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Abstract—“Tactile internet” refers to a network that can
support real-time interactions between human operators and
remote cyber-physical systems as if they were near to each
other. For this, the network should support ultra-low latency
communication, often referred to as the 1ms challenge. However,
we observe that network requirements, such as latency and band-
width, of tactile internet based cyber-physical systems or Tactile
Cyber-Physical Systems (TCPS) are not static: they severely
fluctuate over time. Therefore, for TCPS, static provisioning
of network resources is sub-optimal. For optimal utilization of
network resources, we propose a mechanism to, per TCPS flow,
dynamically create, destroy and switch network slices, based
on the network resources needed at that time. Our solution
consists of two main components. First, we develop a clustering
algorithm to determine the slices and their specifications required
to support a TCPS flow. Second, we leverage Software-Defined
Networking (SDN) and P4-programmable switches to enable on-
the-fly provisioning and switching of these slices.

I. INTRODUCTION

A teleoperation system consists of a human operator con-
trolling a remote robot, called teleoperator, over a commu-
nication network. Here the communication network transports
the kinematic (position/velocity) commands from the operator-
side to the teleoperator-side and feeds back audio, video and/or
haptic data in the reverse direction. Although teleoperation
systems have been around for decades, the presence of signifi-
cant end-end latencies and packet drops in communication net-
works restricts human operators from performing control ac-
tions that demand higher operator dynamics (e.g., hand speed)
and/or cover large distances [1], [2]. Especially at higher oper-
ator’s dynamics, the teleoperation systems can either become
unstable or result in severe operator-side cybersickness causing
severe degradation to the end-user experience [2]. For critical
applications, like telesurgery, control loop instability can cause
the remote-side robot to go out of control from the surgeon’s
hand resulting in injuries to patients. Similarly, cybersickness,
which occurs when feedback delays are significant and no-
ticeable to the human operator, can result in physical and
physiological effects in human operators preventing them from
extended use of the teleoperation system [3], [4]. To prevent
the aforementioned problems, networks characterized by very
low end-to-end latency (ideally 1ms), and very high packet
reliability (approx 99.999%), termed tactile internet [2], are
needed. We refer to these envisioned teleoperation systems as
Tactile Cyber-Physical Systems (TCPS).

However, we observe that in many TCPS applications,
operator dynamics widely fluctuate and, most of the time,
stay away from their peak value. Consequently, at lower
dynamics the network requirements of these flows can be
relaxed, allowing for higher latencies and less bandwidth. For

Fig. 1: (a) (x, y, z)-positions tracking the left hand movements
of a surgeon performing the surgical task called suturing using
a da Vinci Surgical System. (b) Dynamics in x-position. (c)
Histogram of the dynamics in x-position.

instance, consider Figure 1 showing the left-hand movements
of a surgeon performing a suturing operation using a da Vinci
Surgical System [5]. We find that the operator’s dynamics (i.e.,
the hand speed of the surgeon) along the x axis vary through-
out the procedure and stay below their peak value (≈ 0.13m/s)
most of the time. If the network provider were to statically
allocate network resources to such an application, following
the peak value of operator dynamics, the performance would
be guaranteed during the lifetime of the flow, but the assigned
network resources would be underutilized most of the time.

As a solution, we propose a dynamic resource allocation
scheme where the instantaneous operator’s dynamics govern
the amount of allocated network resources. To achieve that, we
leverage an emerging networking architecture, called network
slicing [6]. This concept envisions that network providers can
divide a single physical network into several virtual networks,
each tailored to a class of application requirements. By exploit-
ing this concept, our scheme routes each TCPS flow through
a set of network slices (each tailored to different dynamics)
that are created and destroyed on-the-fly. Our scheme offers
a solution to several tasks: (i) clustering of the operator’s
dynamics, where each cluster is mapped to a resource vector,
(ii) profiling of resource requirements, which determines the
fraction of time each resource vector is required and helps
to check the availability of resources before starting the
application, (iii) real-time creation and destruction of network
slices (switching across resource vectors) according to the
current operator’s dynamics.

Additionally, since creating new slices, and switching flows
between slices, consumes non-negligible time (potentially in
the order of tens of ms), adversely impacting TCPS applica-
tions, we propose (i) identifying a priori the slices and their
specifications before the beginning of the TCPS application,
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(ii) using a Software-Defined Networking (SDN) controller to
pre-compute the paths for the identified slices, and (iii) using
P4-programmable switches for real-time resource allocation
and switching of slices [7]. This way we make sure that the
slice switching latency is minimized and meets the latency
constraints of a TCPS application. Finally, we show that our
approach not only leads to a more efficient network resource
utilization, but also results in enormous savings in aggregate
switch memory, while keeping the slice switching latency in
control.

A. Key Contributions
• Clustering Algorithm for TCPS: We propose a clustering

algorithm to design network slices for TCPS applications.
The slices designed using the proposed clustering algo-
rithm maximize the network resource utilization (or min-
imize the network cost), while maintaining the required
application quality.

• Real-Time Slice Management Framework: We propose an
on-the-fly network slice provisioning system. Every time
a slice switch occurs, the previously used network slice
is destroyed and a new one created directly in the data-
plane. This way the network resources assigned to the
TCPS application are effectively scaled up or down.

B. Related Work
Traditional networks were static and offered very limited

possibilities for Quality of Service (QoS) provisioning. When
assigning resources, network providers were left with two
choices: to either over-provision, i.e. reserve too many re-
sources, but keep the average utilization low, or to under-
provision, i.e. increase the utilization, but reserve insufficient
resources to support the application at its peak load, potentially
degrading the end-user experience.

By splitting the control-plane from the data-plane, SDN
enabled more flexible, fine-grained QoS provisioning [8] and
it facilitated the concept of network slicing, where, on top of
a common physical infrastructure, different virtual networks,
tailored to different traffic needs, can be created, enabling the
coexistence of diverse services [9], [10], [11]. Several slicing
frameworks, such as FlowVisor [12] and FlowN [13], have
been proposed over the years. However, they focus on creating
isolation between the slice tenants and do not address the
specific and very strict per packet QoS requirements of a TCPS
application.

Additionally, many SDN frameworks enabling resource
reservations were proposed over the years [14], [15], [16],
[17], [18], [19]. However, the time-varying resource require-
ments of flows were not taken into account. Moreover, even
if dynamic rerouting and resource scaling would be added to
these SDN frameworks, they would still violate the constraints
(e.g., end-to-end latency) of a TCPS application. To add new
or modify existing rules for the network, SDN controllers need
to be informed first, resulting in a significant re-configuration
latency penalty. Furthermore, variable latency between the
controller and the switches can lead to inconsistencies in
the switch tables. If all the switches are not updated at
exactly the same time, packets can get dropped (due to non-
existing rules) or processed by outdated rules potentially

violating the service-level agreement between the network
provider and the slice tenant [20]. To solve the aforementioned
problem, programmable switches, along with domain-specific
programming languages, such as P4, can be used [7]. They
offer the possibility to respond quickly to traffic changes
directly from the data-plane, while the data-packets are being
processed [21].

Specific to TCPS flows, [22], [23], [24] list the benefits of
network slicing to guarantee lower latency, higher reliability
and security. However, they consider the network slices to
be static, i.e., the lifetime of these slices extends over the
full duration of a TCPS flow. While the authors of [25], [26]
discuss dynamic-aware routing of TCPS flows, exploiting the
burstiness in the packet arrival rates, it is limited to latency
and bandwidth optimization in radio access networks alone. It
also does not take into account the varying dynamics of the
TCPS operator. Several works examined how to use time series
methods to cluster/classify human hand motion in a general
context (see [27], [28]). However, a framework to adopt these
methods in the context of TCPS and dynamic network slicing,
i.e., how to use these algorithms to design slice specifications
for given TCPS quality requirements, is still missing.

In the context of wireless embedded systems, several works
have attempted to guarantee communication quality to ensure
the stable control of remote devices. Some of these works also
address how to dynamically change the communication path
between a controller and a remote device without compromis-
ing on stability (see [29] and references therein), a concept
that bears some similarity to the concept of dynamic network
slicing discussed in this paper. These works, however, focus
only on embedded wireless systems working on a limited
number of hops. In particular, they are not tried and tested on
IP network components such as switches, nor do they account
for the peculiarity of historical data to design slices.

C. Outline

We organize our paper as follows: In Section II, we describe
the main building blocks of our system, enabling dynamic re-
source provisioning and routing of TCPS flows. In Section III,
we propose a clustering algorithm to estimate the number
and specifications of network slices for TCPS applications. In
Section IV, we describe how to use programmable switches to
realize real-time slice management. In Section V, we evaluate
our proposed system. We conclude the paper in Section VI.

II. SYSTEM OVERVIEW

Figure 2 shows our proposed TCPS architecture to enable
dynamic network slicing. The architecture consists of two
main blocks, the edge controller and a real-time slice man-
agement framework. In this section, we describe the functions
and design details of these blocks.

A. Edge Controller

The edge controller resides at the operator-side. It serves
the following two purposes.

• Before the start of every TCPS flow, the edge controller
requests network slices of specific bandwidth and latency
from the SDN controller. The slice configuration block of
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Fig. 2: Proposed TCPS architecture to enable dynamic network slicing.

the edge controller performs this request. Only if this re-
quest is granted and acknowledged by the SDN controller,
the TCPS application is allowed to start sending data.

• At run-time, the edge controller (through the network
slice selection block) decides which slice to use based
on the current operator dynamics (e.g., hand speed)
measured by the dynamics assessment block. The edge
controller then embeds this slice information in the IP
header of the TCPS packet before sending it out onto the
network.

For the slice configuration block to request slices and for
the network slice selection block to decide which slice to use,
the blocks should a priori know the number of slices, their
specifications, and how to map current operator dynamics to an
available slice. To cater to these needs, we propose a custom
unsupervised clustering algorithm. We use this algorithm to
find clusters in hand-speed values, which we obtain from
different trials of the TCPS operation. We map each cluster
to a slice and then use the cluster statistics to derive the slice
specifications and also the dynamics-to-slice map. We describe
this algorithm in Section III.

Figure 3 shows a sample implementation of the dynamics
assessment and the network slice selection blocks.

Fig. 3: Design of the dynamics assessment and network slice
selection blocks. S/H - sample and hold block.

The dynamics assessment block measures the operator’s

dynamics (i.e., hand speed) from the operator’s hand position,
r � r(t), at every rising edge of the sampling clock clk s (of
period Ts), using an ideal derivative block (d/dt).

The network slice selection block selects a suitable slice
to route the TCPS flow based on the measured dynamics.
Also, based on the selected slice, it modulates the frequency of
clk s. Modulating the frequency of clk s serves two purposes.
First, it helps in optimizing the data transmission rate (and the
bandwidth), and second, it helps in accurate measurement of
the operator dynamics over a wide range.

We change clk s during slice switches. We set the period of
clk s proportional to the Round Trip Time (RTT) of the slice
in use, since, RTT of the slice in use is directly dependent
on the operator dynamics (p is an appropriate proportionality
constant, 0 < p < 1). However, this setting can cause TCPS
packets to experience RTT overheads during slice switches,
particularly when switching from a slice of low RTT to high
RTT. To minimize this overhead, we can tune p. Note that
a lower p minimizes switching overhead, but increases the
rate of data transmission and may also degrade the quality of
dynamics measurements. In our work, we set p = 0.1.

We model the overhead in RTT at sampling instance
n � nTs using the following equation. We assume that
the overhead is negligible when RTT of the current slice,
RTT (Sn), is higher than the RTT of the previous slice
RTT (Sn−1).

RTToverhead(n) =

⎧⎪⎨
⎪⎩

0, if Sn = Sn−1

0, if RTT (Sn) > RTT (Sn−1)

p×RTT (Sn−1), otherwise

Remark: In Figure 3, we use the same clock for sampling,
dynamics assessment and data transmission, assuming that all
three are executed at the same rate. However, the sampling
rate can be any value higher than the dynamics assessment
rate, which in turn can be higher than or equal to the data
transmission rate.
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B. Real-Time Slice Management Framework

Our real-time slice management framework enables on-
demand provisioning of network resources, i.e. the resources
are made available on-the-fly only when needed, similarly
to computing resources in cloud environments. This way,
network utilization is constantly high, as no resources are over-
provisioned, while the QoS is guaranteed during the whole
lifetime of the TCPS application, i.e. the network is adapting
its behaviour to match the current TCPS application’s needs.
The scaling process is done at the expense of any other
non-TCPS flows, which get the remaining resources in the
network. To enable this on-the-fly slice management, our slice
management framework consists of two main components:

• A central SDN controller (control-plane) that has a global
view of the whole network, as well as the currently
present traffic. For every new TCPS flow, it finds the
appropriate routes that satisfy the end-to-end slice re-
quirements according to the current global network state.

• Slice configuration protocol (data-plane), deployed using
the network programming language P4 [7], to create/de-
stroy the slices on-the-fly in the data-plane using the in-
formation from the edge controller and the pre-computed
inputs from the SDN controller. It provides a fast update
loop, enabling the switches to react quickly to the changes
in the application dynamics without the need to contact
the SDN controller. Thus, the slices are created/destroyed
at run-time, with negligible latency overhead.

Every time a new TCPS flow is initiated, the edge controller
forwards the slice specifications it wishes to use to the central
SDN controller (Figure 2). The SDN controller, with its up-
to-date overview of the current network state, uses these slice
specifications to calculate the routes that satisfy the QoS (e.g.,
delay and bandwidth) requested for each slice. Finally, these
pre-calculated routes are forwarded and stored in the first
switch on the path (i.e., the edge switch to which the TCPS
Edge Device is connected) and ready to be used by the second
component of our solution: the slice configuration protocol.

The slice configuration protocol enables the creation/de-
struction of network slices on-the-fly, directly in the data-
plane, using just the routes stored in the edge switches. Every
time the TCPS dynamics change, i.e. a different slice is
requested by the edge controller, the assigned network slice
(with certain delay and bandwidth constraints) is destroyed,
and the resources freed to be used by other services. At the
same time, a new slice, corresponding to the new dynamics,
is created. To ensure that both creation/destruction actions are
executed in real-time, our protocol enables the data-packets
to program the data-plane as they pass through the switches.

For example, to create the slice, the first switch appends
a special slice configuration header, containing among other
things the pre-calculated route, to the original TCPS packet
that was received from the edge controller. By reading this
special header, every switch in the path configures/updates
its forwarding and bandwidth reservation rules to correspond
to the currently requested slice (as explained further in Sec-
tion IV). Thus, as the switches in the path process the first
TCPS packet, a new slice is configured and ready to be used.

All the subsequent TCPS packets follow this first packet and
are routed using the newly created rules, which prevents any
temporary inconsistencies. In addition, every time a new slice
is created, a similar packet is sent to destroy the slice that
was previously used. Every switch that processes this packet,
deletes the configured rules and frees the allocated bandwidth.
This way, the number of installed rules is minimized and the
bandwidth released to be used by other services. Every time
the edge controller detects a new change in dynamics, the
whole process repeats.

During the lifetime of a TCPS application, at any mo-
ment only one slice per application is configured/used in
the switches. Thus, although the rules (processing as well
as bandwidth reservations) for multiple slices are calculated
by the controller, only one set of rules (corresponding to the
currently used slice) is active. As a consequence, resources
assigned to slices that are not currently used are free and have
no impact on other traffic present in the network.

When calculating the routes, the SDN controller makes
sure that, if the resources of other slices are to be requested
(due to a change in dynamics), they would be available
instantaneously. To do so, the controller keeps track of the
amount of bandwidth allocated on every link to all slices
of TCPS flows. Hence, new TCPS flows are only admitted
through switches that will have enough resources available.
As a consequence, during the entire duration of any TCPS
flow, resource availability is always guaranteed. However, this
approach also limits the maximum number of TCPS flows that
can be present in the network at the same time. Depending on
the exact TCPS application, this requirement can be relaxed by
providing a trade-off between the maximum number of flows
and the probability of a QoS degradation.

III. CLUSTERING ALGORITHM FOR TCPS

In the previous section, we proposed using an unsupervised
clustering algorithm to determine the number of network slices
and their specifications. In this section, we motivate the need
and describe the design of our proposed clustering algorithm,
guided by the following two performance metrics.

A. Performance Metrics

1) Visual Performance Index: We model and quantify cy-
bersickness using a visual performance index E. We de-
fine E as the percentage of time during a given TCPS
task for which the visual error, i.e., the error between the
position of the robot displayed on the operator-side screen
and the current hand position of the operator, is within 1mm.
E = 100% implies that the error during a TCPS task is always
within 1mm. Since errors of less than 1mm are not noticeable
to human operators, this condition eliminates the presence
of cybersickness. A TCPS application may have a minimum
desired visual performance index, Espec. Applications that
demand stringent requirements on visual quality may require
a higher value of Espec.

For a TCPS, the required RTT to avoid cybersickness
depends on the operator dynamics, i.e., hand speed. If the
hand speed is at the natural maximum limit of human hand
speed, i.e., 1m/s, we need an RTT of less than or equal to
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1ms to keep the visual error within 1mm [1] (See Figure 4).
However, at lower hand speeds, we can allow higher RTT,
e.g., if the hand speed is 0.1m/s, any RTT less than or equal
to 10ms ensures that the error is within 1mm. In the context
of dynamic network slicing, we use the following equation to
decide RTT for a slice S.

RTT (S) =
1

Vmax(S)
ms (1)

In the above equation, Vmax(S) is the maximum hand speed
(in m/s) that the slice S is required to support. Note that
even if individual slices maintain these RTTs, E will still be
less than 100%. This is due to the presence of RTT overhead
caused by slice switching.

Fig. 4: At a hand speed of 1m/s, error is 1mm when RTT is
1ms [4].

2) Price Index: We quantify the cost of the required net-
work slices using a price index, I . Generally, rates (costs per
unit time) of network slices that offer high-bandwidth, low-
latency routes are high. Considering this, we assume the rate of
a slice S is proportional to its bandwidth B(S) and inversely
proportional to its RTT RTT (S), specified by the function,
f . Further, the price of using a set of slices depends on the
fraction of time the individual slices in the set is used. We use
the following equation to define the price index.

I =
∑
S

B(S)× f(RTT (S)−1)× U(S) (2)

In the above equation, U(S) is the fraction of time a slice
S is used and is referred to as the utilization factor of S.
Also, f(·) is an increasing function. In our work, we consider
f(x) = x. For many use cases of TCPS, the bandwidth
is consumed mainly by video feedback [30], [31]. We can
optimize this bandwidth by modulating the frame rate of the
feedback video as a function of operator hand speed, i.e., we
increase the frame-rate when operator hand speed is higher
and decrease it when the hand speed is lower. In our work, we
consider the case where the RTT of the slice decides the frame-
rate, i.e., we change the frame-rate every time a slice switch
happens. In this scenario, B(S) will be inversely proportional
to RTT (S). See Appendix A for details.

B. Objective
Our goal is to design network slices and to determine their

utilization factors for a specific TCPS application. Observe
that using low bandwidth and high latency slices may result
in a visual performance index E less than Espec. Using high
bandwidth and low-latency slices leads to better E, but also a

higher I . Given a set of network slices, E and I also depend
on the slices’ utilization factors. Our objective is to determine
the slices, and their utilization factors, that minimize I subject
to E ≥ Espec.

Below we propose a custom clustering algorithm to cluster
the operator’s hand-speed values. In Appendix D, we elaborate
why popular clustering algorithms such as k-means [32] and
mean-shift [33] do not suit our requirement.

Remark: We can configure and use network slices for tac-
tile applications even without a priori knowledge of historical
data or dynamics. However, we use historical data to arrive
at a “good” number of slices and “good” slice specifications.
Our proposed algorithm yields slice specifications such that
the number of switchings is not excessive and the slices used
are also close to the “least required” most of the time.

C. Design

Our approach consists of clustering operator’s hand speeds
obtained from the application’s historical data sets and then
to map each cluster to an appropriate network slice. Cluster
boundaries determine the slices’ characteristics, whereas hand
speed distribution determines the slices’ utilization factors. We
can formally describe the problem as follows. Let the historical
dataset contain N hand-speed values, v(n) (n = 1, . . . , N).
Let F (v) be the distribution of the hand speeds

F (v) =
|{n : vn ≤ v}|

N
.

Let there be K hand-speed clusters, kth cluster being
(θk−1, θk) with 1 ≤ k ≤ K, notice that θk = Vmax(k). We
take θ0 = 0 and θK = vmax. The cost of clustering can be
expressed using the price index I (assuming f(x) = x in (2))
as:

I =
K∑

k=1

B(k)RTT (k)−1U(k)

where the utilization factor of the kth cluster U(k) = F (θk)−
F (θk−1). Further, the bandwidth of the kth cluster, B(k),
should be inversely proportional to RTT (k) (see the last
paragraph of Section III-A2). We let κ1 be the proportionality
constant. Hence, for all k = 1, . . . ,K,

B(k)RTT (k)−1 = κ1RTT (k)−2 = κ1θ
2
k

where the last equality follows from (1). Thus,

I = κ1

K∑
k=1

θ2kU(k) = κ1

K∑
k=1

(F (θk)− F (θk−1))θ
2
k

The optimal clustering problem entails determining K and
(θ0, θ1, . . . , θK) to minimize I , while ensuring that E exceeds
Espec. For fixed (θ0, . . . , θk−1, θk+1, . . . , θK), we can unilat-
erally change θk to minimize I . More precisely, we can set

θk = argmin
θ∈(θk−1,θk+1)

K∑
k=1

(F (θk)− F (θk−1))θ
2
k

= argmin
θ∈(θk−1,θk+1)

(F (θ)− F (θk−1))θ
2 − F (θ)θ2k+1.
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Also, the visual performance index, E, degrades with the
number of slice switches from low latency slices to high
latency slices. For a cluster boundary θ, the normalized
number of such switch-overs is,

sθ =
|{n : v(n) ≤ θ < v(n+ 1)}|∑
θ′ |{n : v(n) ≤ θ′ < v(n+ 1)}| .

These motivate the following heuristic to arrive at a “good”
clustering: Start with the number of clusters K = 2 and
arbitrary cluster boundaries (θ0, θ1, . . . , θK). Randomly pick
a boundary θk (0 < k < K) and update it as

θk = argmin
θ∈(θk−1,θk+1)

(F (θ)− F (θk−1))θ
2 − F (θ)θ2k+1 + βsθ

where β is a design parameter. Using higher β gives more
weight to visual performance compared to the price. Con-
tinue such unilateral updates until the cluster boundaries con-

verge. Let the resulting boundaries be (θK,β
0 , θK,β

1 , . . . , θK,β
K ).

Record the corresponding visual performance index EK,β . In
Appendix B, we illustrate the dependence of EK,β and IK,β

with β. If EK,β . exceeds Espec, repeat this exercise for K+1
clusters else output K − 1 as the final number of clusters and

(θK−1,β
0 , θK−1,β

1 , . . . , θK−1,β
K−1 ) as the final cluster boundaries

(θK−1,β
0 = 0 and θK−1,β

K−1 = vmax). We formally describe the
algorithm as follows.

Algorithm 1 Determining Clusters, Given β and Espec

1: procedure CLUSTER(β,Espec)
2: K ← 2
3: loop:
4: compute EK,β , (θK,β

0 , . . . , θK,β
K )

5: if EK,β > Espec then
6: K ← K + 1
7: goto loop
8: else
9: return K − 1, (θK−1,β

0 , . . . , θK−1,β
K−1 )

Discussion: The proposed algorithm does not necessarily
give the optimal cluster specifications. Given that the speeds
are quantized into Q values and the number of clusters to be
used is K, computing optimal cluster specifications following
a brute-force approach requires Θ(QK) computations. As
we have to compute optimal cluster specifications for several
values of K, the brute-force approach is intractable. We have
found in our simulations that the proposed algorithm converges
much quicker. Moreover, it leads to cluster specifications that
are close to the optimal cluster specification. We demonstrate
this in Appendix C using a dataset from the da Vinci Surgical
System.

IV. SLICE CONFIGURATION PROTOCOL

To switch a TCPS flow f , between two TCPS endpoints,
from slice A (with a pre-calculated route rA) to slice B (with
a pre-calculated route rB) two actions need to be performed:
(i) creation of a new slice B, i.e. updating the forwarding rules
and allocating bandwidth for flow f on all switches on path
B, and (ii) deleting the old slice A, i.e. deleting the rules and
freeing the allocated bandwidth for flow f on all switches on

path A. To ensure that (i) and (ii) are executed in real-time,
we designed a new slice configuration protocol that enables
the data-packets to create/destroy a network slice as they pass
through the switches.

To perform the above-mentioned actions, our slice con-
figuration protocol uses two different messages (shown in
Figure 5): (1) “Slice setup” message to create a new slice
and (2) “Slice delete” message to delete the previously used
slice. The field Ports array represents the pre-calculated route
rB (rA) as a sequence of output ports from all the switches
on path B (A). The size of this field depends on the number
of switches used on the path (specified by the field Header
Length). Slice ID corresponds to the bandwidth constraint
needed on the path. Based on this parameter, the switches
will reserve the needed amount of bandwidth as the packet
passes through them.

In Section IV-A, we describe how the pre-calculated routes
(by the central SDN controller) are used in the edge switches,
while in Section IV-B we describe how we use our protocol
to change routing entries on the intermediate switches (i.e., in
the network core).

Msg.
type

Slice ID Header Length

Ports array
S - Slice setup
D - Slide delete

Fig. 5: Slice Configuration Protocol header.

A. Processing on the Network Edge Router

When a first packet belonging to a TCPS flow is received
at the network edge, the router, based on the flow identifier
(source and destination IP addresses, protocol field, and source
and destination ports) and the ToS (Type of Service) field,
inserts a new “slice setup” header between the Ethernet and
the IP headers. For example, as shown in Figure 6, when a
packet with flow identifier 35 is received, the router checks the
table containing the headers for all the potential slices this flow
can use (shown on the left in Figure 6, for memory overhead
calculation see Appendix E).

Since the ToS field of the packet is set to 1, the slice with ID
1 is chosen and a header containing the values 1−4 is inserted
between the Ethernet and IP headers. The header field 1
represents the Slice ID (Figure 5) and corresponds to a certain
predefined amount of bandwidth that will be allocated at all
the switches for this flow. Similarly, the next header (value
2) represents the length of the route rB and indicates that
two intermediate switches are present between the TCPS Edge
Devices. All other values represent port numbers used at the
intermediate switches (port 3 at the first intermediate switch
and port 4 at the second intermediate switch). In addition, the
Ethernet type is changed to a specific value (0xBB) to indicate
the presence of the new header.

To delete the previously used slice, the same procedure is
used. An additional packet, containing “Slice delete” header
is sent on the route rA (determined by the flow identifier and
the previously used ToS field).
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ToS Flow Id. Sl.id Len. port 1 port 2 port 3

Match fields: Header to add:
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Flow Id: 35; ToS: 1 Eth. type: 0xBB

Fig. 6: Processing on network edge. “Slice setup” header is
inserted between the Ethernet and IP headers.
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Fig. 7: Processing of a “slice setup” message in the network
core. New rules are added as the packet passes through the
switch.

B. Processing in the Network Core

When a packet with the Slice Configuration Protocol header
is received by the next switch in the path, additional bandwidth
is reserved, and the forwarding table updated (Figure 7). The
first intermediate switch, after processing the “Slice setup”
header, inserts a new entry in the forwarding table (shown
on the left bottom corner in Figure 7). All the subsequent
packets, with flow identifier equal to 35 and belonging to slice
1 (indicated by ToS equal to 1), are processed by this rule and
output to port 3. In addition, the resources reserved for slice
1 are increased by 10 units of bandwidth (shown on the right
bottom corner in Figure 7), the used port number field (with
the value 3) removed, and the header length reduced by 1 to
represent the number of switches left to configure. Similarly,
when this packet is received by the second intermediate switch,
a new rule (to output packets to port 4) is inserted and the
bandwidth allocation table updated. All subsequent packets
with the flow identifier 35, are processed by these newly
installed rules (e.g., output to port 3 on the first switch
and port 4 on the second switch), preventing any temporary
inconsistencies. When a slice needs to be deleted, a similar
process occurs on every switch in the network. The only
difference is that, when a switch detects a “slice delete” header,
network resources would be released (or scaled down) and
processing rules removed.

V. EVALUATION

In this section, we evaluate (i) the performance of our clus-
tering algorithm, (ii) the benefit of dynamic network slicing,
and (iii) the performance of our programmable network in
managing slices in the presence of traffic.

A. Performance of our Clustering Algorithm
In Table I, we compare the performance of Algorithm 1

with k-means and mean-shift using the hand speed time series
data from the da Vinci Surgical System database [5]. The
datasets we use for clustering (Suturing-B001, B002, B003,
B004, B005), correspond to a surgeon performing five trials
of a suturing operation (vmax ≈ 0.18m/s). We see that
Algorithm 1 (Q set to 200) presents significant cost savings
in comparison to mean-shift and performs better than k-means
for an Espec of 95%. Besides, by varying β, Algorithm 1
demonstrates the ability to tune E, a feature that k-means and
mean-shift do not possess.

In Appendix D, we compare the performance of Algo-
rithm 1 and k-means using hand speed time series that have
multiple peaks in their histogram. We show that Algorithm 1
distinctively outperforms k-means in such scenarios.

Remark: For comparison, k-means and mean-shift algo-
rithms were tuned for optimal values of K, which minimize
I and ensure E > Espec.

TABLE I: Performance comparison of Algorithm 1 with k-
means and mean-shift for five trials of a suturing operation.
E and I values averaged over the five trials are used for
comparison.

k-means mean-shift
Algorithm 1

β=0 β=0.05 β=0.1

E(average) 96.9% 96% 97.1% 98.1% 98.6%

I(average) 361.9 427.0 337.7 374.1 412.5

K 4 5 4 4 4

B. Performance of Dynamic Network Slicing
Dynamic network slicing can result in significant cost

savings with acceptable degradation in visual performance. To
demonstrate this, we run Mininet simulations to compare E
and I with and without dynamic network slicing [34]. We
use the cluster specifications generated by Algorithm 1 in
Section V-A to design the slices for dynamic network slicing
(Espec = 95%, K = 4). Figure 8 shows the evaluation
setup. The four links with RTTs 117.4ms, 29.5ms, 13.4ms,
and 5.7ms simulate four network slices. To simulate the
TCPS flow, we first packetize the data corresponding to the
surgeon’s hand position (from Suturing-B001 dataset) along
with Slice-ID. These packets are then sent from host h1

to host h2. The edge switches identify the Slice-ID in the
incoming IP packets and decide the link to route the flow. h2

receives these packets and echoes them back to h1 to simulate
the feedback (remote-side robot’s position).1 For experiments
without dynamic network slicing, we choose a single point-
to-point link with RTT of 11.22ms between h1 and h2. The
RTT of 11.22ms corresponds to the largest among the RTTs
that result in an E of 100%.

Table II captures the designed and measured E and I values
with and without dynamic network slicing. Recall that with

1Note that we simulate the feedback without considering physical devices
at the teleoperator side, such as a robot or a video camera, because, in the
experiments, our focus is only on the communication network.
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Fig. 8: Simulation setup to evaluate dynamic network slicing.

dynamic network slicing, the links were designed to meet an
Espec of 95%. The design thus suggests a decrease in E by
5% (100% to 95%). The decrease in E measured, however,
is close to 10%. We can attribute this difference to setup
overheads and the simplified overhead model we used for
designing the slices. The measured decrease is acceptable for
many TCPS applications. For TCPS with stringent quality
requirements, the decrease in E can be controlled by designing
slices for a higher value of Espec. We measure I via a separate
experiment. The experimental setup used for measuring I is
the same as used for measuring E, except we modulate the
bandwidth of the TCPS flow as a function of the slice RTT
to simulate the varying bandwidth requirement of the video
feedback (see Section III-A). In practice, the bandwidth of the
TCPS flow varies due to video frame-rate modulation. How-
ever, for the experiment, to simulate the bandwidth profile,
we fix the frame-rate and adapt the UDP packet size at every
sampling instant as a function of the slice RTT. We do this
because the dataset corresponding to the suturing operation is
available for a constant sampling rate of 30Hz. Measurements
show a reduction in I by 77% with dynamic network slicing,
indicating excellent cost savings.

TABLE II: Variation in E and I with and without dynamic
network slicing.

Dynamic
Slicing

E I

Designed Measured Designed Measured

Disabled 99.66% 99.62% 778 742

Enabled 95.77% 90.48% 230 167

C. Network performance
Experiment setup: To evaluate our slice switching protocol,

we emulate the USNET topology (Figure 9), using Mininet
with the P4 software switch (behavioural model [35]). Multiple
TCPS flows are generated between two TCPS Edge Devices
TE1 and TE2 and delay, jitter, and throughput are measured
in both directions. After receiving a packet, TE2 bounces it
back to TE1 using the same slice. As in V-B, TCPS flows
are routed through 4 slices with RTTs equal to 117.4ms,
29.5ms, 13.4ms, and 5.7ms. Thus, for each TCPS request, a
set of four routes is calculated by the SDN controller (example
set shown in Figure 9). To simulate the traffic belonging to
other services, additional TCP traffic is generated using iperf
between different switches in the network. All measurements
were repeated 30 times [5].
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Fig. 9: USNET topology. Link delays are in ms.

Traces: Each TCPS trace is 98 seconds long and contains
data from the da Vinci Surgical System database. For each
packet in this trace, the ToS header is set using the clustering
algorithm described in Section III and indicates the slice the
packet should be processed in. Packet lengths were fixed to
140B (including the headers) and sent at a rate that depended
on the current slice (one packet each RTT/2). Thus packets
belonging to slices with stricter latency requirements (and
higher dynamics) are also sent at a faster rate, creating sudden
bursts of TCPS traffic in the network.

Comparison baslines: Our approach (P4 + Slicing) is com-
pared to (i) an approach that uses an SDN controller to
compute and install a new slice (both route and bandwidth
reservation) each time a switch occurs (SDN + Slicing), and
(ii) an approach that does not use slicing, but provides QoS
guarantees (No Slicing) by reserving either the maximum or
average bandwidth needed by the flow.

1) Switching Delay: To demonstrate the advantages of our
slice configuration protocol, we evaluate the time needed to
switch between two different slices. This switching delay is
measured as the difference in the delay between the first (with
the additional Slice Configuration header) and second packet
processed by the slice. Compared to the solution that uses a
centralized controller to reroute packets (SDN + Slicing), our
solution was able to reduce the switching delay significantly
(0.34ms on average compared to 72.68ms on average). The
main reason for the huge increase in performance is the fact
that the (SDN + Slicing) solution forwards the first packet to
the controller introducing a significant delay penalty, while our
solution enables the packets to program the data-plane.

2) Performance Guarantees: Figure 10 and Table III show
that, when using our proposed (P4+Slicing) solution, the
network can guarantee the performance at any moment during
the duration of the TCPS flow. The blue line, representing
the one-way delay between the two TCPS edges (TE1 and
TE2) is under the red line, representing the delay constraint
of the system corresponding to the current perceived dynamics
(i.e., the maximum allowed delay each packet can experience),
during the whole flow duration. When switching from a high to
low RTT slice, packet reordering can occur at the TCPS edge,
due to the difference in the slice’s RTTs. However, this will
not degrade the system’s performance, as the later-arriving,
outdated packets can simply be discarded.

In contrast, in the scenario (SDN+Slicing), the first packets
processed by the slice experience a significant increase in
delay (Figure 10). This effect is more significant for low-
latency slices (Slice 3 and 4), in which the delay constraints
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TABLE III: Maximum and average RTT values measured for each slice for the USNET topology. (metrics calculated for 30
different runs). Values are in ms.

No Additional TCP Traffic With Additional TCP Traffic
P4 + Slicing SDN + Slicing No Slicing

(Max. Reserved)
P4 + Slicing SDN + Slicing No Slicing

(Max. Reserved)
No Slicing
(Avg. Reserved)

Slice RTT
constraint

Avg.
RTT

Max.
RTT

Avg.
RTT

Max.
RTT

Avg.
RTT

Max.
RTT

Avg.
RTT

Max.
RTT

Avg.
RTT

Max.
RTT

Avg.
RTT

Max.
RTT

Avg.
RTT

Max.
RTT

1 117.48 65.37 67.00 32.50 44.13 - - 63.07 66.24 63.10 67.64 - - - -
2 29.51 27.46 29.28 29.28 36.13 - - 27.65 29.39 39.28 91.92 - - - -
3 13.48 10.71 12.77 5.77 24.75 - - 9.92 12.67 57.31 998.74 - - - -
4 5.75 3.43 5.74 5.86 21.46 4.53 18.38 4.11 5.21 67.64 781.76 2.051 15.93 138.88 1539.11
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Fig. 10: Influence of external traffic: Observed one-way delay (RTT/2) for 7 seconds of the TCPS flow when 4 slices are
used for the USNET topology shown in Figure 9. Blue line represents the RTT/2 measured between two TCPS edges, while
the red line represents the RTT/2 constraint of the current used slice determined based on the current application dynamics.

are violated for almost every packet. Due to a higher packet
rate, packets arrive at the switches faster than processed by
the controller, resulting in more packets being forwarded to it
(as the switches are stateless and hence unaware that a packet
was already forwarded to the controller until the new route
is configured), thereby flooding it. This results in significant
packet reordering at the TCPS edge.

In case (No Slicing) is used and resources corresponding
to the maximum possible dynamics (Slice 4) are reserved,
the delay observed by the TCPS flows is the lowest possible
(except for the first packet that is forwarded to the SDN
controller and used to setup the route). However, if we
decrease the reserved bandwidth to match the total amount
of resources used by the other two solutions (P4+Slicing,
SDN+Slicing), No Slicing behaves the worst among all the
analyzed solutions, by having the highest average, as well
as maximum RTT (see Table III). Especially in moments in
which high QoS is required (Slices 3 & 4), and the packet rate
high, TCPS packets are queued due to insufficient resources
violating the RTT constraints (Figure 10).

3) Bandwidth utilization:: In our proposed (P4+Slicing)
solution, scaling of the reserved bandwidth happens when the
packet (having a different ToS set, indicating a switch) is
processed at each switch. Thus, the amount of the bandwidth

reserved for TCPS traffic corresponds to the current packet rate
(see Figure 11). Similarly, in case (SDN+Slicing) is used, the
SDN controller matches the reserved bandwidth to the one
required by the current slice. However, the reconfiguration
delay depends on the delay between the switches and the
controller, potentially decreasing the performance. In case (No
Slicing) is used, the resource utilization is either constantly
low (max. reserved) resulting in significant over-provisioning,
or insufficient to account for the high dynamics (avg. reserved)
resulting in noticeable degradation to the end-users.
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Fig. 11: Reserved bandwidth. (P4+Slicing) and (SDN+Slicing)
are reserving the same amount of bandwidth.

To conclude, our (P4+Slicing) solution is able to satisfy the
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latency constraints of the TCPS flow during the whole duration
of the flow. In addition to guaranteeing the performance of a
TCPS flow, by dynamically routing the traffic through multiple
paths and by scaling the resources, it also minimizes the
resources that need to be assigned by the network provider
and maximizes the utilization of the resources assigned to it.

VI. CONCLUSION

For a Tactile Cyber-Physical System (TCPS), we observe
that the dynamics of the human operator vary over time and are
usually under their peak value most of the time. As network
requirements depend on the operator’s dynamics, we argue
that it is suboptimal to route a TCPS flow through a single
network slice designed to support the worst-case dynamics.
Instead, we propose dynamic network slicing, a mechanism
to, per TCPS flow, dynamically create, destroy, and switch
slices, based on the operator’s current dynamics. To determine
the specification of these slices, we designed a clustering
algorithm. Further, we used an SDN controller together with
P4 switches to implement these slices in the network. Through
experiments, we demonstrated (i) the performance of our
clustering algorithm in minimizing the network cost for TCPS
applications, and (ii) how our network slice management
approach, while maintaining all the advantages of a typical
SDN architecture, such as the centralized control and the
possibilities of advanced traffic engineering, is able to provide
hard QoS guarantees needed for TCPS applications.
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APPENDIX

A. Equation for Slice Bandwidth

For many use cases of TCPS, the data-rate of the video
feedback decides the end-to-end bandwidth requirement [30],
[31] and in these cases we can optimize the TCPS bandwidth
by modulating the video frame-rate. A high frame-rate is
necessary when the operator dynamics are higher, to avoid
cybersickness. In general, for a TCPS, we use (3a) to cal-
culate the video frame-rate, f(t), at time t. α is a constant
and corresponds to the number of frames required to avoid
cybersickness in a given TCPS application. Specific to the
dynamic network slicing scheme, we define fmax(S), which
corresponds to the maximum of the f(t) values supported
by network slice S. To compute fmax(S), equations (1) and
(3a) are used (see (3b)). For computing the peak bandwidth
requirement of slice S, B(S), (3c) is used. Here c is a constant,
and it corresponds to the bandwidth required for streaming
video at a frame-rate of 1fps. c thus depends on the type (3D
or 2D) and quality (HD or SD) of the video. U(S) denotes
the utilization factor of slice S. It is used for computing the
average bandwidth requirement, B(S) (See (3d)).

f(t) =
α× dr

dt

1m/s
fps (3a)

fmax(S) = α× 1ms

(RTT (S) in ms)
fps (3b)

B(s) = c× fmax(S) bps (3c)

B(S) = B(S)× U(S) bps (3d)

B. Effect of Varying β

Let us consider the hand speed time series shown in
Figure 12. The time series shows that hand speeds periodically
oscillate between 0.1m/s and certain higher values, namely
0.2m/s, 0.275m/s, 0.325m/s, 0.4m/s, and 0.475m/s. We
cluster hand speeds using Algorithm 1 with different values
of β and number of clusters, K = 2; the corresponding
cluster boundaries are shown in Table IV. When β = 0,
Algorithm 1 accounts only for the cost: it puts 0.1m/s and
0.2m/s in one cluster and the remaining speeds in the other
cluster, causing 4 slice switchings per cycle. As we increase β,
Algorithm 1 tends to give more weight to visual performance.
When β = 2, it puts 0.1m/s, 0.2m/s and 0.275m/s in one
cluster and the remaining ones in the other cluster incurring
higher cost but reducing the number of slice switchings per
cycle to 3. Similarly, as β reaches 5 and 16, the number of slice
switchings per cycle further reduces to 2 and 1, respectively,
at the expense of increasingly higher costs. As expected, E
increases with β (see Table IV).

C. Comparing Algorithm 1 with Brute-Force Optimization

We use the Suturing-B001 dataset from the da Vinci Surgi-
cal System database to compare Algorithm 1 with brute-force
optimization. Here vmax = 0.18m/s. As in Section V-A, we
set Espec = 95%, Q = 200, and δ = vmax/Q. We fix the
number of clusters K to two. In the brute-force approach,
we exhaustively search for the optimum intermediate cluster

Fig. 12: Hand speed time series used in Appendix B; the right-
side figure shows the histogram.

TABLE IV: Effect of varying β on E an I .

β E I Cluster Boundaries

0 92.83 11391 (0m/s, 0.2m/s, 0.475m/s)

2 94.65 12012 (0m/s, 0.275m/s, 0.475m/s)

5 96.47 12908 (0m/s, 0.325m/s, 0.475m/s)

16 98.23 22562 (0m/s, 0.4m/s, 0.475m/s)

boundary among Q = 200 potential values. In particular, we
compute E and I corresponding to each potential intermedi-
ate boundary value and determine the cluster boundary that
corresponds to the least I , while ensuring E > Espec. We
depict E and I corresponding to all the potential boundary
values in Figure 13. In Table V, we compare the so obtained
optimal E and I with those obtained from Algorithm 1. We
see that Algorithm 1 gives E and I very close to their optimal
values (see Table V). We have made similar observations using
other datasets from the da Vinci Surgical System database as
well.

Fig. 13: E vs. I plot in the brute-force approach; the red dot
depicts the optimal E and I .

TABLE V: Comparison of Algorithm 1 with the brute-force
approach.

Cluster Boundaries E I

Algorithm 1 (0m/s, 0.0579m/s, 0.186m/s) 99.36% 570.92

brute-force (0m/s, 0.0569m/s, 0.186m/s) 99.36% 570.07
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D. Motivation for Algorithm 1
Popular clustering algorithms, such as k-means and mean-

shift, generally do not give satisfactory slice specifications for
the following reasons.

• They do not account for the time-order of data points which
determine the switching requirements. In other words, they
yield the same clusters for different time series if they
have the same histogram. Our proposed clustering algorithm
accounts for the dynamics of the data points.

• They are based on the Euclidean metric, which is not
commensurate with the performance and cost metrics of
interest. For instance, in k-means the “cost” associated with
a cluster-head depends on the Euclidean distances to all
the points inside the cluster, whereas in the slicing problem
under consideration it depends on the absolute value of the
cluster-head and on the fraction of points inside the cluster.

The slice specifications resulting from these algorithms
could be far from optimal if the histogram of the data-points
has multiple peaks as illustrated via the following examples.

1) Example 1: Let us consider the hand speed time series
shown in Figure 14. The hand speed stays at 0.5m/s for the
first half, then drops to 0.28m/s for a tiny fraction of time, and
then further drops to 0.1m/s and stays there for the remaining
time. Setting K = 2, k-means and Algorithm 1 yield cluster
boundaries as in Table VI. Notice that the clustering given
by k-means warrants bandwidth and RTT corresponding to
0.28m/s even when the hand speed is 0.1m/s. Neither of the
clusterings causes noticeable visual performance deterioration,
but the clustering given by Algorithm 1 incurs 20% less cost
compared to the one given by k-means (see Table VI).

Fig. 14: Hand speed time series used in Example 1. The right-
side figure shows the histogram.

TABLE VI: Comparison of k-means with Algorithm 1.

k-means Algorithm 1

Cluster Boundaries (0m/s, 0.28m/s, 0.5m/s) (0m/s, 0.1m/s, 0.5m/s)

E 99.93% 99.84%

I 16850 13415 (↓ 20%)

2) Example 2: Now we consider the hand speed time series
shown in Figure 15. The hand speed is 0.5m/s for a small
fraction of time in the beginning, after which it oscillates
between 0.1m/s and 0.3m/s. Setting K = 2, k-means and
Algorithm 1 yield cluster boundaries as in Table VII. The
clustering given by k-means warrants bandwidth and RTT
corresponding to 0.5m/s when the hand speed is 0.3m/s and

also leads to frequent slice switchings. On the other hand,
the clustering by Algorithm 1 warrants bandwidth and RTT
corresponding to 0.3m/s when the hand speed is 0.1m/s,
but ensures that there are no frequent slice switchings. This
not only incurs 30% less cost, but also 6% higher visual
performance index (see Table VII).

Fig. 15: Hand speed time series used in Example 2. The right-
side figure shows the histogram.

TABLE VII: Comparison of k-means with Algorithm 1.

k-means Algorithm 1

Cluster Boundaries (0m/s, 0.1m/s, 0.5) (0m/s, 0.3m/s, 0.5)

E 94.02% 99.72% (↑ 6%)

I 13179 9306 (↓ 30%)

E. Network Switching Overhead
1) Delay Overhead: The contribution to the “switching

overhead” by the network is represented by the additional
transmission delay from all the switches due to the increase
in packet size of the first packet processed by the new slice.
In the case of a slice setup message, this overhead is equal to
(4). Here Shdr is the size of the Slice Configuration Protocol
header (except the Ports Array field), n is the total number
of switches in the path, Rx is the speed of the output link of
switch x and Sport is the size in bits used to represent one
port (usually 8bits).

tnetwork =
∑

1≤x≤n

Shdr + (n− x) · Sport

Rx
(4)

2) Memory Overhead: To support such a system, an ad-
ditional table containing all the possible headers that can
be added needs to be maintained for every TCPS flow at
the edge switch. This overhead for one TCPS flow can be
calculated using (5). Here nslice is the number of slices,
SflowID is the size of the chosen flow identifier, usually
the 5-tuple (source IP, destination IP, source port, destination
port, transport protocol). However, the memory consumption
is reduced on all the other switches in the path (compared to
a solution where rules are reconfigured in all the switches), as
the number of rules needed in the core switches to process a
TCPS flow is reduced to 1 from nslice.

Mnetwork =
∑

1≤x≤nslice

(Sport (n+ 1) + SflowID + 1) (5)
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