
SIMPLE: A Remote Attestation Approach for
Resource-constrained IoT devices

Mahmoud Ammar
imec-DistriNet, KU Leuven

mahmoud.ammar@cs.kuleuven.be

Bruno Crispo
imec-DistriNet, KU Leuven

University of Trento, Italy

bruno.crispo@unitn.it

Gene Tsudik
University of California, Irvine

gene.tsudik@uci.edu

Abstract—Remote Attestation (RA) is a security service that
detects malware presence on remote IoT devices by verifying
their software integrity by a trusted party (verifier). There are
three main types of RA: software (SW)-, hardware (HW)-, and
hybrid (SW/HW)-based. Hybrid techniques obtain secure RA with
minimal hardware requirements imposed on the architectures
of existing microcontrollers units (MCUs). In recent years, con-
siderable attention has been devoted to hybrid techniques since
prior software-based ones lack concrete security guarantees in a
remote setting, while hardware-based approaches are too costly
for low-end MCUs. However, one key problem is that many
already deployed IoT devices neither satisfy minimal hardware
requirements nor support hardware modifications, needed for
hybrid RA.

This paper bridges the gap between software-based and hybrid
RA by proposing a novel RA scheme based on software virtual-
ization. In particular, it proposes a new scheme, called SIMPLE,
which meets the minimal hardware requirements needed for
secure RA via reliable software. SIMPLE depends on a formally-
verified software-based memory isolation technique, called Secu-
rity MicroVisor (SμV). Its reliability is achieved by extending the
formally-verified safety and correctness properties to cover the
entire software architecture of SIMPLE. Furthermore, SIMPLE
is used to construct SIMPLE+, an efficient swarm attestation
scheme for static and dynamic heterogeneous IoT networks. We
implement and evaluate SIMPLE and SIMPLE+ on Atmel AVR
architecture, a common MCU platform.

I. INTRODUCTION

The Internet of Things (IoT) is formed by increasing de-

ployment of interconnected embedded devices that touch many

aspects of modern life. The vast majority of such devices

lack security features (e.g. trusted boot, virtualization) that

are present in modern general-purpose computing platforms,

creating a large new attack surface for malware, exemplified by

Stuxnet [1] and the Mirai Botnet [2]. To mitigate such attacks,

it is important to monitor the behavior of embedded devices

and detect any malware presence as early as possible. For this

purpose, various detection protocols have been proposed.

Remote Attestation (RA) has emerged as an important means

to detect the misbehavior of a compromised IoT device. It

allows a trusted entity, called a verifier, to securely check the

internal state of a remote untrusted device, called a prover.

In the last decade, numerous RA protocols with different

assumptions and security guarantees have been proposed, first

for the single-prover scenario [3]–[11], and, more recently, for

groups or swarms [12]–[15]. Early work focused on either

pure software (SW)-based [3], [4], [16]–[18] or fully hardware

(HW)-based techniques [10], [11]. The latter are relatively

expensive as they depend on specialized hardware, i.e. a

Trusted Platform Module (TPM) [19], and are thus not suitable

for low-end embedded devices.

SW-based RA techniques have been proposed for embedded

devices that lack any hardware security features. They rely

either on stricttight time constraints [4] or lack of free space to

store malicious code [3]. Some subsequent results have shown

that SW-based RA techniques depend on assumptions that are

very hard to achieve in practice and are still vulnerable to some

attacks (i.e. Return-oriented programming (ROP), or Time-Of-

Use to Time-Of-Check (TOCTOU)) [20]. Furthermore, SW-

based RA techniques are limited to one-hop communication

between prover and verifier. To fill the sizeable gap between

SW- and HW-based RA techniques, hybrid RA techniques

have been proposed. They aim to impose a minimal set of

hardware security features to support efficient and secure RA

on embedded devices [5]–[7], [9]. All current hybrid RA

techniques require prover to have (or support adding) minimal

hardware features [21], such as Read-Only Memory (ROM)

and Memory Protection Unit (MPU).

Problem Statement. Today, various resource-constrained

embedded devices with different resources and capabilities

are being connected to the Internet. Securing these devices

is extremely important as they play pivotal roles in many

application domains, i.e. industry 4.0. The Internet Engineering

Task Force (IETF) identifies Class-1 IoT devices with 10 kB

of RAM and 100 kB of Flash memory as having the minimal

resources necessary to communicate securely over the Internet

[22]. A broad range of such devices, including Micaz [23] and

MicroPnP IoT platform [24], are widely used in many IoT

application domains. However, they do not offer the minimal

hardware features needed for hybrid RA. Furthermore, they do

not support any hardware modification or extension to their

underlying architecture. Consequently, despite their massive

deployment, Class-1 IoT devices are still insecure.

Contributions. We propose a novel RA approach that

fills the gap between SW-based and hybrid RA techniques.

We present SIMPLE, a provably secure hypervisor-based RA

scheme for resource-constrained IoT devices, exemplified by

IETF Class-1. SIMPLE leverages and extends an open-source

247

2020 ACM/IEEE 11th International Conference on Cyber-Physical Systems (ICCPS)

2642-9500/20/$31.00 ©2020 IEEE
DOI 10.1109/ICCPS48487.2020.00036

formally-verified software-based security architecture, called

the Security MicroVisor (SμV) [25], which provides trusted

MPU-like memory protection. We apply formal verification

to guarantee that the entire software architecture of SIMPLE

is memory-safe and crash-free. Our goal is to provide the

same security guarantees as hybrid RA without hardware

modifications, against remote-only attacks.

Main contributions of this paper are:

• In constructing SIMPLE, we relax prior requirements

(imposed by hybrid RA) of having ROM and MPU [21]

i.e., SIMPLE does not require a hardware-based MPU

and does not even depend on the availability of ROM.

To the best of our knowledge, SIMPLE is the first RA

scheme that provides guaranteed security properties along

with efficiency to IETF Class-1 devices, without requiring

hardware support.

• We propose SIMPLE+, a lightweight swarm attestation

scheme, that extends SIMPLE, for static and dynamic net-

works, consisting of multiple heterogeneous IoT devices.

• We provide a proof-of-concept implementation and exten-

sive evaluation of SIMPLE(+) on two AVR-based Class-1

IoT platforms, showing its robustness and efficiency.

Organization. The remainder of this paper is organized as

follows: Section II reviews the related work. Preliminaries

are presented in Section III. Section IV describes SIMPLE

in detail, followed by Section V which describes SIMPLE+.

Implementation details and evaluation are discussed in Section

VI. Section VII concludes the paper, and Appendix A illustrates

formally verified properties and their impact on the security of

SIMPLE(+).

II. RELATED WORK

Single Device Attestation. Remote attestation (RA) is a

security service that enables a trusted party (verifier) to mea-

sure the current internal state (i.e. RAM, flash, etc.) of an

untrusted remote device (prover) and thus determine whether

it has been compromised. Thereby, RA helps the verifier

establish a static or dynamic root of trust in the prover.

Prior work in single-prover RA falls into hree categories:

hardware-based [10], [11], software-based [3], [4], [16]–[18],

and hybrid [5]–[9]. HW-based RA techniques [10], [11] depend

on establishing a trust anchor on the prover to guarantee the

integrity of the attestation code. Typically, the trust anchor

is implemented in hardware, i.e., a Trusted Platform Module

(TPM) [19]. However, TPMs and other similar HW-based

modules are complex and too expensive for low-end embedded

devices. SW-based RA techniques [3], [4], [16]–[18] target

highly resource-constrained and legacy devices that lack any

hardware security features. They assume an ideal environment

with reliable communication for exchanging messages, in the

presence of a silent (during attestation) remote attacker. As

mentioned earlier, SW-based techniques lack concrete security

guarantees due to assumptions that are hard to achieve in real-

world scenarios, i.e., considering only passive remote attacks,

communication without failure or variable delay, and one-hop

prover-verifier communication. Hybrid RA techniques [5]–[9]

aim to bridge the gap between SW- and HW-based ones. They

employ low-cost simple hardware support (e.g., ROM and

MPU) on the prover to guarantee the integrity of attestation

code and confidentiality of secret keys. They require modifying

or extending the hardware of the prover with minimal hardware

features, thus increasing the prover’s overall cost. To this end,

each approach has pros and cons, as discussed in Section I and

extensively considered in [26].

Swarm/Group Attestation. Swarm attestation schemes

[12]–[15], [27], [28] enable scalable attestation of large groups

of embedded devices. These schemes differ in various ways,

e.g., methodology followed (tree-based or distributed), topol-

ogy (dynamic or static), and type of cryptography. SEDA [12]

is the first swarm attestation scheme. By using public-key

cryptography, SEDA allows neighbour devices to attest each

other and then securely aggregate their attestation reports up

the spanning tree until the final report is received by the verifier.

SANA [13] improves on SEDA by allowing public verifiability

of attestation reports and minimizing verification overhead

incurred by SEDA by emplpoying a novel aggregate signature

scheme. DARPA [28] extends SEDA with an heartbeat-based

absence detection scheme to detect physical attacks. SCAPI

[27] enhances DARPA by efficiently updating swarm-wide

device secret keys and thus detecting physical attacks with a

reduced communication overhead, assuming that absent (phys-

ically attacked) devices do not receive updates. slimIoT [15]

further improves SCAPI in terms of communication overhead

and memory footprint by relying on an efficient broadcast

authentication scheme using symmetric keys. WISE [14] is

a smart swarm RA scheme that deals with heterogeneous

devices; it depends on a resource-efficient intelligent broadcast

authentication technique based on the Hidden Markov Model.

This minimizes communication overhead depending on the

tolerated latency of detecting (unlikely) compromised devices

w.r.t. the differences and requirements of connected devices in

a swarm.

Formally-verified RA. The work in [29] has made the

first step towards formal verification of hardware security

requirements of RA architectures. Some subsequent research

has been proposed to automate verifying hybrid RA properties

[30]. Nevertheless, none of the aforementioned research has

yielded a fully verified design of RA. HYDRA [31] has

followed a different direction by proposing a hybrid design

for RA using seL4 [32], a formally verified microkernel.

This makes it only suitable for high-end devices. Furthermore,

HYDRA does not formally verify hardware modifications or

software implementation of attestation code. VRASED [33]

is the first fully verified hybrid RA co-design for embedded

devices. It aims to provide a secure and sound RA scheme

by guaranteeing the correct design and implementation of RA

security properties.

Control flow integrity. All aforementioned single-prover

and swarm attestation techniques are static and only check

whether benign software is still running on the prover device

248

as initially loaded. This means that such static attestation

techniques only ensure the integrity of binaries and not of

their execution. Thus, they are vulnerable to runtime attacks

that hijack the application’s control or data flow. Control-flow

integrity (CFI) is a defense mechanism against runtime attacks

that reuse the existing code by hijacking the control flow of a

program to cause unintended, malicious program behavior [34].

Such attacks have been demonstrated on various platforms and

devices, including Class-1 ones [35]. As a countermeasure,

several control (and data) flow integrity schemes have been

proposed [36]–[38]. The main goal of all CFI schemes is to

enforce that a program’s control flow behaves as the developer-

intended flow. The integrity of the program is maintained by

validating for each control flow decision whether the executed

path lies within the program’s control flow graph. In short, all

CFI schemes are complementary to all static RA techniques in

the sense that they attest runtime behavior, which is orthogonal

to software binaries attestation.

SIMPLE. To this end, we are unaware of any work that

provides a verified, reliable, and scalable RA scheme to Class-

1 IoT devices without hardware modification. To the best of our

knowledge, SIMPLE(+) is the first RA scheme that provides

guaranteed security properties to this class of devices, w.r.t

remote-only attacks. Furthermore, CFI is implicitly guaranteed

in our scheme as explained in the following sections.

III. PRELIMINARIES

The Security MircoVisor (SμV) [39]. SμV is an open-

source software-based memory isolation hypervisor that uses

selective software virtualisation and assembly-level code veri-

fication to isolate a software-based Trusted Computing Module

(TCM) from untrusted application software. SμV targets sim-

ple microcontrollers that lack MPUs, support global interrupt

disabling, are single-threaded, and have sufficient non-volatile

memory (e.g. Flash or ROM). The latter is a key hardware

requirement in all MCUs, including the ones considered as

Class-1 IoT devices [22]. Therefore, we do not consider it as

an explicit hardware requirement needed for secure RA. In case

of having a Flash memory, SμV turns part of it into a virtual
ROM to ensure immutability. Furthermore, SμV is aimed at

devices that either physically disable, or lack, Direct Memory

Access controller (DMA), which accounts for the majority -if

not all- of Class-1 IoT devices [22].

SμV provides memory protection by reserving part of the

memory for the TCM. This software is installed prior to the

deployment of the IoT device using a physical programming

device, i.e. JTAG. The remainder of memory refers to the

application software and its data. The TCM memory is subject

to no restrictions, whereas other parts of memory are strongly

restricted as shown in Figure 1, where Data memory holds

only data and cannot execute, read, or write any instruction

inside the entire memory. Instruction memory can read and

write Data memory and Memory Mapped IO (MMIO), jump

within its own logical domain, and execute instructions within

its own logical domain or from specific entry points in the

TCM memory. Access rights are also illustrated in Table I.

Application
Instruction memory

MMIO

Application
Instructions + Data

MMIO

Standard
Memory Map

Isolated
Memory Map

Physical Memory
(Flash/RAM)

I/O registers I/O registers

Jumps to
specific

entry points

R/W
application

data
Jumps to
own code

R/W MMIO
registers

Physical Memory
(Flash/RAM)

Applying SμV

Application
Data memory

TSM
Loader/Verifier

Virtual instructions

Attestation code

SμV

TCM

Figure 1: Standard insecure (left) and secure SμV-based (right)

memory map.

Table I: Access rights enforced by the Security MicroVisor.

Program Memory
Data Memory / MMIOSecure Area

SμV memory
Non-secure Area

Instruction memory
SμV rwx rwx rw-
Untrusted App x* x rw-
*Execution is only available from specific entry points.

Restrictions on application code are enforced at the in-

struction level through two basic mechanisms: (i) application

deployment may only occur through SμV, where incoming

applications are verified by SμV (TCM) at load-time to en-

sure that they adhere to the aforementioned rules, and (ii)

certain inherently unsafe instructions which are nonetheless

essential for normal operation are replaced by safe virtualized

instructions through a modified toolchain which substitutes all

unsafe dynamic instructions with calls to their secure virtu-

alized equivalents, stored in the TCM memory. The security

properties, i.e. strong isolation of SμV, are maintained even

when adversaries use their own toolchain or write hand-crafted

assembly because load-time verification of applications is done

by SμV on the embedded device itself [25]. Applications that

contain unsafe instructions are rejected outright. SμV considers

an instruction to be unsafe if it attempts, in any way, to

compromise its memory. Thus, the installed application could

be buggy but not malicious (safe). Furthermore, the untrusted

application can still write into its own instruction memory with

the help of SμV, by invoking the loader/verifier function in the

TCM, after placing the entire binary in the non-executable Data

memory. The loader/verifier function writes these instructions,

even if they are buggy, to the instruction memory of application

if they are considered safe w.r.t SμV memory. Thus, dynamic

root of trust is still required, motivating the need for SIMPLE.

SμV has been formally verified to be memory-safe and

crash-free [39]. As such, considering the verified properties,

SμV does not exhibit any undefined behavior as described by

the C11 standard [40].

IV. SIMPLE

RA is realized as an interactive protocol, whereby a trusted

entity, denoted as verifier, checks the software integrity of

249

an untrusted remote entity, denoted as prover. The complete

set of properties of secure RA has been proposed in [21]

and formally verified in [33] to prove that their conjunction

implies a sound and secure RA. We first outline our attacker

model and describe the design rationale of SIMPLE. Then, we

explain how the properties of secure RA are met in SIMPLE

by formally verifying certain safety and correctness properties

of the entire software architecture, and without relying on the

minimal hardware features proposed in [21]. SIMPLE+ is then

proposed as an extension of SIMPLE for swarms. Henceforth,

we refer to the verifier as υ and the prover as ρ.

A. Adversary model

We consider only remote software-based attacks. Thus, we

assume that the adversary has full access to the network and

can remotely control the entire software state of the MCU. She

can either perform passive (e.g. eavesdrop on communications,

or read unprotected memory area) or active (e.g. modify

existing code, or inject malware) attacks. Similar to most prior

RA schemes, we rule out all kinds of physical, and side-

channel attacks 1. We only consider DMA-free IoT devices

(the majority of Class-1 devices are DMA-free).

B. Design rationale of SIMPLE

SIMPLE is a single-prover attestation scheme that is built

atop SμV. It is depicted in Figure 2 and realized as follows:

• ρ is initialized with some secret data by a trusted network

operator, υ. Prior to deployment of ρ, υ and ρ share two

secret keys, Kauth and Kattest, used for authentication

and attestation purposes, respectively. Each one also main-

tains a counter, C•, initialized to the same value. All keys

and counters are stored in a secure memory area (SμV

memory).

• Whenever needed, υ sends an attestation request contain-

ing: (i) a monotonically updated value of the counter,

(ii) a freshly generated Nonce, (iii) a valid software state

of ρ’s memory (VS), and (iv) a keyed-hash message au-

thentication code (HMAC) computed over (i)-(iii) values,

using Kauth. The counter and Nonce guarantee freshness

and avoid replay attacks 2. VS represents the HMAC of

static and dynamic memory contents (e.g. Flash, RAM,

and registers) at a certain time, computed using Kattest.

• Once the attestation request is received, ρ checks whether

the sequence number is larger than the stored one. If

1Despite excluding side-channel attacks, the cryptographic library that we
use is formally-verified to be secure against timing software-based side channel
attacks as we explain later on.

2A combination of sequence numbers with nonces is used: (i) to adhere to
the best security practices and prevent replay attacks on both sides, and (ii)
to provide more reliability in disruptive or malicious networks as explained
later in SIMPLE+ (Section V). Neither the verifier nor the prover has to
maintain a history of nonces. Holding the last generated nonce at the verifier
side is enough as sequence numbers used prevent replaying (old) messages
with repeated nonces. On the other hand, SμV can securely control a HW-
based clock and make it read-only for other software modules. Thus, authentic
timestamps can be used (even as counters) to mitigate DOS attacks, rather than
using nonces and sequence numbers. We leave this as an option for devices
with internal clocks.

Verifier (v) Prover (P)

Kauth , Kattest , Cv Kauth , Kattest , Cp

Nonce = generateNonce()

Cv = Cv + 1

VS ← valid software state
H ← HMAC(Kauth , Cv || VS || Nonce)

msg = {Cv || VS || Nonce } msg , H

 IF (Cp < Cv)

 IF (HMAC(Kauth , msg) == H)

 Cp = Cv

 VS’ = computeValidState(Kattest)

 IF (VS’ == VS)

 report = {1 || HMAC(Kauth , 1 || Cp || Nonce)}

 ELSE

 report = {0 || HMAC(Kauth , 0 || Cp || Nonce)}

 report

Verify(report)

Figure 2: An overview of SIMPLE

so and if the entire request is authenticated successfully,

ρ computes an HMAC (VS’) of its current state using

Kattest. Then, ρ composes an attestation report consisting

of a Kauth-based HMAC over CP , Nonce, and 0/1 – a

binary outcome flag indicating whether VS matches VS’

(1 in case of a match, and 0 otherwise). The attestation

report is then sent to υ.

• After receiving and authenticating the attestation report, υ
considers ρ to be in a good state if the report value is "1".

Otherwise, a compromise is reported and some actions are

taken, i.e. secure erasure [41].

We consider a non-wrapping and monotonically increasing

counter at the verifier side. This counter is maintained by the

prover as a secure variable which can only be changed via

TCM. Assuming a 32-bit counter, if the attestation routine is

performed once a minute, the counter value needs thousands

years to wrap around.

C. Security of SIMPLE

The properties of secure RA, as mentioned in [33], are:

• Secret Key Protection
– Key Access Control: The key can only be accessed by

the RA routine.

– Key confidentiality: The key is stored in a secure mem-

ory area, and not leaked during or after the execution

of RA.

Guarantees by SIMPLE. The attestation code and the

secret key(s) are stored inside the secure memory area

(SμV memory). Considering the same approach fol-

lowed to verify SμV [39], we have verified SIMPLE

to be memory-safe and crash-free (see Appendix A).

Furthermore, we have employed HACL* [42], a verified

cryptographic library, thus ensuring also the functional-

correctness property. The memory-safety property of en-

tire system guarantees no access to the secret key(s) by

250

any instruction except the right one inside SIMPLE. Also,

the verified functionality makes sure that the state of all

temporary memory areas used during the execution of

RA is unchanged by erasing all temporary-stored data.

Accordingly, along with the atomicity property, where

interrupts are disabled during RA, memory-safety and

functional-correctness properties maintain the key confi-

dentiality.

• Safe Execution
– Atomicity: RA execution cannot be interrupted. This

prevents leakage of secret key(s), ROP attacks, and

roving malware from evading detection.

– Immutability: The attestation code should not be mod-

ified by any untrusted code or malware in order to

guarantee the validity of responses and the non-leakage

of secret keys.

– Controlled Invocation: The attestation should always

start execution from the first instruction, which is dis-

abling interrupts, and end up with the correct computed

digest of memory after erasing all temporary stored data

and enabling interrupts.

– Functional Correctness: RA implementation must al-

ways demonstrate the correct and expected behavior of

ρ whenever υ asks for the attestation report. Further-

more, the attestation process must always finish in a

finite time.

Guarantees by SIMPLE. Atomic execution is guar-

anteed by disabling all global interrupts before execut-

ing any function, including SIMPLE, residing in SμV

memory, and enabling them upon return. Immutability is

enforced after initial deployment of SμV using a physical

programming device (e.g. JTAG), where all incoming

applications cannot be installed without passing through

the loader/verifier function inside SμV. This ensures that

no application instruction can read, write, or execute any

part of SμV memory (more than immutability), except

for hard-coded specific entry points; see Table I. Thus,

Controlled Invocation is also guaranteed (considering the

verified memory-safety property; see Appendix A). The

combination of verified atomicity and absence of crashes

(see Appendix A) properties preserves the bounded exe-

cution time property. Given the bounded execution time

and memory-safety properties, functional correctness is

ensured in SμV since the entire code is predictable and

deterministic. In other words, all instructions of the TCM

(SμV) are statically allocated conforming to the specifi-

cations of the memory-safety property. Considering that

SIMPLE is a statically-allocated code built atop SμV, its

functional correctness depends on the correctness of the

HMAC primitive used. Thus, in line with [33], we employ

HACL* HMAC-SHA256 function [42]. This function has

been formally verified to be memory-safe, functionally-

correct, and cryptographically-secure against timing side

channel attacks. Hence, the functional correctness of

SIMPLE is verified.

That is, as long as the IoT device is securely initialized

with SμV (e.g. using JTAG) by a trusted party, where SμV is

verified and guaranteed to execute correctly after any reboot

(see Appendix A), then SIMPLE is a secure RA scheme.

D. SIMPLE vs. other RA approaches

Although existing hybrid RA techniques [6], [8] rule out all

kinds of physical attacks, they are more immune to some phys-

ical attacks than SIMPLE. An adversary with physical access

to the IoT device can simply re-flash (remove) the MicroVisor

that is the core of providing the dynamic root of trust, whereas

this is not the case in hybrid RA techniques, which do not

depend on any hypervisor or kernel. Furthermore, retrieving

secret keys from hardware-protected modules in hybrid RA

is more time-consuming than software protection in SIMPLE.

Nevertheless, SIMPLE has the advantage of not requiring any

hardware modification or extension to the millions of already

deployed Class-1 IoT devices.

While traditional (most likely insecure) SW-based RA ap-

proaches do not depend on any verified kernel or some existing

hardware properties in MCUs (e.g. Flash), SIMPLE fills a gap

between SW-based and hybrid RA families. To the best of

our knowledge, SIMPLE is the first pure software RA that

provides guaranteed security properties for any device capable

of running such verified software architecture w.r.t remote-

only attacks. Figure 3 shows the position of SIMPLE w.r.t the

spectrum of RA techniques.

Security

HW-based RAHybrid-based RASW-based RA

SIMPLE

Cost

Figure 3: The position of SIMPLE w.r.t the spectrum of RA

techniques.

Please note that due to the limited space and to keep

consistency of the paper, we briefly describe the approach

followed in verifying the various properties of SIMPLE in

Appendix A. Further details can be found in [39].

V. SIMPLE+

In the majority of IoT application domains, IoT devices are

deployed in massive numbers, forming self organizing mesh

networks or swarms. For this purpose, we extend SIMPLE

by proposing SIMPLE+, a collective attestation scheme that

efficiently and securely verifies the software integrity of a

group of devices.

System Model. We consider a swarm of devices, where the

swarm topology can be either static or dynamic. We assume

that minimal connectivity is maintained in the swarm even

during motion, and there is at least one device within the

range of the verifier. Devices can have different software con-

figurations and possess heterogeneous hardware capabilities,

taking into account that each device should satisfy the minimal

requirements needed for secure RA, that are specified either in

251

this paper (see Section IV-C), or in [21]. In particular, Class-1

IoT devices, that lack the hardware-based MPU, should employ

a trusted software-based architecture, such as the formally-

verified SμV [39].

Overview. SIMPLE+ is a lightweight swarm attestation

scheme that consists of three phases. First, the initialization

phase (Section V-A) takes place once before the deployment,

where all devices in the network are initialized by a trusted

network operator, i.e. υ, with a bunch of private and public

data. Second, the attestation phase (Section V-B), in which,

whenever needed, the verifier asks the devices to check their

software integrity and compute their attestation reports. This

phase can be repeated more than one time before collecting

the attestation reports. Last, the collection phase (Section V-C),

in which the verifier collects the attestation reports efficiently,

without relying on any, possibly expensive in terms of mem-

ory footprint and computation overhead, aggregation scheme.

SIMPLE+ is informative in the sense that after collecting the

aggregated attestation reports, the verifier is able to distinguish

between healthy and compromised devices.

A. Initialization phase

υ initializes the secure memory area of all devices with

several secrets. First, devices store two group-wide secrets:

Kauth and Kcol. Kauth is used to authenticate υ and other

swarm-connected devices. Kcol is a session key that is used

in the collection phase and is updated securely in all devices

after every attestation request, by computing its hash value,

i.e. Kcol = HASH(Kcol). Second, each device maintains

a counter, Cp, and is equipped with one device-specific key,

Kattest, for the attestation purpose 3. All devices are deployed

in a healthy status, and thus they securely store an initial attest

value equal to one (i.e. attest = 1). Finally, each device stores

its own identifier (ρi).

B. Attestation phase

Whenever needed, υ broadcasts an attestation request,

Attestreq , consisting of a monotonically increased value of

Cv , a Nonce, a set of valid software states (VSS), and the

HMAC of all attached values, computed using Kauth, to all

nearby devices (see 1© in Figure 4). Attestreq is then further

propagated by all receivers in the possibly dynamic network

via broadcasting too, after being successfully authenticated (see
2© in Figure 4). Afterward, each receiver computes its current

software state value (VSS’) using its own Kattest
4. If the com-

puted digest (VSS’) equals to one of the valid software states

in VSS, the attest value will equal to the result of a bit-wise

AND operation between its old value (initially, attest = 1)

and "1". Otherwise, the attest value will equal to "0". The

attest value is stored in the secure memory area. At the end

of this phase, υ updates the common session secret key, Kcol,

as shown in Figure 4. Likewise, each ρ increases its Cp to

be equal to the latest updated and authenticated sequence

number (Cv) of υ. Furthermore, Kcol is updated securely for

later collection purposes. If the attestation phase is performed

multiple times before collecting the attestation reports, and

some of the provers have received the latest attestation request

while missing some previous ones (due to potential lossy

3For the sake of simplicity, we further proceed describing SIMPLE+ by
assuming that Kattest is unified on all provers (considering only remote-only
attacks in this paper).

4VSS could contain a description of what should be measured and included
in the HMAC computation, i.e. part of or full Flash memory, RAM, etc.

Verifier (v)

Attestreq

Prover pi Provers pj, pk, ...

Attestreq

 pj & pk proceeds like pi ...

Nonce ← generateNonce()
Cv = Cv + 1

VSS ← valid software states
H ← HMAC(Kauth , Cv || VSS || Nonce)

Attestreq ← {“attest” , Cv || VSS || Nonce || H }

Broadcast(Attestreq)

1 2

IF (Cp < Cv)
 IF HMAC(Kauth , Cv || VSS || Nonce) == H

Broadcast(Attestreq)

VSS’ = computeValidState(Kattest)

IF VSS’ VSS
attest ← attest && 1

Execute Securely, initially attest = 1

3

ELSE

attest ← attest && 0

 Kcol ← HASH(Kcol)
 clonedCv = clonedCv - 1

Kcol ← HASH(Kcol)

WHILE (clonedCv - Cp != 0)

clonedCv = Cv

Cp = Cv

Figure 4: An overview of the attestation phase of SIMPLE+

252

Verifier (v)

Collectreq

Prover pi Provers pj, pk, ...

Collectreq

 pj & pk proceeds like pi ...

H = HMAC(Kcol , collect)

Collectreq ← {collect , H}

Broadcast(Collectreq)

1 2

IF HMAC(Kcol , collect) == H

sendACKToSender()
Broadcast(Collectreq)

Reporti ← createVector(i)

ith bit in Reporti ← 1

Execute Securely, initially attest = 1

3ACK

ACK

Report

IF attest == 1

Reporti ← aggregateOR(Reporti , Report)

sendToParent(Reporti)
Reporti

Verify(Reporti)
4

All messages exchanged are authenticated by computing HMAC using Kcol

Figure 5: An overview of the collection phase of SIMPLE+

transmission of wireless communications), they update Kcol

a number of times equal to the difference between Cv and Cp,

before updating the value of Cp (see Figure 4).

C. Collection phase

After running the attestation phase one or more times, υ
can collect the attestation responses by emitting a collection

request, Collectreq , via broadcasting to all devices in the vicin-

ity. Collectreq is authenticated only using the latest updated

collection key, Kcol (see 1© in Figure 5). All receivers that

manage to successfully authenticate Collectreq , re-broadcast

it to other devices and send an acknowledgment to the sender

for notification purposes. The number of received acknowl-

edgments determines the number of subsequent aggregated
attestation reports that should be received from the same

devices. Thus, a virtual spanning tree is formed for this short

time period (in practice, it should be in terms of milliseconds)5.

Each receiver ρi, creates an n-bit vector, with zero values as

defaults, and sets the ith position to be equal to the stored attest
value, where n is greater than or equal to i, and n % 8 = 0.

Marking the ith position with 1 means that the corresponding

prover, ρi, is healthy, whereas 0 means that it is compromised.

Aggregating attestation reports occurs through a simple OR

operation that would require a negligible overhead on even

very simple devices. For example, the attestation report of a

healthy prover of ID 10, ρ10, will equal to 0000001000000000,

whereas the attestation report of a healthy prover, ρ7, will equal

to 01000000. Aggregating both reports at any of these provers

will result in an aggregate of 0000001001000000 (see 2© in

Figure 5). The verification process at υ side is simple. After

authenticating and ORing all received aggregates, the positions

of zero values indicate compromised provers in the swarm.

5The verifier can include an amount of time in the collection request to be
used by the provers to maintain timers, thus determining the upper bound of
waiting time for children to send their attestation reports.

Both attestation and collection phases start securely by

disabling global interrupts at the beginning and enabling them

at the end. This preserves atomicity and prevents leakage of

secrets and ROP attacks (as explained in Section IV-C).

D. Features of SIMPLE+

One of the key advantages of using sequence numbers

(counters) in SIMPLE+ is reducing the number of false-positive

cases, i.e. healthy devices regarded as compromised ones. The

decoupling of attestation and collection phases helps temporar-

ily disconnected devices (due to abnormal conditions in the

communication protocol) in teaming up and synchronizing with

the swarm again when receiving a new attestation request

by observing the difference between the latest value of the

verifier’s counter and the current local counter. Accordingly,

they update the common session collection key and their local

counters. Also, this decoupling is advantageous in various

ways. First, it maintains a high level of efficiency in attesting

heterogenous static/dynamic networks, where the differences

of hardware capabilities do not prevent powerful and probably

time-sensitive devices from doing their normal tasks after

performing self-attestation, rather than waiting other devices

to compute and send their attestation reports. Second, this

maintains a high level of immunity against a roving6 malware,

as detecting it at least once would never change the attest value

(due to the use of the AND operation, i.e. 0 AND anything =

0), even if it succeeds to evade detection in the subsequent

attestation periods.

E. Security of SIMPLE+

The security of SIMPLE+ at the edge side is inherited from

the verified secure RA properties of SIMPLE (see Section

6A roving malware is a kind of malware that is always aware of the
attestation schedule of the IoT device and thus it is only active between any
two successive attestation routines which deletes itself at the beginning of the
attestation to evade detection.

253

IV-C). Therefore, we only analyze the security of SIMPLE+

at the network level.

The goal of any swarm attestation scheme is for a verifier υ
to distinguish between healthy and compromised devices in a

swarm S, where limited false positive 7 cases are accepted but

not vice versa. This is formalized by the following adversarial

experiment ATTn,c
adv(j), where adv is an adversary interacting

with n devices, and compromises up to c devices in S, where

c ≤ n. Considering that adv is computationally bounded to the

capabilities of devices deployed in S, adv interacts with the

devices a polynomial number of times j, where j is a security

parameter. Upon verifying the aggregated attestation reports, υ
outputs a decision as 0 or 1. Denoting the decision made as A,

A = 1 means that the attestation routine is finished successfully

and all compromised devices are detected, or A = 0 otherwise.

According to the definition of secure swarm attestation given

by [12], we summarize the security of SIMPLE+ at the network

level with an informal proof sketch.

Theorem 1 (Security of SIMPLE+). SIMPLE+ is a secure
scalable attestation protocol if Pr[A = 1 | ATTn,c

adv(j) == A]
is negligible for 0 < c ≤ n, if the PRNG and HMAC schemes
used are secure and selective forgery resistant.

Proof. Considering remote-only attacks (see Section IV-A),

authenticating messages during the entire lifetime cycle of

RA (using HMACs), and using formally-verified cryptographic

primitives that are secure and selective forgery resistants,

SIMPLE+ is also secure at the network level.

VI. IMPLEMENTATION AND EVALUATION

A. Implementation

A prototype of SIMPLE has been implemented using two

different AVR-based IoT platforms: Arduino Uno [43] and

MicroPnP [24]. SμV is employed on both platforms since they

lack the hardware-based MPU. The Arduino Uno offers an

8-bit AVR ATmega 328p microcontroller running at 16MHz

with 2kB of SRAM and 32kB of Flash memory, whereas

the MicroPnP platform provides an 8-bit AVR ATmega 1284p

microcontroller running at 10MHz with 16kB of SRAM and

128kB of Flash. The IEEE 802.15.4e Time-Slotted Channel

Hopping [44] radio transceiver is used for wireless communi-

cation. We used HACL* HMAC-SHA256 [42] as a keyed-

hash message authentication code. We have extended the

implementation in SIMPLE+ to accommodate a testbed of five

devices, where two of these devices belong to Arduino Uno,

whereas the remaining ones are MicroPnP platforms. Similar

to all existing approaches, we have used the experimentally

measured values to simulate scalability using OMNET++ [45].

B. Evaluation

1) Execution time: Computing the HMAC of the entire

Flash memory consumed about 17.41 and 2.64 seconds in

MicroPnP and Arduino Uno platforms respectively. Table II

7A false positive means that a healthy device is regarded as compromised,
i.e. due to absence because of disruption in the network.

Table II: Cryptographic Runtime Measurements in SIMPLE

Runtime Measurements Arduino Uno MicroPnP
ATmega328P ATmega1284P

Computing HMAC of 10 KB of memory 0.89 s 1.48 s

Nonce authentication 44.74 ms 71.68 ms

Creating attestation report along with its HMAC 44.75 ms 71.87 ms

ORing two vectors of length 1000 Bytes (8000 devices) 1.7 ms 2.2 ms

shows the detailed execution time of the various cryptographic

operations. An average propagation delay of 17ms has been

measured between the two neighboring nodes (υ and ρ) with

a throughput of no more than 60kbps.

2) Memory footprint: SIMPLE requires no more than 80

bytes of permanent storage to store the secrets and the prover

identifier, whereas this space grows up to 120 bytes in SIM-

PLE+. The core functions of SμV consume 1070 bytes of Flash

memory. The verified implementation of HACL* HMAC-

SHA256 occupies about 6kB of Flash memory. No more than

1.5kB of temporary storage (RAM) is required in each device

connected to a swarm of up to 10k devices to create and

aggregate attestation reports.

3) Power consumption: We have only measured the impact

factor on the power for the MicroPnP IoT platform as it con-

sumes more power than Arduino Uno. MicroPnP IoT platform

consumes 3.54mA when operating on 10MHz in the active

mode, and 54.5μA in the idle mode. Every MicroPnP platform

is powered by a standard 3000mAh battery pack. The baseline

battery lifetime, if the MCU is in the sleeping mode constantly,

is 6.5 years. Considering these values, Figure 6c shows the

estimated lifetime of the battery when running SIMPLE+ at

various time rates. For example, the battery lifetime would last

for no less than 5 years when attesting devices three times and

then collecting reports every 3 hours.

4) Scalability and Efficiency: OMNET++ [45] is used to

simulate large networks with different topologies and config-

urations. The computational and network delays are adjusted

according the experimentally measured values (see Table II).

SIMPLE+ vs. slimIoT. Figure 6a compares the total run-

time of SIMPLE+ with slimIoT [15], a state-of-the-art swarm

attestation scheme for resource-constrained IoT devices, in

various static and homogeneous network topologies consisting

of Arduino Uno-based nodes. To ensure objectivity, we have

implemented slimIoT using the same cryptographic functions

and underlying hardware as SIMPLE+. In SIMPLE+, both

attestation and collections phases are performed once and

directly after each other with no waiting time in between.

SIMPLE+ performs better than slimIoT in all topologies since

the number of packets exchanged in any topology is always

less than what exchanged in slimIoT, where slimIoT requires

the verifier to emit at least 4 messages before collecting the

attestation reports. Furthermore, slimIoT requires loosely-time

synchronized devices in the network, increasing the communi-

cation overhead.

heterogeneous and dynamic networks. Figure 6b shows

the communication overhead of each of the attestation and

254

4-ary tree, slimIoT
4-ary tree, SIMPLE+
8-ary tree, slimIoT
8-ary tree, SIMPLE+
mesh, slimIoT
mesh, SIMPLE+

Ti
m

e
(s

ec
on

ds
)

0

2

4

6

8

10

12

14

Number of Devices

0 2,000 4,000 6,000 8,000 10,000

(a) Runtime of SIMPLE+ Vs. slimIoT

Attest phase
Collect phase

Ti
m

e
(s

ec
on

ds
)

0

0.1

0.2

0.3

0.4

0.5

0.6

Number of Devices

0 2000 4000 6000 8000 10000

(b) Communication overhead in each phase.

One time attest then collect
Two times attest then collect
Three times attest then collect

B
at

te
ry

 li
fe

tim
e

(y
ea

rs
)

0

1

2

3

4

5

6

Rate (minutes)

0 100 200 300 400 500

(c) The battery lifetime (MicroPnP).

Figure 6: An overview of the various evaluation factors of SIMPLE(+)

collection phases in SIMPLE+. The measurements are reported

in a heterogeneous mesh network consisting of different num-

ber of devices (50% Arduino Uno and 50% MicroPnP), where

25% of them are moving randomly with a speed of 10m/s and a

communication range of 50 meters. Emitting and authenticating

an attestation request in a network of 10k devices requires no

more than 0.45 second, whereas propagating, authenticating,

and aggregating attestation reports in the collection phase

demands less than 0.6 second for the entire network.

VII. CONCLUSION

This paper describes SIMPLE(+), the first reliable and

scalable remote attestation scheme that provides guaranteed

security properties as hybrid-based techniques without requir-

ing hardware support or modification, and w.r.t remote-only at-

tacks. SIMPLE(+) proposes secure RA on resource-constrained

MPU-free IoT devices by leveraging the Security Micro-

Visor (SμV), a software-based memory isolation technique.

SIMPLE(+) is reliable in the sense that the entire software

architecture is formally verified to be memory-safe, crash-free,

and functionally-correct. Evaluation results demonstrate that

SIMPLE(+) is lightweight and very efficient to be used in static

and dynamic networks consisting of multiple heterogeneous

IoT devices.

Future Directions. As a future work, we aim to achieve a

fully-verified design and implementation of SIMPLE(+) using

different cryptographic schemes. Furthermore, we would like

to go beyond the AVR architecture and port this work to other

MCU architectures such as Von Neumann.

REFERENCES

[1] R. Langner, “Stuxnet: Dissecting a cyberwarfare weapon,” IEEE Security
& Privacy, vol. 9, no. 3, pp. 49–51, 2011.

[2] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis,
et al., “Understanding the mirai botnet,” in USENIX Security Symposium,
pp. 1092–1110, 2017.

[3] A. Seshadri, M. Luk, and A. Perrig, “SAKE: Software Attestation for
Key Establishment in Sensor Networks,” in Distributed Computing in
Sensor Systems, (Berlin, Heidelberg), 2008.

[4] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla, “SWATT: software-
based attestation for embedded devices,” in Proceedings of the IEEE
Symposium on Security and Privacy, IEEE, 2004.

[5] F. Brasser, B. El Mahjoub, A.-R. Sadeghi, C. Wachsmann, and P. Koeberl,
“TyTAN: Tiny trust anchor for tiny devices,” in Proceedings of the 52nd
Annual Design Automation Conference, (New York, New York, USA),
p. 6, ACM, june 2015.

[6] K. Eldefrawy, G. Tsudik, A. Francillon, and D. Perito, “SMART: Secure
and Minimal Architecture for (Establishing Dynamic) Root of Trust.,” in
19th NDSS Symposium, The Internet Society, 2012.

[7] X. Carpent, N. Rattanavipanon, and G. Tsudik, “Remote attestation of
iot devices via smarm: Shuffled measurements against roving malware,”
in IEEE International Symposium on Hardware Oriented Security and
Trust (HOST), 2018.

[8] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan, “TrustLite:
A Security Architecture for Tiny Embedded Devices,” in Proceedings
of the 9th European Conference on Computer Systems, (New York, NY,
USA), p. 14, ACM, 2014.

[9] J. Noorman, P. Agten, W. Daniels, R. Strackx, A. Van Herrewege,
C. Huygens, B. Preneel, I. Verbauwhede, and F. Piessens, “Sancus:
Low-cost trustworthy extensible networked devices with a zero-software
trusted computing base,” in Presented as part of the 22nd {USENIX}
Security Symposium ({USENIX} Security 13), pp. 479–498, 2013.

[10] C. Kil, E. C. Sezer, A. M. Azab, P. Ning, and X. Zhang, “Remote
attestation to dynamic system properties: Towards providing complete
system integrity evidence,” in Dependable Systems & Networks, 2009.
DSN’09., IEEE, 2009.

[11] B. Parno, J. M. McCune, and A. Perrig, “Bootstrapping trust in com-
modity computers,” in Security and privacy (SP), 2010 IEEE symposium
on, pp. 414–429, IEEE, 2010.

255

[12] N. Asokan, F. Brasser, A. Ibrahim, A.-R. Sadeghi, M. Schunter,
G. Tsudik, and C. Wachsmann, “Seda: Scalable embedded device attesta-
tion,” in Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, pp. 964–975, ACM, 2015.

[13] M. Ambrosin, M. Conti, A. Ibrahim, G. Neven, A.-R. Sadeghi, and
M. Schunter, “Sana: secure and scalable aggregate network attestation,”
in Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pp. 731–742, ACM, 2016.

[14] M. Ammar, M. Washha, and B. Crispo, “Wise: Lightweight intelligent
swarm attestation scheme for iot (the verifier’s perspective),” in Pro-
ceedings of the 14th International Conference on Wireless and Mobile
Computing, Networking and Communications (WiMob), IEEE, 2018.

[15] M. Ammar, M. Washha, G. Sankar Ramachandran, and B. Crispo,
“slimiot: Scalable lightweight attestation protocol for the internet of
things,” in Proceedings of the 2018 IEEE Conference on Dependable
and Secure Computing (DSC), IEEE, 2018.

[16] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla,
“Pioneer: : Verifying Code Integrity and Enforcing Untampered Code Ex-
ecution on Legacy Systems,” ACM SIGOPS Operating Systems Review,
vol. 39, oct 2005.

[17] Y. Li, J. M. McCune, and A. Perrig, “SBAP: Software-Based Attestation
for Peripherals,” in Proceedings of the 3rd International Conference on
Trust and Trustworthy Computing, (Berlin, Heidelberg), 2010.

[18] A. Seshadri, M. Luk, A. Perrig, L. van Doorn, and P. Khosla, “Scuba:
Secure code update by attestation in sensor networks,” in Proceedings of
the 5th ACM workshop on Wireless security, pp. 85–94, ACM, 2006.

[19] Trusted Computing Group, “TPM Main Specification Level 2 Version
1.2.” http://www.trustedcomputinggroup.org/tpm-main-specification/,
2011. [Online; accessed 13-February-2017].

[20] C. Castelluccia, A. Francillon, D. Perito, and C. Soriente, “On the diffi-
culty of software-based attestation of embedded devices,” in Proceedings
of the 16th ACM conference on Computer and communications security,
pp. 400–409, ACM, 2009.

[21] A. Francillon, Q. Nguyen, K. B. Rasmussen, and G. Tsudik, “A mini-
malist approach to remote attestation,” in Proceedings of the conference
on Design, Automation & Test in Europe, p. 244, 2014.

[22] C. Bormann, M. Ersue, and A. Keranen, “Terminology for constrained-
node networks,” tech. rep., 2014.

[23] N. A. Ali, M. Drieberg, and P. Sebastian, “Deployment of micaz mote
for wireless sensor network applications,” in Computer Applications and
Industrial Electronics (ICCAIE), 2011 IEEE International Conference
on, pp. 303–308, IEEE, 2011.

[24] N. Matthys, F. Yang, W. Daniels, W. Joosen, and D. Hughes, “Demonstra-
tion of micropnp: the zero-configuration wireless sensing and actuation
platform,” in Sensing, Communication, and Networking (SECON), IEEE,
2016.

[25] W. Daniels, D. Hughes, M. Ammar, B. Crispo, N. Matthys, and
W. Joosen, “S μ v-the security microvisor: a virtualisation-based security
middleware for the internet of things,” in Proceedings of the 18th
ACM/IFIP/USENIX Middleware Conference: Industrial Track, 2017.

[26] R. V. Steiner and E. Lupu, “Attestation in wireless sensor networks: A
survey,” ACM Computing Surveys (CSUR), vol. 49, no. 3, p. 51, 2016.

[27] F. Kohnhäuser, N. Büscher, S. Gabmeyer, and S. Katzenbeisser, “Scapi:
a scalable attestation protocol to detect software and physical attacks,”
in Proceedings of the 10th ACM Conference on Security and Privacy in
Wireless and Mobile Networks, pp. 75–86, ACM, 2017.

[28] A. Ibrahim, A.-R. Sadeghi, G. Tsudik, and S. Zeitouni, “Darpa: Device
attestation resilient to physical attacks,” in Proceedings of the 9th ACM
WiSec Conference, pp. 171–182, ACM, 2016.

[29] G. Cabodi, P. Camurati, C. Loiacono, G. Pipitone, F. Savarese, and
D. Vendraminetto, “Formal verification of embedded systems for remote
attestation,” WSEAS Transactions on Computers, vol. 14, pp. 760–769,
2015.

[30] F. Lugou, L. Apvrille, and A. Francillon, “Smashup: a toolchain for
unified verification of hardware/software co-designs,” Journal of Cryp-
tographic Engineering, vol. 7, no. 1, 2017.

[31] K. Eldefrawy, N. Rattanavipanon, and G. Tsudik, “Hydra: hybrid de-
sign for remote attestation (using a formally verified microkernel),” in
Proceedings of the 10th ACM Conference on Security and Privacy in
Wireless and Mobile Networks, 2017.

[32] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, et al., “sel4:

Formal verification of an os kernel,” in Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles, ACM, 2009.

[33] I. D. O. Nunes, K. Eldefrawy, N. Rattanavipanon, M. Steiner, and
G. Tsudik, “{VRASED}: A verified hardware/software co-design for
remote attestation,” in 28th {USENIX} Security Symposium ({USENIX}
Security 19), pp. 1429–1446, 2019.

[34] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-oriented
programming: Systems, languages, and applications,” ACM Transactions
on Information and System Security (TISSEC), vol. 15, no. 1, p. 2, 2012.

[35] A. Francillon and C. Castelluccia, “Code injection attacks on harvard-
architecture devices,” in Proceedings of the 15th ACM conference on
Computer and communications security, pp. 15–26, ACM, 2008.

[36] T. Abera, N. Asokan, L. Davi, J.-E. Ekberg, T. Nyman, A. Paverd, A.-R.
Sadeghi, and G. Tsudik, “C-flat: control-flow attestation for embedded
systems software,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, pp. 743–754, ACM, 2016.

[37] T. Abera, R. Bahmani, F. Brasser, A. Ibrahim, A.-R. Sadeghi, and
M. Schunter, “Diat: Data integrity attestation for resilient collaboration
of autonomous systems.,” in NDSS, 2019.

[38] G. Dessouky, T. Abera, A. Ibrahim, and A.-R. Sadeghi, “Litehax:
Lightweight hardware-assisted attestation of program execution,” in
2018 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pp. 1–8, IEEE, 2018.

[39] M. Ammar, B. Crispo, B. Jacobs, D. Hughes, and W. Daniels, “Sμv
- the security microvisor: A formally-verified software-based security
architecture for the internet of things,” IEEE Transactions on Dependable
and Secure Computing, vol. 16, no. 5, pp. 885–901, 2019.

[40] I. Jtc, “Sc22/wg14. iso/iec 9899: 2011,” Information
technology—Programming languages—C. http://www. iso.
org/iso/iso_catalogue/catalogue_ tc/catalogue_detail. htm, 2011.

[41] M. Ammar, W. Daniels, B. Crispo, and D. Hughes, “Speed: Secure
provable erasure for class-1 iot devices,” in Proceedings of the Eighth
ACM Conference on Data and Application Security and Privacy, 2018.

[42] J.-K. Zinzindohoué, K. Bhargavan, J. Protzenko, and B. Beurdouche,
“Hacl*: A verified modern cryptographic library,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security, pp. 1789–1806, ACM, 2017.

[43] Y. A. Badamasi, “The working principle of an arduino,” in Electronics,
computer and computation (icecco), 2014 11th international conference
on, IEEE, 2014.

[44] T. Watteyne, M. Palattella, and L. Grieco, “Using ieee 802.15. 4e time-
slotted channel hopping (tsch) in the internet of things (iot): Problem
statement,” tech. rep., 2015.

[45] A. Varga, “The omnet++ discrete event simulation system (http://www.
omnetpp. org). european simulation multiconference (esm2001), prague,”
2001.

[46] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, “Efficient
software-based fault isolation,” ACM SIGOPS Operating Systems Review,
vol. 27, pp. 203–216, dec 1993.

[47] L. Zhao, G. Li, B. De Sutter, and J. Regehr, “Armor: fully verified
software fault isolation,” in Proceedings of the ninth ACM international
conference on Embedded software, pp. 289–298, ACM, 2011.

[48] B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and
F. Piessens, “Verifast: A powerful, sound, predictable, fast verifier for
c and java,” in NASA Formal Methods Symposium, Springer, 2011.

[49] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Inter-
national conference on Tools and Algorithms for the Construction and
Analysis of Systems, Springer, 2008.

[50] J. C. Reynolds, “Separation logic: A logic for shared mutable data
structures,” in Logic in Computer Science, IEEE, 2002.

256

APPENDIX A

FORMAL VERIFICATION

A. Methodology and Verified Properties

In principle, errors in either the design or implementation

of any software module may violate the safety and security

properties. Therefore, trust must be a key requirement for any

security-related service based on software (or even hardware).

Ensuring reliability and high-assurance of SIMPLE involves

formally verifying both the design and implementation to prove

certain safety and correctness properties. A verified design

provides a proof of semantic correctness, while a verified

implementation ensures safety and functional correctness. The

design of SμV is equivalent to the software fault isolation

approach (SFI) [46], whose correctness has been formally

verified in [47], whereas the design of SIMPLE is inline with

the recently proposed formally-verified correct design of secure

RA in [33]. Therefore, in this paper, we assume that our

design is correct and focus only on verifying certain safety and

correctness properties of implementation of the entire software

architecture. Furthermore, we assume that the underlying MCU

architecture is correctly implemented and adheres to its design

specifications. In comparison to the work in [33] that follows

the Model Checking approach to verify certain properties,

we follow the Theorem Proving approach to verify safety

properties, leveraging VeriFast [48], a separation logic-based

program verifier that relies on the Z3 theorem prover [49].

We briefly introduce VeriFast and then elaborate on the

properties that have been verified in both SμV and SIMPLE

and their implications on trustworthiness and reliability.

VeriFast [48] is a formal verification tool that checks and

verifies certain safety properties of C programs. It is built

on top separation logic that extends Hoare logic [50]. The

verification process starts with human-assisted annotations of

C code. The annotations include pre- and post-conditions

expressed as separation logic assertions, ghost data structures,

and ghost lemmas. The body of each function of the C program

is executed symbolically, starting from a symbolic state iden-

tified by the function’s preconditions, going through checking

permissions for each statement inside the function, updating the

symbolic state, and ending up with a symbolic state that should

meet the function’s postconditions. Certain safety properties are

guaranteed if both pre- and post-conditions and any additional

annotations are satisfied during the symbolic execution of that

function.

Verification. The verification process begins with writing

formal specifications in terms of annotations to indicate what

should each function do. These annotations consist of contracts

(pre- and post-conditions), predicates to describe data structure,

and lemmas (i.e. ghost functions). After annotating all function

headers and their bodies, the verifier in VeriFast will then check

whether the code complies with these annotations, providing

proof steps that are automatically generated. Thus, any illegal

access or operation will be detected by VeriFast, reporting an

error. Listing 1 shows a snapshot of verified statements inside

a function body, where the function belongs to the architecture

of SIMPLE. All annotations in VeriFast are written inside

special comments (/*@ ... @*/ or //@ ...) which are ignored

by the C compiler. As shown, the function contract consists

of pre-conditions, specified by the keyword requires, and

post-conditions, specified by the keyword ensures. The pre-

conditions describe the permissions that the function requires

to execute successfully, whereas the post-conditions describe

the permissions that are transferred from the function to its

caller when the function is done with the execution.

To abstract over the set of permissions required by the func-

tion, permissions can be grouped and hidden via predicates.

In Listing 1, we use a predicate, i.e. named state_pred, in

the function contract to hide the complexity of formalizing

permissions needed. For each loop, VeriFast requires identify-

ing a Loop Invariant to verify an arbitrary sequence of loop

iterations by verifying the loop body once, starting from the

initial symbolic state.

A number of user-defined along with built-in lemmas (i.e.

uchars_split, etc.) have been used in the verification process.

A lemma is a way of writing theorems and proofs in the

form of ghost C-like functions with the exception that they

do not perform field assignment or call regular C functions.

For example, in Listing 1, XOR_NoUnderflow lemma is

used to verify that there is no arithmetic underflow once the

bit-wise XOR operation takes place in the ch function. The

body of the lemma represents the proof of the theorem, as

shown in Listing 1.

Verified Properties. By formally-verifying the software

architecture of SIMPLE using VeriFast, we prove that it is

memory-safe, which does not exhibit any undefined behavior

as described by the C11 standard [40]. In particular, the entire

system is free from the following run-time errors: division

by zero, integer overflow/underflow, buffer overflow/underflow,

invalid pointer dereferences, out-of-bounding array indexing,

illegal memory access, double free, use after free, problematic

bit shifts, type conversions that would overflow the destination,

and memory leaks. The freedom from the aforementioned run-

time errors guarantees the absence of crashes property since

there is no non-terminating recursions or loops, no segmen-

tation faults (i.e. attempting to write read-only memory), or

exceptions (i.e. division by zero). Considering atomicity (which

is a feature ensured by disabling interrupts), the absence of

crashes property preserves bounded-execution time property,

where all functions are guaranteed to finish execution in a

finite period. In line with the work in [33], [42], functional
correctness is verified, given the aforementioned verified prop-

erties along with the deterministic, predictable, and statically

allocated code in the memory (no dynamic memory allocations

used through the entire software architecture) along with the

usage of a functionally-correct HMAC primitive.

Implications on SIMPLE. SμV aims at providing strong

software-based isolation guarantees. This can be achieved by

verifying memory safety and control flow integrity properties.

The former has been verified as explained above. All SμV

functions start execution by disabling all interrupts and end

257

up enabling them. The combination of atomicity and memory-

safety properties guarantees the control-flow integrity property,

as execution may not scape a predetermined control flow

graph. Consequently, reliable software-based memory iso-
lation is guaranteed, where the data-access and control-flow

policies shown in Table I are fulfilled in the presence of an

untrusted modified compiler. Thus, considering its formally-

verified properties and being built atop the formally-verified

MPU-Like SμV, SIMPLE is proven to be secure and sound

RA.

B. Formal verification overhead

The entire software architecture of SIMPLE consists of

about 580 lines of code. 441 lines of VeriFast annotations

(or about 0.76 line of annotation for every line of code)

have been added to verify the aforementioned properties.

The classification of these annotations is as follows: function

contracts needed 66 lines of annotations (there were 33 pairs of

requires/ensures, one pair for each function), only 1 predicate

is defined throughout the entire code base, 19 loop invariants,

and 42 specific lemma’s are identified and employed in the

verification process. Furthermore, various built-in predicates

and lemmas are used in verifying the code. In terms of

development overhead, extending the verified properties of

SμV along with verifying SIMPLE consumed no less than 120

man-hours.

. . .
/ *@

p r e d i c a t e s t a t e _ p r e d (s h a _ c t x _ t * s t a t e ,
u i n t 3 2 _ t *p , u i n t 3 2 _ t h0 , u i n t 3 2 _ t h1 ,
u i n t 3 2 _ t h2 , u i n t 3 2 _ t h3 , u i n t 3 2 _ t h4 ,

u i n t 6 4 _ t t h e L e n g t h) = p == s ta te− >h
&*& *p |−> h0 &*& *(p +1) |−> h1 &*&

(p +2) |−> h2 && *(p +3) |−> h3 &*&

(p +4) |−> h4 && sta te− > l e n g t h |−>
t h e L e n g t h ;

@* /
. . .
s t a t i c void
w r i t e _ p a g e (u i n t 8 _ t * page_buf , u i n t 3 2 _ t o f f s e t)

/ /@ r e q u i r e s [? f] u c h a r s (page_buf , 256 , _)
&*& 0 <= o f f s e t &*& o f f s e t <= UINT_MAX;

/ /@ e n s u r e s [f] u c h a r s (page_buf , 256 , _) ;
{

u i n t 3 2 _ t p a g e p t r ;
u i n t 8 _ t i ;
/ * E r a s e page * /
b o o t _ p a g e _ e r a s e (o f f s e t) ;
boo t_spm_busy_wai t () ;

/ * Wr i t e a word (2 b y t e s) a t a t ime * /
p a g e p t r = o f f s e t ;
/ /@ div_rem (PAGE_SIZE , 2) ;
i = (u i n t 8 _ t) (PAGE_SIZE / 2) ;
/ /@ div_rem (PAGE_SIZE , 2) ;

/ /@ u i n t 8 _ t * page_buf0 = page_buf ;
/ /@ u i n t 8 _ t o f f s e t s D o n e = 0 ;

while (i > 0)
/ *@ i n v a r i a n t [f] u c h a r s (page_buf0 ,

256 , _) &*& 0 <= i &*& 0 <=
o f f s e t s D o n e &*& 0 <= p a g e p t r
&*& p a g e p t r <= UINT_MAX

&*& o f f s e t s D o n e <= 256 &*&
page_buf == page_buf0 +
o f f s e t s D o n e &*& i <= (256 −
o f f s e t s D o n e) ; @* /

{
/ / @ u c h a r s _ s p l i t (page_buf0 , o f f s e t s D o n e) ;

u i n t 1 6 _ t w = * page_buf ;
page_buf ++;
/ /@ assume (o f f s e t s D o n e +1 <=

256−offsetsDone−1) ;
. . .
}
. . .

}
. . .
/ *@
. . .
lemma vo id XOR_NoUnderflow_char (u i n t 8 _ t x ,

u i n t 8 _ t y)
r e q u i r e s 0 <= y &*& 0 <= x &*& x <= 255

&*& y <= 255 ;
e n s u r e s ((u i n t 8 _ t) (x ^ y)) >= 0 ;

{
Z zx = Z _ o f _ u i n t 8 (x) ;
Z zy = Z _ o f _ u i n t 8 (y) ;
b i t x o r _ d e f (x , zx , y , zy) ;
Z z t = Z _ o f _ u i n t 8 (0) ;
Z_of_u in t8_g tOReq (Z_xor (zx , zy) , z t) ;

}
. . .

@* /

u i n t 3 2 _ t ch (u i n t 3 2 _ t x , u i n t 3 2 _ t y , u i n t 3 2 _ t z)
/ /@ r e q u i r e s 0 <= x &*& 0 <= y &*& 0 <= z ;
/ /@ e n s u r e s 0 <= r e s u l t &*& r e s u l t <=

UINT32_MAX ;
{

/ /@ p r o d u c e _ l i m i t s (x) ;
/ /@ p r o d u c e _ l i m i t s (y) ;
/ /@ p r o d u c e _ l i m i t s (z) ;
/ /@ AND_NoUnderflow (x , y) ;
/ /@ AND_NoOverflow (x , y) ;
/ /@ N_AND_NoUnderflow (z , x) ;
/ /@ N_AND_NoOverflow (z , x) ;
/ /@ XOR_NoUnderflow (x&y , z& ~x) ;
/ /@ XOR_NoOverflow (x&y , z& ~x) ;
u i n t 3 2 _ t r e s u l t = ((x&y) ^ (z& ~x)) ;
return r e s u l t ;

}

Listing 1: A snapshot of verifying software architecture of

SIMPLE.

258

