
Explaining Cyber-Physical Systems
Using Decision Trees

Swantje Plambeck∗, Görschwin Fey†
Institute of Embedded Systems

Hamburg University of Technology
Hamburg, Germany

{∗swantje.plambeck, †goerschwin.fey}@tuhh.de

Jakob Schyga‡, Johannes Hinckeldeyn§, Jochen Kreutzfeldt¶
Institute for Technical Logistics

Hamburg University of Technology
Hamburg, Germany

{‡jakob.schyga, §johannes.hinckeldeyn, ¶jochen.kreutzfeldt}@tuhh.de

Abstract—Cyber-Physical Systems (CPS) are systems that
contain digital embedded devices while depending on environ-
mental influences or external configurations. Identifying relevant
influences of a CPS as well as modeling dependencies on external
influences is difficult. We propose to learn these dependencies
with decision trees in combination with clustering. The approach
allows to automatically identify relevant influences and receive
a data-related explanation of system behavior involving the
system’s use-case. Our paper presents a case study of our
method for a Real-Time Localization System (RTLS) proving the
usefulness of our approach, and discusses further applications of
a learned decision tree.

I. INTRODUCTION

Today’s technical or industrial systems become more and
more complex. They consist both of digital embedded systems
as well as sensors which depend on environmental influences.
Such systems are known as Cyber-Physical Systems (CPS).
Digital components have a finite number of states because of
their limited amount of (binary) memory and typically demon-
strate a deterministic behavior. Still, the upper limit for the
number of states is exponential in the system’s memory. CPS
have, apart from that, an additional complexity resulting from
environmental influences or external configurations. Modeling
a system’s dependencies on the environment includes multiple
challenges because of continuous, possibly noisy signals and
a lack of information on the relevant external influences.
Nevertheless, information on dependencies between external
influences and the system’s outputs enables explaining the
behavior of a system or predicting system behavior under a
given environment. Furthermore, it supports applications like
monitoring, optimizing the setup of the system in a productive
use-case, or evaluating a system’s performance [1, 2].

We consider Decision Tree Learning (DTL) in combination
with clustering to represent the influence of environmental
factors and configuration parameters to a CPS. DTL is a well-
established machine learning approach and has already been
applied in several applications ranging from identification of
test cases on a given system [3], fault diagnosis in circuits [4],
or anomaly detection [5]. For anomaly detection, the approach
in [5] combines decision trees and clustering. We consider
using both of these methods in a different combination.
Decision tree models show advantages especially in their
interpretability and simple structure. Furthermore, efficient

learning algorithms exist. Clustering supports the construction
of reasonable classes, especially for continuos signals, and
contributes to the interpretability of class labels.

In our approach – described in Section III – we collect
measurements from a CPS under scenarios with differing
external influences. To enable DTL on possibly continuous
measurements, a categorization is performed. Categorization
can take place on an application-dependent basis, i.e., with
categories resulting from the considered use-case of a system.
If no such categories exist for a use-case, categories are
determined by clustering the received data points. The goals
of this approach include:

• automatically determining which of the considered influ-
ences are relevant,

• identifying correlations between influences and the sys-
tem’s outputs, and

• explaining system behavior on basis of the information
included in a learning data set.

We present a case-study with our approach in Section IV
considering a Light Detection And Ranging (LiDAR) local-
ization system. This system depends on external influences
– especially on the configurations supporting the localization
such as the quality of a recorded map of the facility. Fur-
thermore, LiDAR systems are relevant for many applications
including automation in warehouses [6, 7]. Thus, we consider
a logistics scenario where the localization system is installed
on a forklift or a similar vehicle for consignment. In this
scenario, we examine whether the localization system is able to
serve a logistics application in a given warehouse based on the
system’s position accuracy. Application-dependent categories
for the positioning accuracy of the localization system are
”small object-precise”, ”medium object-precise”, and ”tray-
precise”. The results of our case study show that the com-
bination of clustering and DTL allows to identify relevant
features. Meanwhile, the decision tree supports explaining the
localization accuracy.

Our main contribution is to define a strategy which com-
bines clustering and DTL to automatically learn dependencies
between external influences and a system’s outputs. The case
study provides examples for applications of our approach and
proves its usefulness in the results of Section V.

3

2022 2nd International Workshop on Computation-Aware Algorithmic Design for Cyber-Physical Systems (CAADCPS)

978-1-6654-8201-1/22/$31.00 ©2022 IEEE
DOI 10.1109/CAADCPS56132.2022.00006

Environment

Configuration
System Output

Measure

External Influences

Categorization

DTL

Model

Fig. 1: Process of Modeling

II. RELATED WORK

There exist multiple approaches to model the behavior of
CPS which serve different purposes from prediction for mon-
itoring over behavioral models to models on environmental
influences.

Machine learning, especially neural networks, are widely
used to predict a system’s behavior based on previous obser-
vation of the system and serve applications like monitoring [1]
or anomaly detection [8]. These approaches often show good
prediction accuracy. Nevertheless, neural networks suffer from
limited interpretability.

Furthermore, behavioral models such as linear models, e.g.,
linear time-invariant (LTI) systems [9, 10] or discrete automa-
ton models [11, 12] exist. These models display the temporal
behavior of a system on a discrete time scale. Hybrid automata
[13] display time- and value-continuous CPS by representing
continuous behavior within discrete process modes of the
system. In contrast, our approach models interdependencies
of system output and environmental factors or system config-
urations.

Environmental influences are often modeled by factor analy-
sis [14] which usually determines linear relationships between
external influences and a system’s output. This approach, thus,
requires a linear dependency of the system output and the
environmental influences or configurations. Some approaches
to non-linear factor-analysis exist which still require specific
mathematical relations [15]. Our approach can model even
non-linear dependencies and especially allows modeling of
categorical influences and outputs.

III. DECISION TREE MODELING

Fig. 1 shows the conceptual procedure of our approach. We
have a system that is installed in a real-world environment.
The system is considered to include only the system dynamics,
i.e., the internal behavior. Thus, besides ”pure” environmental
influences like, e.g., temperature of the surroundings, system
configurations are considered as external influences. Configu-
rations are for example the usage of odometric measurements
to support localization in a localization system or the target
temperature of a heating system. We summarize environmental
influences and configuration parameters under external influ-
ences.

From the system, we receive measurements of outputs. We
are not creating a behavioral model of the system, but seek

general dependencies between the system and the external
influences. Thus, we determine output measures that are not
changing over time but describe the system’s status or perfor-
mance in an abstract manner. Examples for such outputs are
the localization accuracy, i.e., the mean expected localization
error of a localization system or the mean deviation between
the target temperature and current temperature of a heating
system. Furthermore, we collect measures of relevant external
influences. Output measurements are categorized to achieve an
interpretable classification. The categorized outputs together
with the information on external influences are input to DTL
and result in a model of dependencies between the system’s
output and the external influences.

A. Categorizing the Output

The first step after collecting data is the categorization
of output samples. For a general approach, we consider an
output measurement to be multidimensional, i.e., output data o
come from a possibly multidimensional space O. Furthermore,
values from each dimension of O might either be continuous,
i.e., a subspace of R, or categorical. The categorization for
output signals is defined by a function

γ : O → ΣO, (1)

where ΣO is a set of categorical values. Without loss of gen-
erality, we assume the elements of ΣO to be one-dimensional
such that ΣO = {1, . . . , |ΣO|}. The mapping γ is performed
based on predefined (possibly multidimensional) categoriza-
tion subspaces of O: SO

1 , S
O
2 , . . . , S

O
|ΣO|. The set size |ΣO|

gives the number of categorization subspaces. Each subspace
SO
j maps to a symbol oj ∈ ΣO. Using the categorization

subspaces, we define the categorization function as

γO(oc) = oj , for oc ∈ SO
j . (2)

The categorization subspaces are disjoint and cover the whole
domain O.

So far, we assumed the categorization subspaces to be given
before performing the categorization. Often, meaningful cate-
gories result from the considered application. Nevertheless, if
this is not the case, we determine a suitable categorization
based on the given data. A well-established approach for
this is clustering. We consider k-nearest neighbor (kNN)
clustering which allows choosing the number of clusters a
priori. An advantage of this clustering is as well that linear
borders between the clusters exist such that the categorization
subspaces can be described as intervals in the dimensions of
O. The number of clusters for kNN is set based on prior
knowledge of the system. If no prior knowledge exists, we
use an elbow criterion to determine the optimal number of
clusters. The elbow-criterion determines the optimum as a
compromise between the number of clusters and the clustering
accuracy [16]. The clustering accuracy, here, is determined by
the sum of squared distances of samples to their closest cluster
center. An optimum is found in the ”elbow” of the generated
curve, i.e., when an increase in the number of clusters does
not significantly change the clustering accuracy anymore.

4

Environment

Configuration
System Output

Measure

External Influences

DTL

Model

Fig. 2: Process of Modeling for Regression Tree Learning (RTL)

B. Decision Tree Learning

Definition 1. Decision Tree [17]. A decision tree is a tree
T = (V,E) with vertices V and edges E that represents a
classifier d : X → C. The set X consists of vectors of feature
values f = [f1, ..., fn], while C is a set of classes.

A decision tree learner constructs a decision tree based on a
set of learning samples L, where each element ρ = 〈f , c〉 ∈ L
is a tuple of a feature vector f ∈ X and a class label c ∈ C.
The decision rule d adapts to these samples. The tree T has
exactly one vertex without incoming edges, which is the root
r. The set of vertices with no outgoing edges are the leaves
VL of the tree. The depth of the tree is the maximum length
of a path from a root node to a leaf node. All vertices V \VL
are inner vertices of the tree. We associate each vertex v in T
to a subset S of X , denoted by v ∼ S. Each leaf vl ∼ S has
a label cvl ∈ C given by

cvl = d(f) = argmax
c

: #c, where (3)

#c = |{f : 〈f , c〉 ∈ L and f ∈ S}|.

A learned decision tree may be pruned, i.e., the depth of the
decision tree is limited. This can happen directly or indirectly,
e.g., by limiting the minimum number of samples per leaf.

We observe the system in multiple scenarios and receive a
set of observations O, where each element of the set is a tuple
(e,o) of concrete external influences e and an output measure
o. For DTL, the collected external influences of an observation
form the feature vectors, while the categorized output of the
same observation serves as the class label:

∀(e,o) ∈ O : f = e, (4)
c = γ(o). (5)

After this mapping, we receive the set L of learning samples
for DTL.

C. Decision Tree Regression

So far, we performed a categorization of the continuous
measurements before decision tree learning. Nevertheless,
there exist algorithms for decision tree learning based on
continuous outputs resulting in so-called Regression Trees
or decision trees for regression. Fig. 2 shows an alternative
procedure with Regression Tree Learning (RTL). In contrast
to Fig. 1, the categorization step is omitted as the regression
tree itself performs the categorization.

We consider RTL as a parallel approach to DTL with
clustering if the number of clusters approaches the number of
measurements. A difference between the regression tree and
the decision tree remains in the labeling of the leaf nodes, i.e.,
the class labels. The regression tree labels leaves with the mean
value of the output measures of all samples in the considered
leaf while the decision tree labels a leaf with the most common
class, i.e., discretization subspace, as stated in Equation 3. A
regression tree, thus, cannot be used if the output measure of
the CPS is not purely continuous, i.e., at least one dimension
of the measured output has categorical values.

D. Applications
Our approach offers a possibility to automatically refine

measurements from a CPS to determine dependencies between
external influences and status or performance measures of the
system. Further paragraphs of this section present additional
applications which benefit from or extend the learned decision
tree.

a) Explaining Behavior: For a given observation, the
decision tree explains how the observed output measure,
i.e., system behavior, correlates to external influences, i.e.,
configurations and environmental influences. An observation
corresponds to a path in the decision tree. Based on this
path, we can conclude which influences from the complete
set of external influences were significant to result in the
corresponding leaf, i.e., to observe the given output.

b) Identifying Relevant Influences: For many CPS, it is
not known which external factors influence the system’s be-
havior. A decision tree provides information on the importance
of the used features. The importance displays which and how
many inner nodes of the tree consider a feature as the splitting
criterion. Based on the importance of features, i.e., external
influences, the decision tree enables identifying relevant influ-
ences that have a significant impact on the system’s output.

c) Predicting Behavior: Provided that the used influ-
ences abstract the system behavior from an explicit envi-
ronment and configuration, the decision tree represents a
model of the system that is transferable to new scenarios or
environments. In our approach, the decision tree represents
correlations or dependencies from external influences based
on the given data. An extension to a model of the system
is approached if all existing influences are collected and
sufficiently many learning samples are provided. Determining
modeling capabilities and the necessary amount of data and
influences is part of future extensions of our approach. If
a decision tree model is achieved, the model can be used
to predict the system behavior: given a vector of external
influences, the decision tree model gives an estimate for the
system output.

d) Optimizing the Exterior: Considering that the
decision tree explains the system output, we can use the
decision tree model to identify which factors of influence
can be adapted to improve the system performance in a
specific use-case, e.g., to improve the localization error of a
localization system.

5

Our procedure presents an approach to automatically learn
a decision tree that represents dependencies between the
system’s output and the external influences. Such a repre-
sentation supports the above described applications and offers
capabilities for an extension to a system model.

IV. CASE STUDY - REAL-TIME LOCALIZATION SYSTEMS

To validate the usefulness of our approach, we present
a case study of our method for a Real-Time Localization
System (RTLS). The euclidean position error, i.e., the distance
between the estimated position and the true position, is the
main metric regarding the performance of an RTLS and is
therefore regarded as the system’s output. The RTLS examined
in this case study is based on Light Detection And Ranging
(LiDAR). The system determines its position by measuring
the distances with respect to the surrounding contour and a
prerecorded reference map [18].

A. Experimental Setup

Experiments are conducted at the testing facility of the
TUHH Institute for Technical Logistics on an area of 80 m2.
The area is equipped with a high-precision optical motion
capture system serving as a positioning reference to determine
the positioning error [19]. The coordinate systems of the
localization and the reference frames are aligned by applying
the Umeyama-Alignment [20] and time synchronization is
achieved by using the precision time protocol. The LiDAR
system is carried by a robot to enable repeatability of the
experiments. The robot automatically follows a trajectory, i.e.,
a path on the test area. Throughout our case study a rectangular
trajectory is used in all scenarios. The position information
is received with a frequency of 20 Hz. In addition to the
localization and reference system’s position measurements,
external influences of each experiment are collected.

B. Observations

The position error is determined for each experiment at 17
points on the considered trajectory. The system’s output is
defined as the mean error of all measurements from one exper-
iment. Considered influences on the quality of the localization
are the support by reflectors or by an inertial measurement
unit (IMU), the map quality of the reference map, and the
field of view of the LiDAR sensor. Further possible influences
like light conditions, speed of movement, or sharpness of the
room’s contour exist, but are not considered in this exemplary
case study. Parameter values of the considered influences are
listed in Table I. Reflector support is provided if designated
objects with reflecting surface are placed at fixed positions
in the facility. Those reflectors represent reference points for
the localization system. An IMU can support the localization
by measuring the acceleration of the robot. The map quality
describes the matching between the reference map of the
localization system and the actual surroundings, e.g., by point
cloud matching. The real surroundings typically have a varying
contour because objects move, disappear or new objects are
placed after recording the reference map. In our evaluation,
the map quality is a qualitative parameter, whereby ”good”

Factor of Influence Parameter Values
Reflector Support on, off
IMU Support on, off
Map Quality good, medium, bad
Field of View [0°, 270°]

TABLE I: Parameter values of external influences

Reflector IMU Map Field of View
Scenario 1 on off good 270°
Scenario 2 off off good 270°
Scenario 3 off off good 90°
Scenario 4 on off good 90°
Scenario 5 on on good 270°
Scenario 6 off off medium 90°
Scenario 7 off off bad 90°

TABLE II: Scenarios

refers to a map that has been recorded immediately before
the measurement, ”medium” defines a map that has minor
differences to the current surroundings and ”bad” is a map that
has major differences to the current surroundings. Finally, the
field of view of the LiDAR sensor is considered as a factor
of influence. Depending on the mounting of the sensor on the
robot, the field of view is limited. The maximum field of view
of the used LiDAR sensor is 270 degree. In our experimental
setup, we are able to set the field of view software-wise. Thus,
the field of view is a continuous-valued influence.

C. Categorization

After collecting observations from the system, i.e., running
experiments with different specifications of the external influ-
ences reflector support, IMU support, map quality, and field
of view, the categorization on the output measurements takes
place. From a warehouse application perspective, we find three
meaningful categories for the mean localization error:
• tray-precise: mean error in 50 mm - 200 mm
• medium object-precise: mean error in 20 mm - 50 mm,
• small object-precise: mean error < 20 mm.

In this scenario, we examine whether the localization system
is able to serve automatic consignment of different objects in
a warehouse.

Apart from the application-dependent categories, we apply
clustering to determine data-based categories emulating a sce-
nario without prior knowledge on a meaningful categorization.

V. RESULTS

In the following, we present learned decision trees that
consider the localization quality of the given localization
system as class labels. DTL and RTL are done with python,
using the scikit learn package [21]. From the system, we
collect measurements from seven different scenarios, listed in
Table II. For each scenario, three experiments are conducted
such that a learning set L of 21 data points results.

a) Application-Related Validation: First, we learn a de-
cision tree using the application-related categories ”tray-
precise”, ”medium object-precise”, and ”small object-precise”.
Fig. 3 shows the decision tree model learned from these cat-
egories. The learned decision tree considers only the features

6

Reflector

Field of View Field of View

Medium
Object-Precise Tray-Precise

Medium
Object-Precise

Small
Object-Precise

off on

≤ 180°> 180°

≤ 180° > 180°

Fig. 3: Decision Tree Model for Application-related Categories

Reflector

Map Quality Field of View

Error in
48 mm - 58 mm

Error in
58 mm - 87 mm

Error in
87 mm - 121 mm

Error
< 18 mm

Error in
18 mm - 33 mm

off on

good medium bad
> 180° ≤ 180°

Fig. 4: Decision Tree Model for Seven Clusters

reflector support and field of view. Thus, IMU support and map
quality are not or less relevant for the localization quality of the
LiDAR system. Furthermore, the decision tree shows the best
localization quality, i.e., small object-precise localization, with
activated reflector support and a field of view of more than
180°. Medium object-precise localization is still possible if
either the field of view is large or reflector support is activated.
Otherwise, only tray-precise localization is achieved. Thus, we
could derive actions to adapt the external influences to the use-
case’s requirements on the localization quality.

b) Fitting the Clustering: If no application-related cat-
egories are known or given, categorization is done based on
clustering of the measurements. For kNN clustering, we have
to define the number of clusters a priori. We present exemplary
results for seven clusters, i.e., where the number of clusters
equals the number of scenarios from Table II, and for three
clusters, which is the optimum number of clusters found with
an elbow-criterion.

The clusters for k = 7 result to < 18 mm, 18 mm -
33 mm, 33 mm - 48 mm, 48 mm - 58 mm, 58 mm - 87 mm,
87 mm - 121 mm, and > 121 mm. Fig. 4 shows the decision
tree model for these categories. As before, field of view
and reflector support are relevant features for the localization
quality. Additionally, the map quality is considered to classify
the measurements. We observe that not all of the clusters
correspond to a leaf of the tree. Thus, the seven experimental
scenarios do not have distinct error values, but some of them
result in similar localization errors.

Applying kNN with three clusters results in the categories
< 36 mm, 36 mm - 86 mm, and > 86 mm. Fig. 5 shows the
decision tree learned with these clusters. With three clusters,
all classes are present in the leaves of the decision tree which

Reflector

Map Quality Error
< 36 mm

Error in
36 mm - 86 mm

Error
> 86 mm

off on

good, medium bad

Fig. 5: Decision Tree Model for Three Clusters

Map Quality

Reflector Mean Error
117 mm

Field of View Map Quality

Mean Error
21 mm

IMU Field of View Mean Error
64 mm

Mean Error
15 mm

Mean Error
16 mm

Mean Error
53 mm

Mean Error
48 mm

good,medium bad

on off

≤ 180° > 180° good medium

on off ≤ 180° > 180°

Fig. 6: Decision Tree Model from RTL

shows that the clustering is more useful compared to the result
with seven clusters. The relevant features, in this case, are the
reflector support and the map quality.

c) Regression Tree Comparison: An alternative to clus-
tering is regression tree learning. As stated earlier, RTL is
a parallel approach to DTL when the number of clusters
approaches the number of scenarios or samples. The tree from
RTL for our case study is shown in Fig. 6. The regression tree
uses all features because – without pruning – RTL separates
the measurements into all scenarios.

There exist two leaves with mean errors 15 mm and 16 mm,
respectively. Considering measurement noise those errors
should form a single class of localization errors which shows
that the regression tree overfits the learning data. Similarly, too
many clusters lead to overfitting of data. Pruning the tree could
overcome the overfitting. Nevertheless, deriving the necessary
pruning criterion to avoid use-case-dependent overfitting a
priori is difficult. Categorization intervals or the number of
clusters, on the other hand, are more easily defined from the
application perspective.

From the regression tree, we receive the feature importance
on all considered features which are listed in Table III. The
feature importance is a value between 0 and 1 and the
sum of feature importances over all features is 1. Thus, the
feature importance represents in how far a feature contributes
to the identification of a valid category in relation to the
other features. The results show that the map quality is most
important, followed by the reflector support. Field of view and
IMU support are less important for the localization quality, i.e.,
the output of the system.

7

Reflector IMU Map Quality Field of View
0.27 4.68 · 10−5 0.73 4.4 · 10−3

TABLE III: Feature Importance

Model App k = 3 k = 5 k = 7 k = 11 k = 16 RTL
Learning 90 100 95 90 62 52 62
Validation 40 100 60 60 20 0 20

TABLE IV: Accuracy of Decision Tree Models in %

d) Validating the Prediction Accuracy: To evaluate the
accuracy of the classification, we classify each of the 21
experiments from the learning set together with five additional
validation samples with the learned decision trees and compare
the predicted class to the actual continuous output of the
experiment. For the regression tree, the leaves do not represent
error intervals. Thus, the correct category, i.e., leaf in the
regression tree is the one with a mean value closest to a
sample’s output value.

Table IV shows the ratio of correctly classified samples
in percent for clustered categories with different numbers of
clusters k, the application-related approach (App), and RTL.
The classification accuracy is typically better for smaller k.
Especially, for k = 1 the classification accuracy trivially re-
sults to 100%. Nevertheless, the accuracy provides information
whether a classification is useful. Clustering with k > 7 is
likely to overfit the data because only seven initial scenarios
exist which the decision tree could separate. Nevertheless, if
the number of scenarios is not known a priori the number of
clusters might be chosen larger. The regression tree achieves
better results than clustered categories for large k. The reason
is that the regression tree returns a mean value while the
decision tree selects always one class label. Still, the tree
with k = 7 performs better than the regression tree. The
best classification accuracy results for the decision tree model
with three clusters, i.e., with optimal k according to the elbow
criterion.

For this case study, only a small number of samples from the
complete space of external influences were taken. Improved
results could be achieved with a larger learning set.

VI. CONCLUSION

In this paper, we presented a procedure to create a decision
tree that automatically finds a representation of dependencies
between external influences and the output of a CPS. Apart
from application-motivated categories, we consider regression
tree learning and clustering to achieve meaningful categories
from possibly continuous signals. In an experimental case
study, we observe that best classification accuracy is achieved
with clustering if an elbow criterion is used to determine
the number of clusters. The learned decision tree offers an
automated strategy to determine relevant external influences
for systems. Furthermore, we discuss further applications for
the decision tree, e.g., to predict or explain the system’s
behavior or to provide information on possible improvements
to a system’s setup. Those applications include next steps to
extend the decision tree to a model of the system.

ACKNOWLEDGEMENT

This work is supported by the TUHH I3 Projects funding.
Special thanks go to the 3D Log project team.

REFERENCES
[1] F. H. Bahnsen and G. Fey, “Local monitoring of embedded applications

and devices using artificial neural networks,” in Euromicro Conference
on Digital System Design (DSD), 2019.

[2] M. Vierhauser, J. Cleland-Huang, S. Bayley, T. Krismayer, R. Rabiser,
and P. Grünbacher, “Monitoring cps at runtime - a case study in the
uav domain,” in Euromicro Conference on Software Engineering and
Advanced Applications (SEAA), 2018.

[3] P. M. Kruse and J. Wegener, “Test sequence generation from classifica-
tion trees,” in International Conference on Software Testing, Verification
and Validation, 2012.

[4] M. Chen, H. Haggag, and A. Orailoglu, “Decision tree based mismatch
diagnosis in analog circuits,” in VLSI Test Symp. (VTS), 2006.

[5] S. R. Gaddam, V. V. Phoha, and K. S. Balagani, “K-Means+ID3: A
novel method for supervised anomaly detection by cascading K-means
clustering and ID3 decision tree learning methods,” IEEE Transactions
on Knowledge and Data Engineering, vol. 19, 2007.

[6] P. Beinschob and C. Reinke, “Advances in 3d data acquisition, mapping
and localization in modern large-scale warehouses,” in International
Conference on Intelligent Computer Communication and Processing
(ICCP), 2014.

[7] M. Beul, D. Droeschel, M. Nieuwenhuisen, J. Quenzel, S. Houben,
and S. Behnke, “Fast autonomous flight in warehouses for inventory
applications,” IEEE Robotics and Automation Letters, vol. 3, pp. 3121–
3128, 2018.

[8] R. Yasaei, F. Hernandez, and M. A. Al Faruque, “IoT-CAD: Context-
aware adaptive anomaly detection in IoT systems through sensor asso-
ciation,” in Int’l Conf. on CAD, 2020, pp. 1–9.

[9] A. Salamati, S. Soudjani, and M. Zamani, “Data-driven verification
under signal temporal logic constraints,” ArXiv, vol. abs/2005.05040,
2020.

[10] A. Antoulas, D. Sorensen, and S. Gugercin, “A survey of model
reduction methods for large systems,” Contemp. Math, vol. 280, 2006.

[11] M. Merten, “Active automata learning for real life applications,” Ph.D.
dissertation, Technische Universität Dortmund, 2013.

[12] H. Urbat and L. Schröder, “Automata learning: An algebraic approach,”
in ACM/IEEE Symposium on Logic in Computer Science (LICS), 2020.

[13] J.-F. Raskin, An Introduction to Hybrid Automata. Boston, MA:
Birkhäuser Boston, 2005.

[14] R. A. Reyment and K. G. Jvreskog, Applied Factor Analysis in the
Natural Sciences. Cambridge University Press, 1993, ch. Aims, Ideas,
and Models of Factor Analysis, p. 71–88.

[15] Y. Amemiya and I. Yalcin, “Nonlinear Factor Analysis as a Statistical
Method,” Statistical Science, vol. 16, pp. 275 – 294, 2001.

[16] D. J. Ketchen and C. L. Shook, “The application of cluster analysis
in strategic management research: An analysis and critique,” Strategic
Management Journal, vol. 17, pp. 441–458, 1996.

[17] M. Moshkov, Comparative Analysis of Deterministic and Nondetermin-
istic Decision Trees. Cham: Springer International Publishing, 2020.

[18] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age,” IEEE
Transactions on Robotics, vol. 32, pp. 1309–1332, 2016.

[19] C. Hansen, D. Gibas, J.-L. Honeine, N. Rezzoug, P. Gorce, and
B. Isableu, “An inexpensive solution for motion analysis,” Proceedings
of the Institution of Mechanical Engineers, Part P: Journal of Sports
Engineering and Technology, vol. 228, 2014.

[20] S. Umeyama, “Least-squares estimation of transformation parameters
between two point patterns,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 13, pp. 376–380, 1991.

[21] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

8

