
Providing Application Access to Voice Streams:
Enhancing PTT Services for Emergency Response

Jiachen Chen
WINLAB, Rutgers University

Email: jiachen@winlab.rutgers.edu

K. K. Ramakrishnan
University of California, Riverside

Email: kk@cs.ucr.edu

Abstract—Mission-Critical Push-To-Talk (MCPTT) is an im-
portant tool for first responders in the aftermath of a disaster.
Most existing MCPTT solutions try to reduce the call-setup delay
or mouth-to-ear latency yet fail to optimize the user experience of
the whole system. End-system applications primarily manipulate
the voice streams through access to the control channel but have
limited access to the voice streams. By allowing applications
to have access to the voice streams and manage them, we can
enable a multitude of features that are critical to first responders.
In this paper, we propose Next-Gen MCPTT, a system that
aims to improve the efficiency of delivering mission-critical com-
munications. We support concurrent conversations and smooth
switching among them, store & replay on demand, a “push-and-
talk” capability facilitated by serialization of voice streams at
the receiver, and device-to-device (D2D) communication. While
MCPTT platforms require the speaker to wait for the floor to
become clear before sending a message, Next-Gen MCPTT aims
to automatically deliver messages when the channel is available
and automatically stores them so the user can switch to other
conversations as needed. By creating a system that stores, pauses,
and replays messages both online and offline, Next-Gen MCPTT
saves precious time for first responders by eliminating the need
to constantly wait to acquire the “floor” to speak, repeatedly ask
for information that the receiver did not hear clearly. It allows
first responders to pay attention to urgent tasks in between and
come back and catch up with the conversation later. The cost
is a slight increase in the mouth-to-ear latency from allowing
applications to get access to the voice streams.

Index Terms—Mission-Critical Push-To-Talk, Disaster Man-
agement, D2D Communication

I. INTRODUCTION

First responders critically depend on the ability to have

interactive communication with other team members while

responding to an emergency, for reacting to urgent needs,

coordination and better overall situational understanding. Tra-

ditional mission-critical push-to-talk (MCPTT) technologies

have been a key communication tool in emergency response.

Historically, MCPTT relies on Land Mobile Radio (LMR)

with both analog [1] and digital standards [2]. The 3GPP’s SA

Working Group 6 (SA6) Release 13 [3] also added standard-

ization for MCPTT over LTE with priority and preemption. As

a major implementation of mission-critical services in the US,

the First Responder Network Authority (FirstNet) [4] hosts

multiple MCPTT vendors on its network.

First responders need flexible group-based real-time interac-

tive communication, to be able to respond to immediate needs

for coordinated action. However, traditional MCPTT has all

of the communicating parties (in essence broadcast) to be in a

synchronous call, but using a messaging paradigm. One person

speaks, and then another speaks, taking turns, waiting for the

previous speaker/message to complete. While we seek to retain

this “messaging” paradigm, there is a clear need for additional

flexibility and enhancements to facilitate the needs of first re-

sponders: grouping, removing the restriction to have to wait to

acquire the “floor” etc. Alternative approaches, such as voice

“download-and-play” in instant messaging platforms have also

evolved to provide interactive conversations (e.g., WhatsApp,

Skype, etc.). Yet neither the MCPTT or instant messaging ap-

proach provides the seamless combination of these capabilities

(i.e., interactive communication and a messaging paradigm for

voice communications) to support the many capabilities that

first responders dealing with emergencies need.

Existing systems and research has focused on the “mouth-

to-ear” latency of systems to deliver voice streams [5]–[9].

For this, dealing with the voice in the OS and leaving the

application only the control of calls and “floor” may be the

right thing to do, to minimize delay. Yet it is important to

provide applications the capability to manipulate the voice

to provide features that are critical for first responders. Our

conversations with first reponders indicate that the time wasted

on the MCPTT communication is caused both with incon-

venient functionality available for users, the interfaces, and

the protocol-level interactions (e.g., allow concurrent flows,

similar to VoIP vs. traditional connection-oriented calls, and

ability to have D2D communication).

Our work addresses these needs. The service-layer only only

packetizes the voice streams, it also gives the applications

full control of the voice data so that they can manipulate

the voice messages and present them in different ways to

users. We still seek to provide real-time interactive commu-

nications, but have the application on the receiver serialize

the voice streams, enabling speakers to just speak (push-and-
talk) instead of speakers having to serialize their speaking

by waiting to acquire the floor (push-to-talk). There are a

number of additional features we believe are important for first

responders, including store and play the voice stream, allow

users to switch back and forth when they have to pay attention

to other tasks, and pause the conversation. Emergencies have

a lot of different activities ongoing at the same time, and

several individuals (especially incident commander, dispatcher

and others) may need to participate in multiple concurrent

conversations, seamlessly switching from one to the other,

and still having access to all the content of each of the

conversations as needed. When a user is participating in a

conversation, first responders crucially depend on being able

to override for emergencies. Disaster situations often have

substantial ambient noise, where a user may not be able to

hear clearly or their voice may be drowned by ambient noise.

24

2022 Workshop on Cyber Physical Systems for Emergency Response (CPS-ER)

978-1-6654-7036-0/22/$31.00 ©2022 IEEE
DOI 10.1109/CPS-ER56134.2022.00011

To facilitate communication, we see it desirable to provide for

textual communication. However, users may also not be able to

see or do not have a free hand to text. Therefore both text-to-

speech and speech-to-text conversions are equally important.

A final component is the real likelihood of communications

infrastructure being damaged. Nonetheless, communication

needs among first responders continues to be important. For

this, we need to be able to support device-to-device (D2D)

communication, and the MCPTT services need to be supported

over D2D links.

This paper focuses on unifying existing MCPTT systems,

(e.g., MCOP) with many of the features needed for emergency

communications that can be supported by treating the voice

stream as yet another packet data stream accessible to the

application layer. With this fundamental change, we are able

to seamlessly support a variety of the features we described

above in our Next-Gen MCPTT system. After outlining the

needs of first responders, this paper describes the architecture

and features of Next-Gen MCPTT.

II. RELATED WORK

MCPTT has long been used in Land Mobile Radios

(LMR) [1], [2]. In cellular networks, it is standardized by

3GPP in 3G, LTE, and 5G [3]. Many existing research tries

to analyze [5], [6] and improve KPIs of MCPTT (e.g., access

latency, mouth-to-ear latency) via better routing strategy [7],

signal compression [8], or closer edge-service location [5].

While these improvements reduce mouth-to-ear latency in

the scale of milliseconds, we find that the first responders

might end up wasting seconds to minutes dealing with the

inconvenient functionalities (e.g., waiting for the “floor”).

Most of the work in the literature also assume a connected

environment, either connected directly to the Internet, or the

mobile devices are connected among each other [9]. This could

difficult to consistently achieve in disasters and emergency

situations due to the disruption to the infrastructure and the

mobility of the first responders. It is desired that the delay-

tolerant features be enabled alongside the real-time interactive

MCPTT features and can smoothly switch between these two

based on the connectivity of the user.

Our work focuses on improving the experience of the first

responders when using the MCPTT applications. Thus, it is

complementary to much of the existing research.

III. USE CASES

With packetized voice and the availability of capable hand-

held devices that are essentially networked computers, the ca-

pability of the MCPTT facilities can be dramatically expanded.

We first describe at a very high level the need for features that

our Next-Gen MCPTT can provide with typical off-the-shelf

smartphones. We then discuss the features in detail and how

we provide them in Next-Gen MCPTT in §IV and §V.

Case 1 [Acquiring Floor] – A simple and obvious case with

traditional MCPTT systems is the difficulty in users having

to serialize speech. This can be especially disruptive and

inefficient on a connection with long delay, e.g., a satellite

link. First responders end up wasting a lot of time waiting for

the floor, or just talk over each other. It is desirable to leverage

the flexibility that comes from packetizing voice and storage

to release MCPTT systems from this constraint of having toe

acquire the “floor” to speak.
Case 2 [Repeat] – Voice communication, especially in emer-

gency situations can be highly unreliable, because of ambient

noise, poor connectivity, etc. Therefore, a receiver would often

ask the sender to repeat what was said. This not only wastes

communication channel resources but also the precious time

of the first responders because messages are not stored and

re-played.
Case 3 [Focus] – When a first responder has to focus on a

task and then come back to the interaction with team members

later, it is highly desirable to pause the ongoing conversation

on the receiver end, and play them when he is ready to listen.

This is especially true for group communication with multiple

people interacting together.
Case 4 [Multi-tasking] – First responders, and especially

incident managers, have to take care of multiple tasks while

responding to emergencies. It would be desirable to store

incoming messages and play on demand when the user wants

to. A user may also want to switch between multiple com-

munication sessions and switch back and forth between them

without losing critical conversation that they can go back to

and listen and pick up on the conversation as needed.
Case 5 [D2D] – Emergency response is inherently prone

to operating in environments that may have disruptions in

infrastructure-based communications. We see the need to

seamlessly integrate the capability of device-to-device (D2D)

communication and delayed forwarding and delivery to the

recipient. This requires delay-tolerant network (DTN) support.
Case 6 [Mapping and Geo-location] – Another aspect that

can be invaluable to integrate with voice and text commu-

nications is the ability for first responders to synchronize

geo-located tasks (e.g., inspect buildings after an earthquake)

among the related teams. This could help everyone keep

track of the conditions (better situation awareness) and avoid

redundant work on the same task because of the lack of timely,

relevant communication.

IV. ARCHITECTURAL DESIGN

Our enhancements to the basic MCPTT include a number

of innovations, many of which come from the basic conver-

sion of communications to packetized voice and allow the

application access the voice stream instead of just controlling

calls. With this capability, we allow the applications serialize

the conversation on the receiver end and play the voice on

demand. At the same time, the devices can store and forward

messages among themselves to provide D2D communication

in the infrastructure-less environments. We also take advan-

tage of speech-to-text and text-to-speech capabilities to make

it more convenient, potentially accelerating communication

among first responders through asynchronous communication

in difficult emergency situations.

A. Providing Application Access to Chunked Voice
We built our implementation, starting from the base of

an MCOP SDK [10]. We made modifications to the lower-

25

level components of MCOP to get access to the audio data.

MCOP only allow application control of the audio playback

(e.g., initiate/hangup a call, take/release the “floor”). That

is reasonable for handling audio in the lower layer (using

native C/C++) more efficiently, especially when thinking about

reducing mouth-to-ear latency. However, we expose the real

audio data to the application so that it can control when to

play or send audio as needed. While this is slightly more

inefficient in terms of mouth-to-ear latency, we believe it

eventually saves a lot of time for the user, especially first

responders. This capability occurs after packetizing voice. A

bypass (using the inter-module communication in Android)

is created to communicate between the App-level and low-

level recorders and players (so that the low-level functionality

becomes a “shadow” component that only forwards data). We

believe that our new platform capability that allows Apps to

get access to the audio data can enable a variety of capabilities

to meet different application requirements.

On the sender side, we chunk up the audio, packetize and

send them. The receiver can play the short audio clips of

each chunk, to give a real-time interactive communications

experience, while fully taking advantage of packetized com-

munications. We use Android’s support for packetized voice,

and chose the Pulse Code Modulation (PCM) 16-bit option

with 6000 Hz sampling rate, which results in a bit rate of

96 Kbps. We chunk up the audio voice into 40 ms pieces thus

resulting in 480 bytes per chunk. This offers a slightly higher

quality than the standard PCM bit rate at 64 Kbps, but does

offer clarity that is helpful for emergency communications.

B. Store, Play on Demand, Forward, and Manipulate
Once an application gets the audio data, it can store and

schedule the playout of the voice messages based on the user’s

need. For example, to repeat a message when the user did

not hear it clearly, pause a conversation when the user needs

to focus on a task and come back to the interaction later,

and let the emergency messages interrupt an ongoing (normal)

conversation, etc. It can perform forwarding via both D2D

and infrastructure-based communication whenever a channel

is available, thus providing better communication quality in

the field. It can further manipulate the voice, e.g., performing

speech-to-text to further assist first responders in noisy areas

where listening to MCPTT could be challenging. By encoding

and decoding text and binary data (e.g., pictures) as part of

the “voice stream”, we can enable features like SMS, picture

sharing, task progress synchronization, etc.

V. FEATURES ENABLED BY NEXT-GEN MCPTT

Build on top of the basic functionalities mentioned in §IV,

we enable several features that can help first responders save

time when dealing with disaster management.

A. Push-To-Talk vs. Push-And-Talk
In Next-Gen MCPTT, since the application gets the access

to both the incoming and outgoing voice streams, it can allow

the first responders speak whenever they want to (push and
talk, instead of push to talk). We consider a scenario as shown

in Fig. 1a. User 1’s stream is red, while User 2’s stream is blue.

User 1

User 2

User 3
t1 t2 t3 t4 t5

Speak + Send
Receive + Play

Speak + Send
Receive + Play

Receive + Play

(a) Traditional: User 2 has to wait till t3 to speak

User 1
Speak + Send

Receive
Play

User 2
Speak + Send

Receive
Play

User 3

t1 t2 t3 t4 t5

Receive

Play
Receive

(b) Next-Gen MCPTT: User 2 can speak and send at t2; User 3 can choose which clip
to listen to between t2 and t5

User 1 Speak + Send
Receive + Play

User 2
Speak
Send

User 3
t1 t2 t3 t4 t5

Receive + Play

Receive
Play

(c) Next-Gen MCPTT: User 2 can speak at t2; Application can figure out when the
channel is available then send

Fig. 1: MCPTT with concurrent speakers: User 2 wants to speak at t2.

We show in two rows for each user the phases of speaking and

sending vs. receiving and playing. Time steps are along the x-

axis. User 3 only listens to the other two. Say user 1 is sending

a long report from t1 to t4, and at t2, User 2 wants to interrupt

and speak. In traditional MCPTT, since the “floor” is occupied

by User 1, User 2 has to wait till User 1 releases the token

(t4). In an extreme case, if User 1 does not release the PTT

button on time by accident, the whole channel is blocked, and

therefore no one can send anything, nor can anyone notify

User 1 to release the token. This could result in important

messages being delayed. At the same time, frequently waiting

for the “floor” also wastes a lot of precious time of the first

responder, which can be used instead to save lives.

In Fig. 1b, User 2 (blue) can just press the button to speak at

t2 without the need to wait till t4 (after User 1 (red) finishes).

The application can hold the playback of User 1’s voice until

User 2 finishes (t3). At the same time, the application can send

out the voice chunks so that all the receivers in the group can

receive the message. From t2 onward, User 3 (or any other re-

ceiver in the group) can choose to listen to whichever message

they need, thus not missing urgent and/or important messages.

In cases with constrained channel availability, the applica-

tion may also hold the outgoing messages and deliver them

whenever the channel becomes available. In Fig. 1c, if the

channel can only support 1 voice stream at a time, User 2

can still speak whenever he wants to (at t2). The application

stores the outgoing message, monitors the channel, and sends

the voice only after User 1 finishes speaking (at t4). We still

save the time of User 2 since he does not have to wait to speak.

This also applies to the scenarios where User 2 is offline,

or has intermittent connectivity (e.g., satellite links). The

26

(a) Stay in a session (b) Switch among sessions (c) Consolidated view

Fig. 2: Providing conversational views for first responders.

application can store the outgoing voice and the user does not

have to worry about the channel availability. We notice that

in these scenarios, the messages could be delayed. To provide

the first responders better context awareness, we carry the send

time at the beginning of each voice message and show them on

the user interface (see Fig. 2a). Our application also chooses

to sort the voice messages based on their sending time to help

first responders to better understand the time sequence.

B. Providing a Conversational View
In Next-Gen MCPTT, the application has the full access

to all the incoming messages and can control when each one

should be played. It can present the user a conversational view

to provide first responders a view of the interactions within a

context. The user can select a (group or private) conversation

to focus on and the application only shows and plays the

messages within that conversation (see Fig. 2a). On receiving

messages from other conversations, the application stores the

messages without playing them. Instead, it shows a marker on

top left to indicate the # of messages pending (with a short

notification sound). Thus the user does not get distracted by

the messages that are not urgent. She can go back to those

conversations after the current work is finished and re-listen

to the missed messages.

The application also allows smooth transition between ses-

sions. Fig. 2b provides a conversation overview for a user.

Each item in the list represents a group conversation. The

number on the right of the conversation name shows the #

of missed messages in that conversation. The application can

order these conversations based on different criteria like time

last message is sent, private vs. group conversations, user’s

favorite (pinned group), etc. Since we store messages, when

a receiver switches to a session, the application can play the

messages missed by the user belonging to that session. Of

course, if a user cannot hear a message clearly, she can just

click the message to listen to it again. This saves time for the

sender from constantly repeating the message. We considered

providing a voice-activated navigation for the conversational

view. However, we were concerned about it being error-prone,

especially in a noisy environment. Therefore, we need to

explore changes to hardware or other user interfaces to reduce

the complexity of this navigation for first responders.

While the conversational view helps the user to focus on a

context at a time, we do realize the need to prioritize some

emergency messages (e.g., a commander ordering everyone

in the team to retreat). Since the application has full control

of the video chunks, it is easy to allow emergency messages

to override session boundaries to be played immediately

(even preempt an ongoing message). The application can

also allow the user to prioritize some conversations/senders

(e.g., messages from a direct command). The messages from

these conversations or senders can be treated like emergency

messages (with preemption), or just have a higher priority to

be played (without preemption of the ongoing message). The

application has the control to schedule the messages based on

the scenario and the requirement of the user.

C. Multi-tasking and Command Hierarchy
For most first responders, a single conversation view like

Fig. 2a may be adequate. However, for an incident commander

managing multiple teams, we provide the ability to handling

multiple groups (conversations) of first responders working on

different tasks. Switching back and forth between them could

be time consuming and distracting. It would also be unde-

sirable to put the users into the same group, since that would

result in excessive amount of information with the potential of

confusing and distracting some of the first responders. In Next-

Gen MCPTT, we allow first responders to create combined

conversations with an integrated view, allowing the ability

to communicate information relevant to multiple groups. In

Fig. 2c, the highlighted conversation is a consolidated session

at a commander that combines both the “Ridgecrest search

team” and the “Ridgecrest firefighting team” in a forest fire

mission in Ridgecrest. The commander can receive messages

sent to both groups, without the need to switch between them.

At the same time, the commander can also choose to send a

message to one group, or even both groups. The application

can replicate the message and send it onto multiple “channels”,

or take advantage of the network to perform multicast to all

the first responders in these groups.

In many cases, first responder teams form a predefined

structure to deal with a particular type of incident [11]. The

structure is usually a command hierarchy where the nodes

in the hierarchy represent groups at different granularity.

For example, a search and rescue mission can be formed

by a search team, a rescue team, a planning team, a law-

enforcement team, etc. The search team can be further divided

into 2 canine teams, 2 technical search teams (e.g., drones), a

coordinator team, etc. Next-Gen MCPTT can take advantage

of the predefined structures (a.k.a, preplans) and build con-

solidated conversations automatically. In the example above,

we can create a consolidated session that includes the canine,

technical, and coordinator, teams (all of which are individual

MCPTT groups). The commander of the search team can see

all the messages going back and forth in these teams, without

the need to switch out of the context. Similarly, we can also

create a conversation for the commander for the whole search

and rescue mission by combining the search team, rescue team,

planning team, etc. The first responders can send messages to

27

Field (Infrastructure-less)

Forwarder

Fig. 3: Enabling seamless D2D communication.

any consolidated group at any granularity without the need to

repeat the same message to multiple groups, thus saving time

for the commander.

Please note that since the preplans are defined before the

disaster, our application can digitize these preplans and create

templates that instructs how the consolidated sessions should

be created. When a disaster strikes, the incident commander

can easily pull up a template and the application can create

the templates automatically without any intervention or super-

vising from the commander (or coordinator). First responders

can join the corresponding teams when they are dispatched

to a particular role, and this can be done automatically by

the application [12], [13] and the time spent on coordinating

channels can be used to save lives.

D. Unifying Connected and D2D Communications
First responders often have to work in areas with limited

or intermittent connectivity, or even without communication

infrastructure support (e.g., for urban search and rescue in

the aftermath of an earthquake). In these cases, D2D com-

munications (e.g., Bluetooth, WiFi-Direct) can be used to

satisfy the need for communication among first responders.

While many existing DTN solutions support a store-and-

play mechanism to deliver messages under such conditions,

they lack a smooth transition between the connected and

infrastructure-less environments – their solution lacks real-

time interactive communication, even when the devices are

connected to the Internet.

In Next-Gen MCPTT, since the applications have access

to the audio chunks received, they can also use it for data

forwarding between devices to either extend the coverage

range of infrastructure (e.g., cellular) communication service

(similar to call forwarding), carry the messages and deliver

them to the users in the field (similar to DTN), or even provide

local MCPTT delivery in the infrastructure-less environments

via D2D communication. As shown in Fig. 3, when users

have an Internet connection (the blue first responders in

the figure), they can send MCPTT messages to groups via

a (logically-centralized) server. The chunked voice provides

real-time interactive communication, just like existing MCPTT

applications (with our enhancements).

When a group of first responders are dealing with an

incident in a communications infrastructure-less environment

(“Field” in Fig. 3), and one of them happens to carry a device

with Internet capability (e.g., satellite phone, like the For-

warder in the figure), that forwarder can disseminate messages

received to the other first responders via D2D communication

in real time. This provides almost equivalent functionality for

all the first responders, that once one device is connected to the

Text-to-Speech (TTS) vs. Text Messaging (SMS)

MCOP
Server

Speech-to-TextText-to-speech Text-to-speech

NG-MCPTT
(our own)

Server
Voice (optional)
Voice

Text
Text (optional)

1

2

3 2

1

Fig. 4: Text-to-Speech (TTS) vs. Text Message (SMS).

Internet, all the other devices are also connected automatically.

The forwarder can even help deliver the messages that are not

destined to him (or the group he is in). The application can

simply forward the messages without playing or showing it to

the forwarding device’s user.

When the Internet connection of the forwarder becomes in-

termittent, the server and the forwarder can store the messages

and send them whenever the communication channel becomes

available. This would be very helpful in situations where first

responders have to deal with underground incidents. Similar

to the feature in push-and-talk (§V-A), we mark the send time

of each message to maintain a time sequence even when some

messages are delayed.

When the forwarder is fully disconnected from the Internet,

he can also elect himself as a temporary server to enable

communication among several users (say within a shelter).

In our system, we allow a device to forward messages for

multiple users, but only connect to 1 upstream device or server.

Therefore, the users will eventually form a tree rooted at the

server. This structure has proved to be efficient, especially

when communications have to go through the server, compared

to a mesh network where routing can be more complex.

E. Enabling Text-to-Speech and Speech-to-Text
Since our application has full access to the voice streams,

they take advantage of the speech-to-text service to translate

every received message to text. This can help first responders

in noisy places (where they cannot hear the messages clearly),

or in places where they cannot play the audio. This can also

help first responders who might receive a large number of

messages, so that they can glance through the texts and play

only the messages whose transcription are confusing. For each

message received, our application performs speech-to-text in

the cloud. To make it easier for the users, we also put the

sender name and the length of the message at the top.

We also incorporate the text-to-speech capability. First re-

sponders can type a message in text. The application would

generate a synthesized voice and send the voice to the group.

This would be helpful in the environment where the first

responders are not able to speak (see the left side of Fig. 4).

SMS is also natively supported, and combined with voice

synthesis (see the right side of Fig. 4). It allows first responders

to be “eyes-free” even when they receive text messages. In

comparison SMS could save the bandwidth in the common

28

Fig. 5: Integrating mapping into Next-Gen MCPTT.

channel (to/from the server) since text message is much

smaller compared to the synthesized voice. Our application

can use cloud-based text-to-speech and speech-to-text services

whenever the devices are connected to the Internet. To facili-

tate the first responders without Internet connectivity, we can

also deploy services directly in the field. These services can

cache the latest results to avoid redundant translation between

text and speech for the messages broadcasted in the same

group (step 3 of TTS and step 2 of SMS in Fig. 4).

F. Integrating Mapping Capability
With the support for command hierarchies and the ap-

plications being able to access all the communication data

(including voice, text and any binary blobs), we go further

and integrate a mapping capability in Next-Gen MCPTT.

The incident commander can divide a disaster region into

hierarchically structured areas and dispatch first responder

teams to deal with tasks in corresponding areas. Fig. 5 shows

the view on an incident commander. Beyond the MCPTT

panel shown on the right, we have added a map task view.

In the middle, we see that the incident area (“Jersey City”)

divided into “East” and “West” sections. Each section is

further divided into areas and first responders are dispatched

to an area (we can support arbitrary number of levels to deal

with incidents at any scale, but we use 3 levels here for the

ease of explanation). The left panel shows the map and the

corresponding areas (the selected region is highlighted with a

yellow shade). First responders can add, update and remove

tasks on the map (e.g., inspection of the structural stability of

each building), and each task is represented by flag and we

use different colors to represent different task types. When the

incident commander hovers onto a task, he can see the current

status and the progress towards completion.

The communication for synchronizing tasks on the map

are based on our SMS feature (with D2D communication

support). Whenever a task is created, updated or deleted,

an SMS (using JSON format) is sent to the group of the

corresponding area/section/region. The application reads the

SMS and updates the local map accordingly. We also support

transmission of binary data (e.g., pictures) through the channel

enabling first responders to attach pictures to the tasks. These

are all enabled by the application having access to the data

transmitted in the channel to present them in different ways.

VI. CONCLUSION

In this paper, we presented Next-Gen MCPTT, a novel

system that improves the mission-critical push-to-talk service

by enabling features like push-and-talk, providing a conver-

sational view, multitasking, device-to-device communication,

text-to-speech and speech-to-text support, and map functional-

ities that are very well suited for first responders to use during

emergency management. The fundamental changes we made

was to not only packetize voice clips, but also give applications

full control of the voice streams. Thus, applications can easily

manipulate the voice streams in the way they want, and present

the messages to first responders appropriately.

We demonstrated our application and had several first re-

sponders try our application in their training exercises at Dis-

aster City at Texas A&M University. Their feedback was that

the new features saved them a lot of effort in communicating,

and helped them focus on their work during the exercise.

There are 3 directions for our future work. 1) We plan

to integrate our application into ATAK (Android Team

Awareness Kit) so that more first responders can take

advantage of the application in their real work. 2) We plan

to explore other wireless technologies like LoRa to provide

better D2D coverage in the infrastructure-less environments.

3) We also need to quantify increase in the mouth-to-ear

latency because of our design. We also foresee that more

applications can take advantage of the exposed audio data

and provide even better services to first responders.

ACKNOWLEDGMENT

This work was supported by the US NIST Tech-to-Protect

Challenge and US NIST PSIAP grant 70NANB17H188.

REFERENCES

[1] Telecommunications Industry Association (TIA), “Land Mobile FM
or PM Communications Equipment Measurement and Performance
Standards,” 2016. Standard 102.E.

[2] Technical Committee Terrestrial Ttrunked Radio and Critical Commu-
nication Evolution, “TErrestrial Trunked RAdio (TETRA).”

[3] 3GPP TSG SA WG6 (SA6), “Release 13 – Mission Critical Push To
Talk over LTE,” 2015.

[4] “FirstNet.” https://www.firstnet.com/. accessed on 02/20/2022.
[5] A. Sanchoyerto, R. Solozabal, et al., “Analysis of the Impact of the

Evolution Toward 5G Architectures on Mission Critical Push-to-Talk
Services,” IEEE Access, pp. 115052–115061, 2019.

[6] C. Brady and S. Roy, “Analysis of Mission Critical Push-to-Talk
(MCPTT) Services Over Public Safety Networks,” IEEE Wireless Com-
munications Letters, pp. 1462–1466, 2020.

[7] J. Tang, G. Chen, and J. P. Coon, “Route Selection Based on
Connectivity-Delay-Trust in Public Safety Networks,” IEEE Systems
Journal, pp. 1558–1567, 2019.

[8] Z. Niu, H. Li, and C. Xu, “A Signaling Compression Method for
MCPTT Trunking Communication System Based on Carrier Aggregated
Broadband System,” in ICEIEC, 2017.

[9] Y. Sun, W. Garey, et al., “Access Time Analysis of MCPTT Off-network
Mode over LTE,” Wireless Communications and Mobile Computing,
2019.

[10] “Mission Critical Open Platform.” https://www.mcopenplatform.org/.
accessed on 02/20/2022.

[11] “National Incident Management System.” https://www.fema.gov/
emergency-managers/nims, 2022. accessed on 02/20/2022.

[12] M. Jahanian, J. Chen, and K. K. Ramakrishnan, “Graph-based Names-
paces and Load Sharing for Efficient Information Dissemination in
Disasters,” in ICNP, 2019.

[13] K. K. Ramakrishnan, M. Yuksel, et al., “Resilient Communication for
First Responders in Disaster Management,” in ISCRAM, 2021.

29

