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Abstract—Wireless earbuds are gaining in popularity these
days, especially for smart mobile phone pairing. Some of these
devices are getting smart as they embed motion sensors to
monitor head and mouth movements. The embodiment of these
sensors can enable important mobile health applications such as
medication adherence monitoring. Existing solutions are often
focused on capturing hand gestures associated with medication
retrieval and thus they are inaccurate and do not detect med-
ication ingestion. Other solutions use neck-worn systems which
make them uncomfortable and socially unacceptable.

In this paper, we present MedBuds, a smart system for
medication-taking activity detection using earbud embedded
IMUs and a pairing device (e.g., a smartphone). To evaluate
our approach, we conducted preliminary experiments examin-
ing semi-medication-taking activities (i.e. swallowing) and non-
medication-taking activities (speaking and chewing). Our results
show the possibility of distinguishing between these activities with
more than 84% accuracy. We believe that by coupling MedBuds
with other monitoring techniques (e.g. smart pill bottles), the
overall performance of medication adherence monitoring systems
can be improved.

Index Terms—earbuds, pill taking, medication adherence

I. INTRODUCTION

The reduction in size, energy, and cost of computing and

communication technologies are enabling new ways to monitor

human activity [1]. In particular, emerging platforms such as

earables [2], and the Internet of Things (IoT) will provide

rich new sensing capabilities, which in turn can automate

activity detection. Further analysis of human activity could
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then be used for other goals, particularly improving human

health. One major problem within the healthcare sector is

medication adherence. It is defined as ”the extent to which
a person-taking medication adheres to a self-administered
protocol” [3]. Medication adherence is dependent on the
medication-intake behavior of the patient as directed by the

healthcare provider concerning dosage, timing, and frequency.

With the rapid advancement in Cyber-Physical Systems (CPS)

for healthcare [4], many technologies on medication adherence

monitoring have been proposed [5], [6]. Among these, is the

use of smart pill bottles that detect pill opening, pill re-

trieval [5], and even user identification [7]. However, asserting

that these systems can determine id the pill was ingested is

overly simplistic and requires more rigorous study. So while

using technology for medication adherence monitoring is an

attractive field, one approach does not close the loop. Hence,

the active non-compliance problem may arise, which is when

a user fools the systems and discards the medication pill as he

does not agree with the medical professional’s treatment [3].

To address these challenges, we propose a system based

on wireless earbuds. The information from smart pill bottles

can tell if the bottle was opened, if a pill was retrieved, and

who retrieved it [8]. Additional information from a smart

earable can detect when a pill is swallowed a few seconds after

opening the cap by using Inertial Measurement Unit (IMU)

sensors and associated machine learning algorithms.

Two facts support the use of earbuds such as eSense [9]

for recognizing the activities we are targeting. First, the

medication taking activity involves swallowing, which can be
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distinguished from other activities by tracking head movement

patterns [10]. Second, previous studies [11] observed that

lower jaw movement can be detected in the temporomandible

joint, which is the point where the mandible (lower jaw) and

the temporal bone (on the skull) meet. The joint location

is very close to the ear canal, and hence, when the jaw is

moving, it is possible to detect the movement of the mandible

through the changes in ear canal depressions. Thus, we use

earbuds embedding IMU unit to capture jaw movements dur-

ing swallowing and distinguish it from other non-swallowing

activities to confirm ingestion events after the bottle is opened.

Data from the earable is acquired by sampling the embedded

IMU sensor that results in changes to the acceleration and

angular velocity. The data is transmitted to a smartphone for

processing using the Bluetooth protocol. Further processing

is performed on a PC where classification algorithms are

capable of distinguishing between swallowing activities and

other types of activities.

The rest of the paper is organized as follows. Section II

presents the related work. In Section III, we describe our

proposed system while Section IV the evaluation results of

MedBuds. Finally, Section V concludes the paper.

II. RELATED WORK

We live in the era of assistive technology and smart devices.

Among these, is the development of technology-based solu-

tions for medication adherence monitoring. A comprehensive

review by Aldeer et al. [3] presents different technologies for

medication adherence monitoring, including smart pill bottles,

wearables, computer vision, and proximity sensing. Focusing

on wearable sensors, we can place them in two categories,

depending on the placement location on the body: wrist-worn
and neck-worn.
Wrist-worn sensors in the form of smartwatches have been

employed for detecting the motions associated with pill bottle

opening, pill retrieval, and pill pouring into the secondary

hands [12]. The works in [13] and [14] utilized smartwatch

sensors for a similar goal. A recent work by Cherian et al. [15]

used two smartwatches worn on both wrists of the users to

record full-day data including medication taking. In general,

wearable systems support mobility and accuracy, but, require

contact with the subject’s body. Also, these solutions can

only detect the motion associated with medication intake (e.g.,

opening the pill bottle, pill retrieval, etc.), and cannot detect

the ingestion of the pill.

A neck-worn system for detecting medication ingestion was

proposed in [16]. It was designed to use a pendant-style

necklace that embeds a piezoelectric sensor, a battery, and

an RF module. Skin motion resulting from pill swallowing is

captured by the piezoelectric sensor and voltage is generated

as a response. Bluetooth technology is used to send the data to

a mobile phone and then classification techniques are used for

analyzing the data. Another neck-worn sensor is used in [17].

It is based on acoustic technology for detecting medication

ingestion. A microphone placed near the throat is used to

capture acoustic data resulting from the ingestion activity

Fig. 1. MedBuds overview.

(a) (b)

Fig. 2. (a) eSense platform [19], and (b) the data collection mobile app.

to detect the ingestion events. One major barrier associated

with the neck-worn systems is the user comfort and social

acceptance [18]. It requires the sensor to be worn and in

contact with the skin during medicine intake.

In this work, we propose a smart earbud-based system that

can detect ingestion activity. We investigate the employment

of IMU sensors embedded in earbuds to detect swallowing ac-

tivities (e.g. taking a sip of water, swallowing & drinking, and

saliva swallowing) and distinguish them from non-swallowing

activities (e.g. chewing and speaking).

III. SYSTEM OVERVIEW

In this section, we describe our proposed system that is

based on smart earbuds worn by the user during the medication

intake. The architecture of the proposed system is presented

in Fig. 1.

A. eSense Platform

MedBuds is based on eSense platform [9]. eSense is an

earbud that was designed to enable automatic tracking of a set

of head and mouth-related activities including eating, drinking,

speaking, etc. It embeds motion and audio sensors (accelerom-

eter, gyroscope, and microphone). It uses Bluetooth Low

Energy (BLE) radio to transmit the collected data to a nearby

phone.

B. Data Collection

We use eSense with a sampling rate of 100 samples/second

that is set for the IMU sensors. Five subjects wore the left
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earbud only as it houses the IMU. Hence, this does not impact

our experiments both right and left joints on the jaw bone

move together. Thus jaw movement can be detected equally

in both ears. During our data collection, we asked the subjects

to perform a set of activities: target activities (drinking a sip

of water, swallowing one M&M’s® candy with water, and

swallowing saliva) and two non-target activities (chewing one

candy and swallowing it and speaking).

It is worth mentioning that although the chewing activity

is expected to be followed by swallowing, we do not place it

with the target (swallowing) activities. This is because we are

interested in showing that we can distinguish between these

activities using the earable platform. Nonetheless, chewing

events can be part of eating food, thus we place it in the

non-swallowing class. The speaking activity was performed

where the subject reads 2 lines of text of his choice in his

preferred language. Each activity is performed 10 times and

data is collected and labeled using a smartphone running a

data collection application (Fig. 2). Finally, for each activity,

a comma-separated values (CSV) file is generated and saved

on the phone and upon completion of data collection, all files

are transmitted via Bluetooth to an edge device for processing.

A total of 200 files that correspond to the number of performed

activities are collected.

C. Data Pre-Processing and Feature Extraction

Each raw file contains data for a single activity, for a

single subject. The files are read into a raw time-series matrix

consisting of a sample per row, each sample consisting of

6 data points from the 3 accelerometer and gyroscope axes.

First, we clean the accelerometer data by passing them through

a filtering stage. Low-pass and high-pass filters with a 2Hz

cutoff are used. We also compute the pitch and roll from the

accelerometer data using Eq. 1 and 2.

roll = atan2 (accy, accz) (1)

pitch = atan

(
− accx
accy · sin(roll) + accz · cos(roll)

)
(2)

The original accelerometer and gyroscope data, along with

the filtered acceleration data, pitch, and yaw and concatenated

into a final time-series matrix. From this matrix we generate

statistical, temporal and spectral features by processing each

input feature matrix using TSFEL [20], a time-series feature

extraction library in Python. Using TSFEL, we use the 27

features from the TSFEL Human Activity Range (HAR)

feature set. A window is applied to each activity along the

time dimension and the TSFEL feature extraction transforms

the window (matrix) into a vector by applying each feature

extractor to each series. Each feature vector has an associated

activity ID (i.e. chewing, speaking, drinking, etc.) and subject

ID (for cross-validation) which is concatenated to produce a

final dataset consisting of a feature matrix, a label vector, and

a group vector.

Fig. 3. Selecting the optimal value of window size.

D. Classification Model

We use Leave One Subject Out (LOSO) cross-validation to

compute the accuracy, precision, recall, and F1-score. LOSO

is used to account for heterogeneity between subjects. LOSO

trains one model per subject per cross-validation fold. For

each fold, one subject is used as test data and the remaining

subjects are used as training data. Achieving high accuracy

when using LOSO provides confidence that the model has

learned a generalized representation of each activity rather than

overfitting to subject-specific idiosyncrasies. It also simulates

a setting where we train a model on some subjects and then

perform inference on other subjects.

We initially considered a few shallow classification models

including, Support Vector Machine (SVM), Naive Bayes, and

a decision tree based bagging classifier. We found that the

bagging classifier consistently outperformed SVM and Naive

Bayes. For this reason we used the bagging classifier for all

further experiments. The classifier used is a balanced bag-

ging classifier from Imbalanced-learn [21] with a histogram-

based gradient boosted classification tree from scikit-learn [22]

as a base estimator. Optuna [23], a hyper-parameter search

framework, was used to find the best hyper-parameters using

accuracy as the objective. Using Optuna, we identified the

window size to be the most important hyper-parameter. The

relationship between window size and classification accuracy

when all other parameters are held constant is shown in Fig. 3.

The peak was obtained at 492 samples, the decline after this

point occurs because longer windows resulted in a window size

that is longer than the average activity length, resulting in these

activities being excluded. The second most significant hyper-

parameter was the number of base estimators used by the

classifier. We experimented with tuning parameters of the base

estimator and selecting additional TSFEL features, but doing

so failed to outperform using the defaults in conjunction with

tuning the window size and number of base estimators so we

performed all further experiments using these two parameters

only.

IV. PERFORMANCE RESULTS

In this section we present the performance of MedBuds. To

evaluate the performance of MedBuds, we try to answer the
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Fig. 4. Confusion matrix of the two-class scenario.

following questions:

• How is accuracy affected by varying the number of

classes?

• How is the system performance impacted with respect to
the sampling rate?

• How is the system performance changed with respect

to the number of sensors used, i.e. accelerometer +

gyroscope or accelerometer only?

1) Detection performance of the system for two-class and
three-class scenarios : In this section, we investigate the

performance of our system under different scenarios. First,

we consider a binary classification scenario, where we only

distinguish between swallowing and non-swallowing activities.

In this scenario we combine swallowing a sip of water, taking

candy with water, and swallowing saliva; into one class, and

the speaking and chewing activities into one class. Fig. 4

shows the performance of the system. It is noticeable that the

system achieves an accuracy of more than 84% for LOSO.

This proves that the approach performs well at distinguishing

the swallowing-related activities from all other activities. This

is the primary use application for medication adherence detec-

tion, assuming that the detection of a swallowing event (pill

swallowing and/or drinking a sip of water) following the

opening of a pill bottle increases the probability of user

compliance.

Second, we consider a multi-class classification scenario,

where we aim to distinguish swallowing among other classes.

Fig. 5 shows the confusion matrix for classifying three

classes (swallowing, speaking, and chewing). Hence, similar

to the two-class scenario, the swallowing class includes three

sub-activities. The results indicate that we can still differentiate

the three classes mentioned earlier with accuracy closer to

80%.

Note that for the following sections, we report the results

for the three-class scenario.

2) Effect of the sampling rate on classification perfor-
mance: System lifetime is proportional to the sensor sampling
rate [24] making it an important factor in battery-powered sys-

tems. To tackles this, we evaluate the impact of the sampling

rate on the classification accuracy of our system. To produce

datasets with different sampling rates, we down-sampled the

Fig. 5. Confusion matrix of the three-class scenario.

Fig. 6. Effect of sampling rate variation on the performance.

Fig. 7. Individual sensor importance.

data sampling rate to simulate data collected at 50Hz, 33Hz

and 25Hz measurement rate, respectively. We applied the same

pipeline to these new datasets. However, the window size was

adjusted so that its time duration in seconds remains constant.

Fig. 6 shows the accuracy for the various measurement rates.

We can see that the classification performance does not affect

as we lower the sampling rate to the half. However, the

performance degrades as the measurement rate decreases, with

a sharp drop-off at a measurement rate of 25Hz.

3) Analyzing Individual Sensor Importance: Finally, we

performed different experiments to determine the impact of

using the accelerometer, gyroscope, and a combination of both

sensors on the final classification accuracy. We evaluate the

performance of our system by using our original dataset from
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both sensors, and by generating two new datasets, one from

the accelerometer sensor and the other from the gyroscope

sensor. We applied the same pipeline in each case.

We report the LOSO performance of the bagging classifier

in Fig. 7. The figure shows the class weighted accuracy,

precision, recall, and F1-score for the experiments. Notice,

the performance of our model decreases when using either

the accelerometer or the gyroscope. However, using the ac-

celerometer only, the performance outperformed the gyroscope

only case. One takeaway is that the combination of both

sensors outperforms the single sensor case.

V. CONCLUSIONS AND FUTURE WORK

Medication non-adherence is a big problem in healthcare.

It affects the patients’ health and can potentially result in

irrevocable complications. Another problem is increasing drug

wastage higher healthcare costs. This paper introduces Med-

Buds, a smart earable system that captures in-ear IMU data

that results from jaw movement. Our preliminary results show

that swallowing events can be detected using the proposed

system, and are distinguishable from other activities involving

jaw movement, such as speaking and chewing.

Looking forward, we plan to address other challenges to

enhance MedBuds performance further.

• Our dataset was very small as it only included five
subjects. In the future, we will conduct experiments with

more populations.

• Although our experiments included swallowing activities,
we did not perform a real word experiment that involves

swallowing medication pills of different sizes. In the

future, we will conduct experiments in which we use

placebo pills to investigate if we can detect different size

pills.

• Finally, we plan to incorporate MedBuds with a smart pill
bottle [8] in a two-step verification system for detecting

when a pill bottle is opened, who opened it using the

smart bottle, and when a pill is consumed using the

earable sensor.
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