logical 0) is transmitted,

CAN-H is driven towards higher voltage (typically 3.5V) and

CAN-L is driven towards lower voltage 1.5V, but when the

recessive (logical 1) is transmitted, both CAN-H and CAN-L

become 2.5V, as Fig. 1 (a). In Fig. 1 (a), recessive is inserted

in a fixed period due to a bit called stuff-bit which is inserted

in after succeeding 5 bit of same logic for synchronization.

Also, the CAN bus is terminated at both ends with 120Ω
resistors to prevent signal reflections.

As Fig. 1 (b) shows, a CAN data frame does not contain

a field that indicate its sender. Hence, a receiver cannot

distinguish which ECU transmitted a CAN message. The CAN

is simple and has several vulnerabilities such as unable to

distinguish spoofing messages due to no authentication. An

adversary can change the speedometer reading, unlock the

door, turn on the light and so on by sending a malicious

message on the CAN bus.

III. RELATED WORKS

A. IDS based on characteristics of digital-level

In [8] frequency-based intrusion detection method has been

proposed. However, there are limitations to the kinds of attacks

this method can detect. For example, the frequency-based

IDS is not able to detect a message mimicking the original

message’s frequency. In the same catagory, an IDS based the

message ID sequence has also been proposed [6]. However,

an adversary may inject malicious messages under legitimate

message ID sequences such as replay attacks.

The entropy of arbitration ID in fixed interval-based IDSs

have been proposed [9]–[11]. In these methods, if an adversary

injects one fake message per fixed interval, these IDSs cannot

detect the attack because the entropy of the interval is almost

the same value as usual. To detect the attack, these IDSs must

make the fixed interval a small value. Then, the false positive

rate of these IDSs will increase due to enormous influence per

one message against the entropy.

The IDS on a CAN using deep learning has been proposed

[12], [13]. These methods cannot be realized on in-vehicle

computers in restricted resources.

Although digital level attack detection has been extensively

studied, IDS based on characteristics of the digital-level has

some limitations. It is necessary to consider more advanced

attack detection methods.

B. IDS based on characteristics of physical-level

Murvay et al. firstly proposed a method for sender identi-

fication using physical characteristics in CAN [14]. Choi et

al. proposed an improved version of Murvay’s method [15].

They embed a fixed bit string into the extended identifier field

of the CAN frame and sample the signal and identify ECUs

by using 17 different features. Hence, these methods cannot

be implemented on the normal CAN because they require the

extended frame format in CAN.

Cho et al. proposed a system for identifying an attacker by

using voltage difference among ECUs called Viden [16]. They

implemented the system on MCU of a lower sampling rate

(50 kS/s) than CAN bus bit rate. Therefore, Viden requires

2-3 messages to output a voltage instance and updates the

profiles. Thus the first forged message will be accepted.

Another approach called Clock-based IDS (CIDS) to iden-

tify the sender node has been proposed by Cho et al [17].

Although CIDS does not need special hardware, it does

not apply to non-periodic messages and results in lowering

identification accuracy on such messages.

Besides, since Viden and CIDS rely on multiple messages

to make detection and identification, these methods have

vulnerability against the Hill-climbing-style attack [18], in

which an attacker sends gradually malicious messages without

being either detected or identified. To be robust against the

Hill-climbing-style attack, IDS has to detect the attacks using

features acquired in one message [7], [15], [18].

Scission [7] improved a problem in the sender identification

method proposed by Choi et al [15], which the method could

not get significant characteristics such as the overshoot. As a

result, Scission achieves higher accuracy 99.85% of identi-

fication than Viden and the method of Choi et al. However,

since Scission uses Fourier Transform to calculate the features

of the frequency domain, the time complexity of Scission

is Ω(n log n) which is higher than the time complexity of

SIMPLE [18]. Because SIMPLE only use mean of voltage as

feature of ECUs, time complexity is Θ(n). In addition, since

these sender identification methods use result of sampling
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continuous function, the accuracy of identification depends on

the sampling rate. In general, as the sampling rate increases,

the accuracy of identification is improved. But the amount

of data used for the identification increase too. Hence, IDS

which is limited in computing resources on the in-vehicle

system needs to be able to identify ECUs with few sampling.

Therefore, we focus on the identification method using another

characteristics with few sampling.

IV. DELAY-TIME BASED SENDER IDENTIFICATION:

DIVIDER

In the following section, we introduce the Divider, the

proposed method, to identify sender ECUs in CAN bus. First,

we describe the adversarial models that Divider assumes. Next,

we introduce the proposed method. Finally, we describe the

implementation method of Divider.

A. Adversarial models

In our research, we have considered two types of adversarial

models. These models are based on an example considered

by some researchers [19] and the actual attack against Jeep

Cherokee [2].

1) Compromised ECU: The first model is an ECU exploited

by adversary through attack surfaces such as Wi-Fi or Blue-

tooth. Since the ECU has some connectivity interfaces such

as Wi-Fi or Bluetooth, the adversary may exploit the attack

surfaces [19]. However, because the ECU communicates the

other ECUs using CAN, Divider can monitor its messages.

Hence, Divider can detect adversary’s illegal ID attack from

a compromised ECU.

2) Unmonitored ECU: The second model is based on the

hacking of Jeep Cherokee [2], and the adversary from OBD-II

port. In actual hacking of Jeep Cherokee, Miller and Valasek

exploited a passive or unmonitored ECU’s update mechanism

to inject their code. As a result, the ECU unmonitored by IDS

can attack CAN. Also, some researchers attach the OBD-II

port to analyze and log the messages on the CAN bus. Thus,

we have to detect this adversarial model too. In other words,

we must suppose the attack from an ECU of which Divider

does not learn features.

B. Framework of Divider

In this section, we introduce a framework of Divider.

Divider is mainly organized by three phases (data acquisition,

feature extraction, classification). In the first phase of data

acquisition, we collect the delay-time from each ECU. In other

words, the data acquisition phase converts analog information

to a digital value. Next, in the feature extraction phase,

Divider extracts some statistical characteristics from delay-

time which are collected in the previous phase. Finally, Divider

classifies the statistical characteristics of CAN message using a

classification algorithm. In the following sections, we explain

each phase in order.

Fig. 2: CAN transceiver equivalent.

C. Data acquisition

1) Definition of delay-time in CAN: In this section, we

introduce the definition of delay-time in the proposed method.

Fig. 2 shows output schematic of typical CAN transceiver [20].

The upper side output structure consists of a series diode (D1)

and an N-channel FET (Q1). The lower side output structure

consists of a series diode (D2) and a P-channel FET (Q2).

The upper side diode (D1) prevents reverse current flow to

Vdd while the voltage on the CAN-H pin rises above Vdd.

RL indicates the load resistor. RL equals 60Ω as parallel

combined resistance of two terminated 120Ω resistors on

High-Speed CAN bus. CAN-L and CAN-H are weakly biased

to 2.5V during the recessive state. The delay-time of the signal

level transitions is generally determined by the switching time

of the transistor and the time during which the load capacitance

of the output is charged and discharged. Factors of the load

capacitance include three types of output capacitance at the

gate of the transistor, input capacitance of the gate and wiring

capacitance. The factors of these delay-times are different for

each CAN node. The main idea is to use this fact to identify

the sender ECU of CAN message.

We experimented to observe these delays in the actual

environment. The experimental environment and the delay-

time in the environment are shown in Fig. 3 (a). As shown in

Fig. 3 (a), we constructed the environment from two ECUs and

we observed Tx (Node 1) and Rx (Node 2) with a oscilloscope.

Fig. 3 (b) shows a delay between Node 1 (upper in Fig. 3

(b)) and Node 2 (lower in Fig. 3 (b)). Also, the maximum

sampling rate of the oscilloscope is 2.0GS/s. Therefore, the
time resolution is 1012/(2.0× 109) = 500 ps. The fall delay-

time of Tx to Rx is 82.0 ns, and the reverse is 99.0 ns in the

example given in Fig. 3 (b). The difference between rise and

fall is 17 ns. Divider uses this difference between ECUs to

distinguish each node.

As in the environment shown in Fig. 3 (a), the probe cannot

be installed on the ECU’s Tx to be identified on a real vehicle.

Therefore, the method calculates the delay-time using only the
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(a) Environment to measure delay.

(b) Delay between Node 1 (sender) and Node 2
(receiver).

Fig. 3: Measurement of delay-time.

Fig. 4: Delay model in CAN.

information that can be observed by the receiving node. Fig.

4 shows a timing chart of CAN bus signal and transceiver on

CAN bus. There is a delay-time until the differential voltage

(Vdiff ) is generated after the Tx pin of the CAN transceiver

of the sending node changes and the Rx pin of the CAN

transceiver of the receiving node changes. We specified the

bit time period which the sender node generates as t1, the
delay-time between Tx pin signal on sender CAN controller

falls and Rx pin signal on receiver CAN transceiver falls as t2,
the delay-time between Tx pin signal when sender rises and

Rx pin signal when receiver rises as t3, and the bit time period

receiver CAN transceiver observes as t4. t4 can be represented

as:

t4 = t1 + t3 − t2 (1)

At this point, the time actually measured at the receiver

node is only t4, and t1, t2, t3 are unknown. Therefore, we

consider the relationship between t1 and tbit. Every CAN

node has an independent clock source and communicates while

synchronizing every falling edge. Hence, we define error of

crystal oscillator as te. The relation with t1 is represented as:

t1 = tbit + te (2)

A crystal oscillator is used in high-speed CAN node to

satisfy the frequency tolerance requirement. A typical crystal

oscillator has a frequency tolerance of about ±30 ppm to

±100 ppm [21]. We define frequency tolerance as ftol [ppm]

and frequency deviation Δfe and the error of crystal oscillator

te are represented as follows:

Δfe = fbit × ftol × 106 Hz (3)

te =
1

fbit +Δfe
− tbit (4)

For instance, if we assume when CAN bus baudrate is

set to 500 kbps and frequency deviation is larger, fbit =
500 kHz, ftol = +100 ppm. Δfe and te are:

Δfe = (500× 103)× (100× 10−6) = 50Hz (5)

te =
1

500× 103 + 50
− 1

500× 103
≈ −1.9998× 10−10 s

(6)

−1.9998× 10−10 s equals −0.199 98 ns and t3 − t2 is of the

order of ±80 ns. From this, te is sufficiently smaller than

t3 − t2. Hence, we consider t1 = tbit then t3 − t2 can be

approximated:

t3 − t2 ≈ t4 − tbit (7)

2) Measurement period of delay-time: As we showed in

Fig. 1, length of a CAN data frame is variable and it is set

in the DLC field. Therefore, even if the length of the CAN

frame is the shortest (DLC=0), it is necessary to reliably be

able to measure the section transmitted by the target node.

Then, considering CAN frame such as DLC=0, 35 bits of

signal of SOF (1 bit), the arbitration field (12 bits), the control
field (6 bits) and CRC filed (16 bits) are transmitted by the

ACK field. Here, if we include the CRC delimiter to the

measurement period, there is a possibility that the rising edge

of the ACK slot is measured. We subtract 1 bit from 35.

Hence, we set the measurement period from SOF to time that

passing 34 bits time (68 μs). Since the length of 1 frame never

be shorter than the CAN frame when DLC=0, this allows us

to reliably measure only the signal of the target node. Also,

during the measurement of delay-time, the time capture is

performed every rising edge of the Rx pin.

We describe how to obtain delay-time, tdelay from the

measured counter value. As the unit of timer counter value

is 20 ns, The elapsed time from SOF, telapsed (ns) can be

calculated as:

telapsed = (capture counter value−SOF counter value)×20
(8)
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TABLE I: A list of statistical features considered in the

selection. x is the delay-time in one CAN message, N is the

number of measured delay-time in one CAN message.

Feature Description
Mean μ = 1

N

∑N
i=1 x(i)

Standard Deviation σ =
√

1
N

∑N
i=1(x(i)− μ)2

Variance σ2 = 1
N

∑N
i=1(x(i)− μ)2

Skewness skew = 1
N

∑N
i=1(

x(i)−μ
σ

)3

Kurtosis kurt = 1
N

∑N
i=1(

x(i)−μ
σ

)4

Root Mean Square rms =
√

1
N

∑N
i=1 x(i)

2

Max max =max(x(i))i=1...N

Energy en = 1
N

∑N
i=1 x(i)

2

TABLE II: Ranking of the features calculated by Relief-F

algorithm [22].

Prototype Weight Real-vehicle Weight
1. Mean 0.1195 Root Mean Square 0.2401
2. Root Mean Square 0.1060 Max 0.2001
3. Max 0.0467 Mean 0.1910
4. Standard Deviation 0.0435 Energy 0.1792
5. Energy 0.0314 Kurtosis 0.0934
6. Kurtosis 0.0310 Skewness 0.0692
7. Skewness 0.0220 Standard Deviation 0.0250
8. Variance 0.0125 Variance 0.0177

The value of elapsed bits from the SOF at each rising edge

can be calculated as follows:

� telapsed + 500

2000
� (9)

where, 500 is added in the numerator to round telapsed by

1000 ns, 2000 is the value of tbit in ns. Also, 500 is offset to

obtain the correct elapsed bits. And the ideal value of elapsed

bits can be obtained with floor function.

Therefore, the ideal elapsed time from SOF, tideal (ns) can
be calculated as follows:

tideal = � telapsed + 500

2000
� × 2000 (10)

tdelay (ns) we want to calculate is:

tdelay = telapsed−tideal = telapsed−� telapsed + 500

2000
�×2000

(11)

D. Feature Extraction

In order to efficiently classify ECUs, we select the suitable

statistical features. Similar to the conventional method [7], we

select the features from several statistical characteristics (see

Table I). Also, We have used the Relief-F algorithm [22] to

select the suitable features using a weight of each feature from

the Weka 3 Toolkit [23]. The Relief-F is a filter method. It

is possible to rank and select the most significant features.

We conducted Relief-F to the delay-time from prototype and

real-vehicle. As a result, the Relief-F calculated the features

of ranking as shown in Table II. In both prototype and real-

vehicle, we confirmed that Mean, Root Mean Square, and Max

are ranked from 1st to 3rd in the ranking. This result suggests

(a) Implementation of proposed method.

(b) Prototype of IDS using proposed method.

Fig. 5: Implementation and prototype.

that we can efficiently classify ECUs either prototype or real-

vehicle using the selected features. Hence, we use Mean, Root

Mean Square, and Max as the suitable statistical features to

efficiently classify ECUs.

E. Classification

The sender identification can result in a classification prob-

lem. We use k-nearest neighbor (k = 5) in Divider. The

algorithm is the simplest in machine learning algorithms. In

addition, it is possible that ECUs’ limited resources in the

in-vehicle system can execute k-nearest neighbor.

F. Implementation

In this section, we describe the implementation of Divider.

As mentioned in Section IV-C2, the proposed method mea-

sures the 34 bits to observe delay-time no matter what length

of the data field is received. We show the block diagrams of

the implementation of Divider in Fig. 5 (a). The MCP2551 is

a chip that serves CAN transceiver as the interface between

a CAN controller and the physical bus. We also selected a

Field Programmable Gate Array (FPGA) as a measurement

device, because a measurement with software cannot process

all messages without missing ones due to the limitation of the

ability of microcomputer. We show the prototype of IDS in

Fig. 5 (b). We developed the prototype of the proposed method

using FPGA and microcomputer. We selected the DE0-CV

Cyclone V Board (5CEBA4F23C7) as FPGA and Raspberry Pi

3 model B as microcomputer. Also, we release the source code

[24] of the proposed method written by Verilog and Python
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hoping to promote the research of the sender identification

method.

Here, we describe the circuits of FPGA in the proposed

method. The circuits are divided into four operations. The

first is sampling circuit. This circuit measures a period of

CAN message in the measurement period of 34 bits with

counting. The sampling circuit sends counting value to FIFO

per Rx rising edge of CAN. The second is the arbitration ID

identification circuit. As its name suggests, we observe and

store the arbitration ID of every message. Like the sampling

circuit, the arbitration ID sampling circuit sends arbitration

ID to FIFO per Rx rising edge too. The third is FIFO. Here,

we stack the measured data of 32 bits constructed from an

arbitration ID of 11 bits and the counter value of the dominant

period of 21 bits. The last is the SPI module. We implement the

SPI slave module to send measurement data to the Raspberry

Pi.

The operation of the measurement is as follows.

1) Starting the capture of measurement time and arbitration

ID, an occurrence at the falling edge of SOF bit.

2) Send the measurement data (arbitration ID and measure-

ment time) with every rising edge of Rx to FIFO. Also,

after Raspberry Pi receives the measurement data from

the FPGA, calculate the delay-time by equation (11) and

record the delay-time.

3) After 34 bits from SOF, the measurement is ended.

4) When CAN frame is completely received, the sampling

circuit and arbitration ID identification circuit are wait-

ing SOF bit.

V. EVALUATION

A. Environments

In this section, we evaluate Divider of the proposed method

on a prototype of CAN bus, and real-vehicle.

Fig. 6 (a) shows the prototype of the CAN bus topology

we implemented in our experiment. We prepare various ECUs

to evaluate Divider. The various ECUs we prepared are de-

scribed here. ECU0 is panda OBD-II interface [25], ECU1 is

Raspberry Pi model B mounted with PiCAN 2 board, ECUs

2 and 3 are Arduino UNO mounted with CAN-BUS Shield,

ECU4 is an actual ECU not connected other than CAN, ECUs

5 and 6 are an actual combination meter of each different car

model. We cannot control sending CAN messages of ECUs 4,

5, and 6 but these ECUs automatically send some messages

periodically, so that Divider uses the messages to fingerprint

ECU.

Fig. 6 (b) shows a part of CAN in real-vehicle which is

used to evaluate Divider. The real-vehicle has multiple CAN

buses. One of these CAN buses has a realistic environment

in which each ECU has a yaw-rate sensor or an acceleration

sensor sends the information to the meter ECU. This CAN

bus also has OBD-II port. In the real-vehicle experiment, we

have collected the datasets during driving and stopping.

First, we show the ability to fingerprint various ECUs in

Divider. Next, we evaluate the accuracy of intrusion detection

(a) The prototype of CAN bus.

(b) A part of CAN bus in our real-vehicle.

Fig. 6: Environments.

of Divider against a compromised ECU and an unmonitored

ECU.

B. Identification of various ECU: Prototype and real-vehicle

1) Prototype of CAN bus: First of all, we evaluate the

ability to the identification of various ECU in the prototype

environment. The bus topology of the prototype is shown

in Fig. 6 (a). We have captured 1000 messages from each

ECU. The 1000 messages are used to calculate the features

of Mean, Root Mean Square, and Max. We use the features

to learn sender characteristics. Next, we divided the messages

into learning data (80%) and testing data (20%). Hence, we

evaluate the proposed method using K-fold cross validation

in K = 5.
As a result, an average of accuracy is 79.07%. The one

confusion matrix in K-fold cross validation is shown in Fig.

7 (a). It can be seen that Divider can identify correctly with

up to 98.94%. While a minimal identification rate is 25.47%.

2) Real-vehicle: We have also evaluated ECU identification

accuracy in real vehicle’s CAN bus. We have captured 200000

messages from the ECUs. We extracted the feature data from

the 360 messages of each ECU to align the number of

messages of each ECU in the learning and verification data.

As with the prototype, we divided the data of the delay-time

of each arbitration ID into learning data (80%) and testing

data (20%). Hence, we evaluate the proposed method using

K-fold cross validation in K = 5.
From the K-fold cross validation, Divider performed well

with an average accuracy of 88.77%. The confusion matrix is

shown in Fig. 7 (b). It can be seen that Divider can identify

correctly with up to 100.00%. While a minimal identification

rate is 64.29%.

C. Intrusion Detection

1) Compromised ECU: In this section, we evaluate the in-

trusion detection capability of the learned model. To reproduce

compromised ECU, we sent an arbitration ID: x assigned in

ECU6 from ECU1 spoofed to ECU6. Spoofing attacks were
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(a) The prototype.

(b) The real-vehicle.

Fig. 7: Confusion matrix for the identification of ECUs.

TABLE III: Confusion matrix against sending ID: x from

compromised ECU (ECU1) spoofed to ECU6.

Predicted: Attack Predicted: Normal
Actual: Attack 0.967 0.033
Actual: Normal 0.168 0.832

performed for three minutes from ECU1, and the data during

attacks of ECUs 1 and 6 were classified by the learned model.

The results are shown in Table III. Predicted: Attack label is

when Divider classifies messages of ID: x as other than ECU6,

Predicted: Normal label is when Divider classifies messages

of ID: x as ECU6. We confirm the true positive rate against

compromised ECU is 96.7% and the true negative rate is

83.2%.

2) Unmonitored ECU: Similar to compromised ECU, we

evaluate the ability of intrusion detection against unmonitored

ECU. We attached the Arduino UNO (the ECU2 in the pro-

totype of CAN bus) as an unmonitored ECU in CAN of real-

vehicle. We assume the spoofing attacks of speed information

from the unmonitored ECU. Therefore, the unmonitored ECU

sends ID: y assigned as arbitration ID of speed in real-vehicle.

Spoofing attacks were performed for three minutes from

unmonitored ECU, and the data during sending messages of

ECU3 (legitimate ECU of ID: y) and unmonitored ECU were

TABLE IV: Confusion matrix against sending ID: y from

unmonitored ECU spoofed to ECU3.

Predicted: Attack Predicted: Normal
Actual: Attack 0.980 0.020
Actual: Normal 0.080 0.920

classified by the learned model. The results are shown in Table.

IV. We confirm the true positive rate against unmonitored ECU

is 98.0% and the true negative rate is 92.0%.

VI. DISCUSSIONS

A. Fingerprinting ECUs

As Fig. 7 (b) shows, the number of ECUs with a classifi-

cation accuracy of more than 80% are 6 out of 7 in the real-

vehicle. Thus, our evaluations clearly showed the difference

in the delay-time of some ECUs.

While in the prototype, a minimal identification rate is

25.47%. This lower result was caused by the difference of

delay-time is sometimes close between different ECUs.

In such cases, the proposed method cannot classify the

ECUs correctly, because the experimental device does not

have sufficient time resolution (20 ns). Since a device of

sufficient time resolution can more sparsely divide the delay-

times, the proposed method using the device of sufficient time

resolution will classify ECUs with high accuracy more than

our experimental device. Therefore, we consider improving the

time resolution as future work.

B. Number of sampling

Next, we discuss the number of samplings performed by

sender identification methods for each CAN message. Table

V shows a comparison among the methods. The number of

samplings per CAN message for Choi’s method, Scission, and

SIMPLE depends on the length of the data field. Thus, we

consider the case when the data field is the shortest (0 byte)
and longest (8 byte). If the data field is shortest (0 byte), the
length of CAN message is 47 bit from Fig. 1. Also, when the

bit rate of CAN is 500 kbps, the transmission time for 1 bit
is 2 μs. Hence, the sampling rate of each method is multiplied

by 47×2×10−6. As a result, the best number of sampling per

CAN message is 198×103, 1980, 47 respectively. Similarly, if

the data field is longest (8 byte), the length of CAN message

is 111 bit. Therefore, the worst number of sampling per CAN

message is 444× 103, 4440, 111 respectively. The number of

samplings per message in the proposed method depends on

the number of signal transitions from 0 to 1, not the length of

the data field. Consequently, The minimum and the maximum

number of sampling of the proposed method are discussed

with Arbitration ID 0x000, which has a small number of

bit transitions, and Arbitration ID 0x555, which has a large

number of transitions. As a result, in the case of arbitration

ID 0x000, the best number of sampling reached 5. In the case

of arbitration ID 0x555, the worst number of sampling reached

14. The results show that the proposed method has the least

number of samplings at the data acquisition phase; in other
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TABLE V: Comparison among sender identification methods

in Sampling Rate (S.R.), Best Number of Sampling per

message (B.N.S.), Worst Number of Sampling per message

(W.N.S.), Time Complexity (T.C.).

Choi et al. [15] Scission [7] SIMPLE [18] Divider
S.R. 2GS/s 20MS/s 500 kS/s -

B.N.S. 198× 103 1980 47 5
W.N.S. 444× 103 4440 111 14

T.C. Ω(n logn) Ω(n logn) Θ(n) Θ(n)

words, the proposed method has the smallest n at the feature

extraction stage. Hence, the feature extraction of Divider is

possible with light processing.

Finally, we discuss computational complexity. The method

of Choi et al. and Scission use time and frequency domain

features. Therefore, these methods need Ω(n log n) time be-

cause these methods perform Fourier Transforms to calculate

the frequency domain feature. Also, since SIMPLE calculates

the mean as a statistic with a time domain feature, it takes

Θ(n). Similarly, because Divider uses statistic features in

Table. I, Divider needs Θ(n). Therefore, we confirmed that

the computational complexities of SIMPLE and Divider are

lower than the computational complexities of other methods.

From these comparisons among related works, we con-

firmed that Divider can reduce the amount of data in the data

acquisition phase than the other voltage-based methods.

VII. CONCLUSIONS

To avoid the security risk on automobiles, IDSs using

features of physical-level such as the voltage value has been

proposed. However, these IDSs require high sampling rates

and high computing resources. In this research, we proposed

a delay-time based sender identification method which is low

sampling rate. We implemented the experimental devices using

FPGA and microcomputer to verify our method for identi-

fication. As a result, we confirm that the proposed method

achieved a true positive rate of 96.7% in CAN bus prototype

against spoofing attack from compromised ECU. We have

released our research [24] in the hope to promote research on

sender identification. In our future work, we plan to improve

the time resolution of Divider and to try various learning

algorithms such as random forest classifier. Furthermore, we

will consider the Intrusion Prevention System based on the

sender identification method.
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