
HydraFusion: Context-Aware Selective Sensor Fusion for Robust
and Efficient Autonomous Vehicle Perception

Arnav Vaibhav Malawade∗

Trier Mortlock∗

Mohammad Abdullah Al Faruque
University of California, Irvine

Irvine, California, USA

ABSTRACT

Although autonomous vehicles (AVs) are expected to revolutionize

transportation, robust perception across a wide range of driving

contexts remains a significant challenge. Techniques to fuse sensor

data from camera, radar, and lidar sensors have been proposed

to improve AV perception. However, existing methods are insuffi-

ciently robust in difficult driving contexts (e.g., bad weather, low

light, sensor obstruction) due to rigidity in their fusion implementa-

tions. These methods fall into two broad categories: (i) early fusion,

which fails when sensor data is noisy or obscured, and (ii) late fu-

sion, which cannot leverage features frommultiple sensors and thus

produces worse estimates. To address these limitations, we propose

HydraFusion: a selective sensor fusion framework that learns to

identify the current driving context and fuses the best combination

of sensors to maximize robustness without compromising efficiency.

HydraFusion is the first approach to propose dynamically adjust-

ing between early fusion, late fusion, and combinations in-between,

thus varying both how and when fusion is applied. We show that,

on average, HydraFusion outperforms early and late fusion ap-

proaches by 13.66% and 14.54%, respectively, without increasing

computational complexity or energy consumption on the industry-

standard Nvidia Drive PX2 AV hardware platform. We also propose

and evaluate both static and deep-learning-based context identifi-

cation strategies. Our open-source code and model implementation

are available at https://github.com/AICPS/hydrafusion.

KEYWORDS

Sensor Fusion, Autonomous Vehicles, Object Detection, Robustness,

Adaptive Fusion, Context-Aware

1 INTRODUCTION

Autonomous vehicles (AVs) are cyber-physical systems (CPSs) that

operate in complex, dynamic environments with many different

actors. An AV must be able to perceive the environment accurately

and efficiently to ensure safety across driving settings. Most mod-

ern AVs are equipped with multiple sensors and use sensor fusion

techniques to help handle the uncertainties present in challeng-

ing driving scenes. Even with these methods, autonomous driving

is a highly complex task, and large deep-learning algorithms are

necessary to enable accurate perception.

Despite recent advances, industry-standard AV perception sys-

tems still tend to fail in difficult contexts [20, 21]. A naïve solution

to the problem is to continue increasing the size and complexity

of AV algorithms and incorporate more sensors to cover as many

∗Both authors contributed equally to this research.

driving contexts as possible. However, AVs are energy-constrained

CPSs, so the use of larger algorithms comes at the cost of reduced

driving range, increased expense, and increased power and thermal

demands on the vehicle [17]. Moreover, as shown in Section 1.1,

in some contexts fusing more sensors can actually result in a less

precise result. Thus, robust and accurate AV perception requires

algorithms that can adapt to dynamically changing driving contexts

as they appear without increasing the computation requirements.

Typical AV perception systems implement deep convolutional

neural networks (CNNs) [23], in which sensor measurements are

fed through a series of convolutional layers to produce spatial fea-

tures. These features are then used to detect objects in different

regions of the visual scene. Sensor performance can vary depend-

ing on factors such as weather, lighting, and physical obstructions

[24, 26, 27]. Sensor fusion algorithms attempt to combine the bene-

fits from each sensor to produce a more accurate result. However,

in dynamic environments, the context of the scene is often over-

looked or excluded from the fusion method entirely. Most modern

multi-sensor approaches typically perform sensor fusion at only

one point in the model, whether it be early fusion across the raw

sensor measurements or late fusion after detections have been

made [22, 26, 30]. Furthermore, most works use static algorithms

for fusion that do not depend on the context of the AV’s operat-

ing environment. Context-aware sensing approaches have proven

beneficial for a wide range of CPS applications [10, 14]. Humans

intuitively leverage contextual information about the driving scene

(e.g., weather, lighting, road type, high-level visual features) to ad-

just their decisions and focus while driving. Similarly, contextual

information can inform AV perception and enable more robust

fusion in complex driving contexts.

The scope of this paper addresses the following core research

problems: (i) implementing a fusion approach that is robust across

diverse contexts, noise sources, and sensor error types; (ii) using

the context of a scene to improve sensor fusion performance; and

(iii) implementing an efficient multi-sensor fusion approach for

energy-constrained AV edge devices.

In this paper, we propose HydraFusion — a context-aware sen-

sor fusion approach that actively identifies the driving context

and uses it to selectively fuse sensor data from different modali-

ties at varying depths in the model. By using a selective sensor

fusion approach, HydraFusion can improve the robustness of AV

perception without increasing the computational demands on the

energy-constrained AV edge platform. Our work is the first to study

a context-aware selective sensor fusion approach that can dynami-

cally adjust both how and when fusion is applied. We specifically

study the problem of object detection in the AV perception system;

68

2022 ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS)

978-1-6654-0967-4/22/$31.00 ©2022 IEEE
DOI 10.1109/ICCPS54341.2022.00013

however, we posit that our proposed approach can be applied to

a variety of cyber-physical sensor fusion applications, including

tracking, localization, and mapping [6, 11, 18, 25]. The key contri-

butions of this work are as follows:

(1) We propose a novel multi-branch sensor fusion architecture

that enables early fusion, late fusion, as well as intermediate

combinations.

(2) We propose intelligent, context-aware gating strategies that

maximize robustness by dynamically selecting the fusion

methodology depending on the current context.

(3) We demonstrate that our approach outperforms existing

methods on a challenging real-world dataset containing a

wide range of driving contexts, including bad weather, poor

lighting, and various location types.

(4) We implement our approach on an industry-standard AV

hardware platform, the Nvidia Drive PX2, to demonstrate

that our approach can be practically deployed in a real AV

with comparable energy consumption, latency, and memory

usage to state-of-the-art methods.

(5) We open-source our algorithmic implementation and ar-

chitecture1 to benefit the research community and enable

further study of selective sensor fusion approaches for CPS

problems.

In the remainder of this section, we provide a motivating exam-

ple for our work. In Section 2, we discuss related work. Section

3 presents our problem formulation. In Section 4, we discuss our

proposed approach, HydraFusion, and in Section 5, we provide

numerical results on the performance of our approach. Concluding

remarks are given in Section 6.

1.1 Motivational Example

In this section, we outline a motivating example where a stan-

dard sensor fusion approach would produce non-ideal results in the

problem setting of AV object detection. We provide some mathemat-

ical formulations coupled with qualitative analysis across diverse

conditions an AV may encounter. This section serves to illustrate

shortcomings with current approaches and makes some assump-

tions on linearity and error statistics, however we support similar

analysis could be expanded to more complex settings.

Theoretical Analysis. In this example, we provide mathemat-

ical motivation for the direct affect a faulty sensor measurement

could have on the estimation process. For performing late fusion

in the problem of object detection, we can assume we want to pre-

dict an object’s location y and that we have access to 𝑛 multiple
object detectors, each which produce their own predictions which

we use as measurements x. Examining a single measurement, we

aim to model the relationship between the parameter we want to

estimate and that measurement. This can be achieved through a

commonplace parameter estimation formulation [4] as follows:

x = ℎ(y) + e (1)

where y is the true parameter we are attempting to estimate of

dimension 𝑛𝑦 , x is the measurement to be fused of dimension 𝑛𝑥 , ℎ
is a function mapping the state of the system to the measurements,

and e is the estimation error. In this case, ℎ can be linearized into

1https://github.com/AICPS/hydrafusion

H, an 𝑛𝑥 × 𝑛𝑦 measurement matrix. We additionally can model the

error, e, such that it is zero mean, E(e) = 0 with E(ee𝑇) = R where

R is themeasurement error covariance. This yields a weighted linear

least-squares solution such that the minimum variance unbiased

estimator can be derived in a batch manner as:

ŷ𝑛 = [

𝑛∑
𝑖=1

H𝑇
𝑖 R

−1
𝑖 H𝑖]

−1 ·

𝑛∑
𝑖=1

H𝑇
𝑖 R

−1
𝑖 x𝑖 (2)

where ŷ𝑛 is the fused estimate of the detected object. Typically,

the more information a fusion filter has, the better the perfor-

mance will be. However, this argument breaks apart in cases where

there are discrepancies in the measurement models, among other

sources of estimation errors. These conditions commonly occur in

autonomous driving [9] and can negatively impact the quality of

sensor measurements. Given incorrect R values in Eq. 2, this can

lead to known problems of model divergence and/or filter incon-

sistencies [4]. For example, suppose a camera sensor on an AV has

raindrops obscuring the lens (like in the first column of Figure 1).

In that case, it may generate overconfident estimates where the R

value does not reflect the true amount of noise in the measurement.

Qualitative Analysis. To illustrate these points, Figure 1 visu-

alizes the object detection results for a variety of contexts from

a public driving dataset [27]. Measurements from three sensing

modalities (camera, radar, lidar) are shown from left to right across

three different driving contexts: (a) sunny, (b) rainy, (c) snowy. The

ground truth objects in the scenes are shown in dotted yellow boxes.

A deep-learning-based object detection pipeline featuring Faster

R-CNN [23] with a ResNet-18 [13] backbone was used to generate

the detections for each sensor input. The fusion method, shown in

purple in the last column for each scene, represents the standard

approach to fuse detections from all sensors. In the same column,

we also show our approach, HydraFusion, that selectively fuses

sensors based on the context derived from a scene. For clarity, only

the highest scoring predictions for each configuration are shown

in the figure.

Some clear trends emerge in the results: (i) cameras predict

fewer false positives but struggle in severe weather, as shown with

the rainy and snowy images where the camera lens is obscured;

(ii) radars can struggle in scenes with many objects blocking or

deflecting measurements as shown in the urban setting, but remains

robust in adverse weather conditions of rain and snow; and (iii) lidar

can experience high levels of noise in a densely populated scene,

can miss objects that are behind other objects, and can degrade

in performance due to weather like the snowflakes shown in the

figure. A summary of each modality’s qualitative performance in

different contexts of the dataset is shown in Table 1.

Scene Camera Radar Lidar Fusion

Urban � � � �
Rainy � � � �
Foggy � � � �
Snowy � � � �
Night � � � �

Table 1: Qualitative object detection performance of each

sensing modality in different driving contexts.

69

Figure 1: Qualitative analysis of object detection with different sensors and their fusion across three contexts. Ground truth

detections are shown in yellow, while sensor-specific and fusion detections are shown in their respective colors. HydraFusion

achieves the most accurate predictions across contexts.

The last column of Figure 1 allows us to examine fusion across

the three different scenes. For most objects, the fusion method per-

forms better than a single sensing modality. However, there are

specific drawbacks to this approach. In (a), a field-of-view (FOV)

mismatch arises between fusing detections across different modal-

ities. Furthermore, the original camera detections for the center

object were skewed far to the right by the other sensors’ predictions.

In (c), it is clear that the fusion method predicts more outliers that

deviate from the ground truth. Overall, a more optimal estimate

across all the images is achieved by fusing only a subset of sensors,

as done in our approach, HydraFusion. This result motivates the

need for a selective sensor fusion approach that can dynamically

adjust to different contexts. The experimental results shown in Sec-

tion 5 of this paper further validate the theoretical and qualitative

analysis provided here.

2 RELATEDWORK

This section discusses related works on sensor fusion, object detec-

tion, and multi-branch deep learning. We elaborate on their scope

and limitations and compare them with our proposed approach.

2.1 Sensor Fusion

In traditional sensor fusion approaches that have known dynamics,

noise, and measurement models, more sensors can help achieve

better results [4]. Fusion across multiple homogeneous sensors can

help reduce uncertainties by increasing confidence or providing

measurements over a wider observation area to increase coverage.

Fusing heterogeneous sensors can also reduce sensing uncertainties

by providing information across a different feature set for the same

task. However, the fusion of all sensors does not always guarantee

better estimates, especially with highly nonlinear and dynamic

systems such as AV perception systems. Hence, there are potential

benefits to selectively fusing information obtained from sensors,

as shown in some recent works. In [7], a selective sensor fusion

scheme is developed for a visual-inertial odometry system to pro-

vide robustness against data corruption. The authors implement

feature selection using data-driven models that consider measure-

ment reliability and vehicle-environment dynamics. This work is

extended to a generic framework for selective sensor fusion in deep

pose estimation in [6]. However, these works only implement late-

fusion over the outputs of sensor-specific deep learning models,

limiting their performance and efficiency. Authors in [15] propose a

strategy to alter the power levels and operating state of an AV lidar

sensor depending on the vehicle’s speed and environment. Similarly,

[11] proposes adjusting the sensing frequency for indoor robot lo-

calization according to environmental dynamics. These approaches

primarily focus on improving sensor efficiency. In contrast to these

related works, our approach is the first to propose selective fusion

for AVs with a dynamic gating component. By selecting between

multiple modalities and fusion locations, HydraFusion maximizes

robustness by selecting both how and when fusion takes place in

the model.

In a similar vein, several works have studied the use of contex-

tual information from the environment within an information fu-

sion framework. Authors in [28] survey context-based information

fusion and discuss how different types of contextual information

interact with state variables and traditional fusion approaches. Both

[25] and [18] show that context-aided sensor fusion frameworks

for navigation improve robustness over standard methods. Distinct

from these works, our approach utilizes deep learning models to

learn contextual representations of scenes instead of static fusion

rules to provide more robust results. Authors in [12] extract contex-

tual information using specialized feature mining within a CNN for

70

object detection in very-high-resolution imagery. However, their ap-

proach is focused on obtaining contextual information from regions

of interest in images, whereas our approach extracts the context of

a scene using multiple heterogeneous sensory inputs.

2.2 Fusion in Object Detection Methods

Traditional object detection methods use CNNs to extract spatial

features from inputs to identify objects in the scene [23]. Object

detection in AVs is more challenging as the physical aspects of the

environment affect performance. Both [9] and [3] survey object

detection in AVs; [9] focuses on probabilistic methods, while [3]

studies 3D detection methods. Both papers identify gaps in mod-

eling sensor uncertainty. As detailed in the previous subsection,

sensor fusion methods can help offset some measurement inaccu-

racies.

Fusion methods in object detection largely fall into two main

categories: feature-level (or early) fusion and decision-level (or late)

fusion. Early fusion approaches can extract many multi-modal fea-

tures from the input but can be sensitive to noise and outliers from

the sensors, reducing their robustness [22, 26]. Late fusion methods

are more robust to sensor noise but cannot combine intermediate

features across sensors, limiting their performance [30]. Hydra-

Fusion remains unique in its approach of combining early and

late fusion approaches. To the best of our knowledge, this is the

first work to propose a multi-layered fusion approach for object

detection in AV perception systems.

2.3 Multi-Branch Deep Learning Architectures

HydraFusion maintains computational efficiency when evaluating

multiple object detection pipelines simultaneously by utilizing a

gating strategy, which limits the number of detection pipelines, or

branches, that are run. Several types of multi-branch deep learning

approaches have been proposed for image processing tasks. In [1],

a network of experts approach to image categorization is proposed.

Each branch is a CNN that only discriminates between the subset

of classes it is assigned to learn, as this approach lacks an intelli-

gent gating module. Similarly, [2] uses specific expert branches but

focuses on life-long learning and the generation of new tasks and

experts.

[19] explores efficient methods for single image classification,

where the authors use branches developed to compute features on

visually similar classes. During training, the authors employ an

adaptive form of dropout where entire branches are dropped when

they are not chosen by the gating function. Similarly, TridentNet

[16] is a network that addresses the problem of scale variation in

object detection. Its three-branch architecture shares parameters

and structure between branches, resulting in faster training and

inference and the enforcement of similar operations across feature

maps, but this requires similarly structured branches. Our approach

fundamentally differs from these works in that HydraFusion takes

in multiple heterogeneous sensor modalities as inputs, incorporates

context into an intelligent branch selection method, and targets dy-

namic sensor fusion for robust object detection via a multi-branch

approach. Our approach is also unique because it enables the spe-

cialization of branches to individual sensors or subsets of sensors

to improve robustness across varying driving contexts.

3 PROBLEM FORMULATION

This section provides a formulation for the key sensor fusion prob-

lem targeted in this paper: object detection in AVs. We assume that

the AV uses a variety of sensing modalities to take measurements

of the driving scene. At discrete time steps, samples are generated,

which consist of input measurements, X, from the sensors. The

objective is to accurately detect objects, Y, within each scene using

the sensor measurements:

Y = 𝜙 (X), (3)

Y = {Y𝑖𝑐𝑙𝑎𝑠𝑠 ,Y
𝑖
𝑟𝑒𝑔}𝑖=1...𝑑 (4)

where 𝜙 represents the function for performing object detection,

Y is composed of classification and regression components, and 𝑑
represents the maximum number of objects to detect in a sample.

𝜙 can take the form of conventional fusion algorithms, a machine

learning model, or an ensemble of machine learning models. Clas-

sification refers to the identification of each detected object’s class.

The classification target for each object can be defined as:

Y𝑖𝑐𝑙𝑎𝑠𝑠 ∈ {1, 2, 3, . . . , 𝑘} (5)

where 𝑘 represents the number of classes considered in the problem.
These indices represent a pre-defined mapping to object classes

(e.g., 1:car, 2:van, 3:truck, and so forth). Regression refers to the

estimation of an object’s location within the sample. These targets

can be represented by:

Y𝑖𝑟𝑒𝑔 = [𝜇1, 𝜈1, 𝜇2, 𝜈2] ∈ R
2 (6)

where 𝜇 and 𝜈 denote the object’s 2D bounding box coordinates in

reference to a generic coordinate frame. 2

The measurements from 𝑠 sensors can be fused by a variety

of means to improve detection results. An early fusion approach

involves fusing the raw sensor measurements before passing them

to 𝜙 :
Y = 𝜙 (𝜓 (X1,X2, . . . ,X𝑠)) (7)

with𝜓 representing the function used to fuse the measurements. In

the case of late fusion, 𝜙 represents a function fusing the separate

output detections:

Y1, Y2, . . . ,Y𝑠 = 𝜙1 (X1), 𝜙2 (X2), . . . , 𝜙𝑠 (X𝑠) (8)

Y = 𝜙 (Y1,Y2, . . . ,Y𝑠) (9)

The context of scenes in AV driving can vary dramatically: from

different lighting conditions, to different road types and locations, to

weather conditions that can severely degrade specific sensors. This

variance calls for the use of an adaptive𝜙 that is not only determined
by a set of static scene conditions, but is instead learned within the

model. In this case, 𝜙 represents an ensemble of object detection

models, and 𝜙∗ represents the expected best subset of models in the
ensemble for a given inputX. We denote the contextual information

of a scene (either learned and modeled from the inputs or provided

externally) as Ω. We then can define the subsequent equations:

Ω = 𝜋 (X), 𝜙∗ = 𝜌 (Ω), Y = 𝜙∗(X) (10)

where 𝜋 represents a context identification model, and 𝜌 represents
the mechanism for selecting 𝜙∗ given the identified context Ω. The
goal of 𝜋 and 𝜌 is to select the optimal subset of branch models 𝜙∗

2This could be represented in 3D as well, but for the sake of this paper we focus on
2D object detection.

71

Figure 2: Our Proposed HydraFusion Architecture.

for the inferred contextΩ tomaximize object detection performance

for a given X. We posit that this general problem formulation can

be extended to other sensor fusion problems in CPS.

4 METHODOLOGY

The model architecture for our proposed approach, HydraFusion

is shown in Figure 2. Algorithm 1 describes how our architecture

processes input data from different modalities to produce the de-

sired targets. First, sensor data from each modality is processed

by a modality-specific CNN (denoted as “stem”) to produce an ini-

tial set of features F. Next, these features are used by the gating

module (containing 𝜋 and 𝜌) to identify the context Ω and select

which subset of branches 𝜙∗ should be executed for this context.
Each branch is a deep-learning model capable of converting the

features extracted from a subset of sensors F∗ to produce a set of

outputs for a specific task (e.g., object detection). After the selected

subset of branches is executed, the branches pass their outputs Y∗

to the fusion block, which fuses them to generate the final object

detections Y. Next, we discuss the details of each component in our

proposed architecture.

4.1 Input Processing and Stems

As shown in Figure 2, HydraFusion accepts any number of sensors

and sensing modalities as input. Each stem is implemented as a

CNN, which generates an initial set of spatial features for each

sensor. We use a shared stem block for processing all the sensors

for a given sensor modality. Thus, we will have three stems if our

implementation uses camera, radar, and lidar sensors. After the

input from each sensor for a given modality is passed through the

stem, the gate module uses the resulting features to identify the

context and select which branches to execute. Then, the selected

branches use the stem output features as inputs to generate their

predicted object detections.

Algorithm 1: HydraFusion Algorithm

Input: Sensor measurements X = {𝐴1, ..., 𝐴𝑎, 𝐵1, ..., 𝑍𝑧 }
Output: Object Detections Y

1 F← [[], [], [], ...] // initialize feature vector

2 for s in sensor_types do

3 S← X[𝑠] // get data by modality

4 for m in S do

5 𝐹 [𝑠] [𝑚] ← 𝑠𝑡𝑒𝑚𝑠 (𝑚) // extract features

6 Ω ← 𝜋 (F) // identify context

7 𝜙∗ ← 𝜌 (Ω) // select Top-𝑘 branches to run

8 Y∗ ← []

9 for branch in 𝜙∗ do
10 Y∗ [𝑏𝑟𝑎𝑛𝑐ℎ] ← 𝑏𝑟𝑎𝑛𝑐ℎ(F∗) // pass subset of F

11 Y← 𝑓 𝑢𝑠𝑖𝑜𝑛_𝑏𝑙𝑜𝑐𝑘 (Y∗) // fuse branch detections

4.2 Context Identification and Gating Module

Context identification is important for selecting the appropriate

subset of branches to maximize performance in a given context. We

propose several different gating algorithms for this task. The goal

of the gate module is to rank the branches based on their expected

performance for the input set of stem features. Next, the top-𝑘
branches (where 𝑘 is configurable) are selected for execution and
fusion to maximize object detection performance. The architectures

of our three gating models are shown in Figure 3.

Figure 3: Gating Model Architectures.

Rigid Knowledge-Based Gating. Since there exists some domain

knowledge as to how each context will affect each sensing modality,

we can implementKnowledge Gating, where this domain knowledge

is used to statically encode the subset of branches to execute for

a given context. This assumes the set of possible contexts is finite,

and the current context can be identified via external sources. For

example, weather information, time of day, and map data can all be

used to define the current context. In our approach, we define the

set of fixed contexts based on metadata from the RADIATE dataset

[27] describing the type of driving data in each sequence. Thus, our

set of fixed contexts is: {city, motorway, junction, rural, snow, fog,

72

and night}. We leverage domain knowledge from Table 1 as well

as from the RADIATE paper to rank the relative performance of

each sensor in each fixed context. Then, at run-time, the external

context information (e.g., data from a navigation/weather system) is

used to identify the current context. The top-𝑘 ranked branches for
that context are selected to be executed and fused. The limitation

of this gating strategy is that it requires a fixed context definition,

potentially limiting performance in cases where contexts are less

rigidly defined. With our other gating strategies, we define the

context as a continuous feature space to enable the modeling of

more complex contexts.

Learned Dynamic Deep Gating. In Deep Gating, we implement

a CNN followed by a multi-layer perceptron (MLP) to model the

relationship between the features output from the stems and rank

the branches based on their expected performance for this feature

set. The outputs of the CNN are flattened to one dimension before

being passed to the MLP. In this gating method, the context can be

viewed as a continuous feature space defined by the stem outputs.

Attention-Based Dynamic Gating. In some contexts, certain re-

gions of the feature mapmay bemore informative than others about

the scene’s context and, consequently, the branch-wise performance.

We implement an attention-based gating strategy, denoted as Atten-

tion Gating, that infers an attention map over the stem features to

evaluate this hypothesis. This attention map is used with CNN and

MLP layers to model the relationship between branch performance

and stem features. We use the visual attention layer proposed in

[31] in our implementation.

Optimal Loss-Based Gating. To serve as a performance target for

our gating approaches, we implement a so-called "optimal" gating

strategy where, for a given input, the branch ranking output by the

gate module is equal to the inverse of the aggregated branch loss for

the detections output by each branch. Since the actual branch loss

is used to inform the gate a posteriori, this strategy is not feasible

for real-world deployment. However, it gives the theoretical best-

case performance of a gating strategy that can perfectly rank the

branches based on their losses for a given input. We denote this

gating method Optimal Gating.

4.3 Branches

The branches of the proposed framework are designed to be spe-

cific to different sensor fusion combinations. These pairings can

enforce early fusion in the model by combining the stem features

of heterogeneous sensor inputs (e.g., radar and lidar) before per-

forming object detection. Furthermore, some branches use singular

sensor inputs (e.g., radar) that the gating module may choose in

scenarios where other sensors (e.g., camera and lidar) have poor

performance due to situational factors (e.g., weather or obstruction).

Each branch is equipped with a Region Proposal Network (RPN)

[23] that uses anchor generation techniques to predict detections

across a feature map. These predictions are then fed through a

region-of-interest layer that generates the following outputs for

each detection: bounding box coordinates [𝜇1, 𝜈1, 𝜇2, 𝜈2] — expressed

in the native coordinate frame, scores [0 − 1] — confidence level of

the detected object, and labels {1, 2, 3, . . . , k} — the assigned classifi-

cation of the object. The outputs from each branch are passed to

the fusion block to generate the final set of fused detections.

4.4 Fusion Block

The function of the fusion block in our approach is synonymous

with the concept of late fusion. In HydraFusion, we use the fol-

lowing fusion algorithms to fuse the detections output by all of the

active branches of the model.

Non-Maximum Suppression (NMS). This algorithm calculates the

intersection over union (IoU) of corresponding bounding box esti-

mations, and based on their confidence scores, selects which box

estimates to keep. The equation for calculating the IoU (sometimes

referred to as the Jaccard index) between two sets,𝐴 and 𝐵, is given
by:

𝐼𝑜𝑈 (𝐴, 𝐵) =
|𝐴 ∩ 𝐵 |

|𝐴 ∪ 𝐵 |
, (11)

where ∩ represents the intersection, and ∪ represents the union.

In our application, the sets are the rectangular bounding box pre-

dictions. By iteratively comparing bounding box predictions and

returning a match if the IoU is above a defined threshold, only the

box with the highest confidence score is kept among each set.

Soft-NMS. A further refinement of NMS, proposed in [5], which

lowers confidence scores using a Gaussian weighting function de-

fined by 𝜎 , if the boxes are above a threshold IoU value. Unlike

NMS, Soft-NMS does not completely remove box estimates, which

can result in more false positives.

Weighted Box Fusion (WBF). This approach, proposed in [29],

clusters the bounding box predictions into distinct lists by iterating

over the boxes and calculating IoUs with respect to thresholds.

From each cluster, the fused bounding box predictions, [f𝜇 , f𝜈], are
computed as weighted sums of each detection and its confidence

score:

f𝜇 𝑗 =

∑𝑛
𝑖=1𝐶𝑖 · 𝜇𝑖, 𝑗∑𝑛

𝑖=1𝐶𝑖
, f𝜈𝑗 =

∑𝑛
𝑖=1𝐶𝑖 · 𝜈𝑖, 𝑗∑𝑛

𝑖=1𝐶𝑖
(12)

where 𝑗 ∈ {1, 2}, 𝜇𝑖, 𝑗 and 𝜈𝑖, 𝑗 are the corresponding locations of
the bounding box points, and 𝐶𝑖 is the confidence score for the 𝑖th
box. WBF also has a skip-box threshold that defines which boxes

to exclude if they are below a certain confidence score. Further-

more, each branch can be assigned varying weights that can be

tuned within the overall model or application being used. In our

experiments, covered in the next section, the tunable threshold

parameters across fusion methods were found to have insignificant

effects on the results within reason.

5 EXPERIMENTS

In this section, we discuss our experiments. In Section 5.1 we elab-

orate on the dataset used to conduct the experiments. Sections 5.2

and 5.3 detail our model implementation process and training pro-

cedures. In Section 5.4 we present our experimental results. Finally,

in Section 5.5 we discuss the practicality of our approach and future

work.

73

5.1 Dataset

The RADIATE dataset [27] contains annotated data from a Navtech

CTS350-X radar, a Velodyne HDL-32e LiDAR, and a ZED stereo

camera. With this dataset, we trained and evaluated our models on

object detection using supervised learning. The RADIATE dataset

contains data for various driving contexts, including urban driving,

snow, rain, fog, night, and motorway driving. In some cases, several

sensors are visually obstructed by fog, rain, or snow. The dataset

contains the following annotated object classes: {car, van, truck, bus,

motorbike, bicycle, pedestrian, group of pedestrians}. This dataset

provides a challenging benchmark on which the robustness of

object detection models can be evaluated for a range of driving

contexts. They additionally present object detection results using

radar in varying weather conditions. Since [27] uses a different

problem formulation, model size, and metrics, its results are not

directly comparable to ours; however, our results for radar-only are

representative of the model evaluated in their work. Please refer to

the dataset for further details [27]. We used a 70:30 train-test split

for training and evaluating our models.

5.2 Model Implementation

5.2.1 Model Specification. To evaluate HydraFusion in compari-

son to the baseline fusion approaches, we implemented each stem

and branch as a Faster R-CNN [23] model with a ResNet-18 [13]

backbone. We split the ResNet-18 models at the first block and use

it as the stem for each modality. Then, the remaining ResNet-18

layers and the RPN of Faster R-RCNN are used in each branch.

With four sensors (two cameras, lidar, and radar), the total num-

ber of possible unique branches is 24−1 = 15. However, the training

and space complexity of a 15-branch model may be much larger

without providing noticeable improvements in precision. Thus, we

use domain knowledge to identify the best branches for the appli-

cation by picking branches that can cover the limitations of other

branches in difficult contexts. Thus, our HydraFusion implemen-

tation contains four single-sensor branches and three early fusion

branches, for a total of seven branches. The single-sensor branches

are: Left Camera, Right Camera, Lidar, and Radar ; the early fusion

branches are L/R Cameras, Lidar+Radar, and L/R Cameras + Lidar.

For single-sensor branches, the stem features for the sensor are

used as the input for the branch. For branches with early fusion, we

concatenate the stem features for each sensor to be fused across the

channel dimension. Then, we use a 2D convolution layer to fuse

this concatenated output before passing the result to the remaining

ResNet-18 layers in the branch.

Regarding the fusion block, the three fusion algorithms we im-

plemented used the following thresholds during the experiments:

IoU threshold = 0.4, skip-box threshold = 0.01, 𝜎 = 0.5. Due to
computation constraints, we only evaluated ResNet-18 in this work;

however, this architecture can be directly used with larger image-

processing models (e.g., ResNet-34/50/152, DenseNet-169, VGG-16)

by simply changing the image processing backbone and picking a

different split-point to divide it between the stems and the branches.

5.2.2 Gating Module Specification and Training. We implemented

deep convolutional networks for the Deep and Attention Gating

methods. As shown in Figure 3, the Deep Gating model is imple-

mented as a 3-layer CNNwith anMLP layer to map the CNN output

to seven output channels, corresponding to the branch ranking for

the seven branches. The Attention Gating method differs in that

a self-attention layer is added after the CNN but before the max

pooling and MLP layers. We trained the Deep and Attention Gat-

ing methods to estimate the aggregated loss of each branch for

a given input using regression with mean absolute error as the

loss function. The top-𝑘 lowest loss branches predicted by the gate
were selected for fusion. To prevent the gate model training process

from affecting the training process of the HydraFusion model, we

trained and evaluated the gating modules separately using the stem

outputs and branch losses of a fully trained HydraFusion model as

the inputs and targets for the gate. After training, the gate model

can be re-introduced into the HydraFusion model for deployment.

As mentioned in Section 4.2, the Knowledge Gating approach

uses external context and domain knowledge to inform the branch

ranking. During inference, we query the knowledge base using the

external context for each input and return the branch rankings

defined for that context. For the Optimal Gating method, we take

the loss between the ground-truth boxes and the branch outputs for

each branch and use this information to rank the branches — the

branches with the lowest aggregated loss are ranked the highest.

5.2.3 Perspective Mapping. Since the RADIATE dataset contains

data from both forward-facing (stereo cameras) and birds-eye view

(radar and lidar) perspectives, we used a transformation matrix to

transform the predicted bounding boxes from the birds-eye view

(BEV) sensors to the forward-facing perspective (FWD). This en-

abled us to fuse the detections from both perspectives in the fusion

block. To allow a fair assessment in our analysis across the different

sensor modalities, we chose the cameras’ field of view to be the

fused reference frame as it was the limiting factor since it covers the

least area. This prevents the objects detected by the lidar and radar

branches from dominating the model when objects are detected

outside the cameras’ field of view. The transformations from the

various other sensors to the reference frame are detailed further

in Appendix A. We postulate that our approach could be directly

applied in scenarios with full 360-degree camera coverage without

loss of generality.

5.3 Training and Scoring Metrics

Webuilt, trained, and evaluated eachmodel in PyTorch using a batch

size of 1 with a learning rate of 5e-3 for training the stem/branch

models and 5e-5 for training the gate models. We trained all of

the branches simultaneously on the dataset and averaged the loss

across the branches before backpropagating in each training update

step. We computed the classification and box regression loss for

each branch using the multi-task loss function defined and used in

Faster R-CNN [23]. Please reference their work for more details on

the loss calculation.

To score the models on object detection, we used the mean

average precision (mAP) score, which is widely utilized as the

primary metric for benchmarking object detection models [8, 23].

We compute the mAP for boxes with an intersection-over-union

(IoU) ≥0.5, which aligns with the PASCAL Visual Object Classes

(VOC) Challenge [8]. Precision (𝑃) and recall (𝑅) for each class in
the dataset are defined as:

𝑃 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃), 𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) (13)

74

where 𝑇𝑃 , 𝐹𝑃 , and 𝐹𝑁 represent the number of true positive, false

positive, and false negative classifications, respectively, by the

model at a set confidence threshold. Average precision (AP) is a mea-

sure of the area under the precision-recall curve and is calculated

as follows:

AP =
∑
𝑛

(𝑅𝑛 − 𝑅𝑛−1)𝑃𝑛 (14)

where 𝑅𝑛 and 𝑃𝑛 correspond to the recall and precision at threshold
𝑛 on the precision-recall curve. We calculate the mAP as the mean

of the AP across all object classes where every object instance is

weighted equally.

5.4 Results

Here we present our experimental results for object detection, eval-

uate our proposed gating methods, and benchmark our model’s

performance on industry-standard AV hardware.

5.4.1 Object Detection Results. In Table 2, we show themAP achieved

by different model configurations on the dataset. Results are shown

for (i) individual sensors, (ii) early fusion between sensors, (iii) late

fusion between sensor-specific branches, and (iv) our proposed

HydraFusion approach. For the results in sets (i) and (ii), the mAP

is calculated from a single ResNet-18 FasterRCNN model taking the

stated sensor data as input. The late fusion results are computed by

processing each sensor modality separately through a ResNet-18

FasterRCNN model and fusing the outputs of each model using one

of the three fusion algorithms (WBF, NMS, or Soft-NMS), with the

best performing result shown in the table. All-Branches (Early +

Late) is the result from running all of the branches in HydraFusion

and fusing the results using the fusion algorithms. Set (iv) shows the

results for our selective sensor fusion approach using the Attention

Gating method to select the Top-3 branches for each input.

Fusion Method Model mAP %

(i) No Fusion

Single Camera 65.33

Radar 69.42

Lidar 61.86

(ii) Early Fusion

L/R Cameras 65.33

Radar + Lidar 71.63

Camera + Lidar 65.99

(iii) Late Fusion

L/R Cameras 65.71

Radar + Lidar 65.33

L/R Cameras + Lidar 66.20

Radar + Lidar + L/R Cameras 71.16

All-Branches (Early + Late) 65.47

(iv) HydraFusion

(Ours)

Top-3 Branches w/ WBF 74.54

Top-3 Branches w/ NMS 78.51

Top-3 Branches w/ Soft-NMS 81.31

Table 2: Object detection mAP scores on the RADIATE

dataset for: (i) single sensors, (ii) early fusion, (iii) late fu-

sion, and (iv) HydraFusion (ours) with Attention Gating.

Interestingly, All-Branches performs worse than all the results

in (iv), supporting our hypothesis that using less sensor data can

improve robustness. The tradeoffs between early and late fusion

approaches are also shown. Early fusion can perform better with

fewer sensors if the sensors provide good quality data (Radar +

Figure 4: Average mAP for each fusion method compared

against HydraFusion (HF).

Lidar). In comparison, late fusion is more robust to bad data but

requires more sensors to achieve good performance (Radar + Lidar +

L/R Cameras). The table also shows the benefits of fusion compared

to single-sensor approaches, as all fusion variants outperform (i) in

at least one configuration. Figure 4 shows the average mAP for each

fusion method. As shown, HydraFusion significantly outperforms

both early and late fusion approaches on average (by 13.66% and

14.54%, respectively), achieving a peak mAP of 81.31%. Overall,

the results support our hypothesis that a context-aware selective

sensor fusion architecture is significantly more robust and accurate

than existing fusion methods.

Gate Model (Fusion Alg.)
mAP %

𝑘 = 1 𝑘 = 3 𝑘 = 5 𝑘 = 𝐴𝑙𝑙
Knowledge Gating (NMS) 77.59 76.37 76.53 75.81

Deep Gating (NMS) 67.43 78.14 73.31 75.81

Attn. Gating (Soft-NMS) 67.27 81.31 69.88 65.71

Optimal Gating (Soft-NMS) 73.03 81.57 72.93 65.71

Table 3: Gating evaluation for different 𝑘 . The highest mAP
indicates which gate configuration is best for real-world de-

ployment of HydraFusion.

5.4.2 Gating Method Evaluation. Next, we evaluate our proposed

gating strategies. To evaluate the impact of different subset sizes 𝑘
on each of our proposed gating methods, we computed the mAP

after fusion for 𝑘 ∈ {1, 3, 5, 𝐴𝑙𝑙 (7)} with WBF, NMS, and Soft-NMS

fusion. The results for the best performing fusion algorithm for each

gating approach are shown in Table 3. Optimal Gating represents

the theoretical best performance if the 𝑘 lowest-loss branches are
selected for each input.

As shown, Attention Gating using Soft-NMS achieves the best

mAP for 3-branch fusion, with a score of 81.31% (only 0.26% less

than Optimal Gating). This likely results from its capability to

identify the regions in the input that are most relevant to the output.

Deep Gating was the second-best approach with a mAP of 78.14%

for 3-branch fusion as it was still able to identify the context well

using the stem features.

Interestingly, Knowledge Gating performed best for 𝑘 = 1, likely

because the domain knowledge was sufficient to determine the best

modality for each context. However, Knowledge Gating did not

achieve as high of amAP score as Deep andAttention Gating for any

𝑘 , meaning that its performance across contexts is generally worse.
Besides, in real-world deployments, 𝑘 = 1 would be insufficiently

75

robust to sensor obstruction or failures, so 𝑘 = 1 performance is less

relevant to real-world use cases than 𝑘 ∈ {3, 5, 𝐴𝑙𝑙} performance.
For our application, 𝑘 = 5 and 𝑘 = 𝐴𝑙𝑙 did not perform as well as 𝑘 =
3. Overall, the results in Table 3 show that Attention Gating with

3-branches results in the highest object detection mAP score (4.94%

higher than Knowledge Gating) and is thus the best configuration

to use on an actual vehicle.

Figure 5: Nvidia Drive PX2 Testbed.

Fusion

Method

Configuration Energy

(J)

Latency

(ms)

Memory

(MB)

None
Radar or Lidar 0.954 21.85 769

Single Cam. 0.945 21.57 767

Early

Fusion

L/R Cam. 1.192 27.36 768

L/R Cam. + Lidar 1.379 31.36 694

L/R Cam. + Lidar + Radar 1.615 36.86 750

Late

Fusion

L/R Cam. 1.959 43.99 923

L/R Cam. + Lidar 2.878 64.09 1087

L/R Cam. + Lidar + Radar 3.769 84.32 1239

Hydra-

Fusion

3-Branch (Deep Gating) 3.317 73.84 1271

3-Branch (Attn. Gating) 3.284 73.02 1080

5-Branch (Deep Gating) 5.008 110.58 1390

5-Branch (Attn. Gating) 4.897 107.28 1390

Table 4: Hardware evaluation on the Nvidia Drive PX2. Re-

ported numbers are for processing one input through the

model.

5.4.3 Hardware Energy and Latency Evaluation. To demonstrate

that our approach is practical for real-world deployment, we ana-

lyze the energy consumption, latency, and memory usage of our

model on an industry-standard AV hardware platform, the Nvidia

Drive PX2, shown in Figure 5. To perform hardware analysis, we

compiled each model specification using TensorRT and used built-

in tools to measure its end-to-end latency and memory usage. Then,

we multiply this value by the power consumption of the system

measured via an external power meter to obtain the energy con-

sumption.

In Table 4, we show the results for running different model vari-

ations including single sensor models, early fusion models, late

fusion models, and our HydraFusion methodology. The Hydra-

Fusion 3-branch results shown are for the worst-case energy and

latency scenario where all three branches selected by the gate are

early-fusion branches. Similarly, the HydraFusion 5-Branch result

is with three early-fusion branches and two single-sensor branches

selected. The HydraFusion results are shown with Deep Gating

and Attention Gating modules.

As expected, the single-sensor and early fusion methods are the

least demanding on hardware since they only use a single ResNet-18

Faster R-CNN model; however, they also achieve lower mAP scores

overall, as shown in Table 2. The results show that the HydraFu-

sion 3-Branch configurations have energy consumption, latency,

and memory usage that is comparable to 3-sensor and 4-sensor

late fusion models. This result means 3-branch HydraFusion can

reasonably be used in cyber-physical systems where late fusion

approaches are currently deployed. Since 3-branch HydraFusion

achieves significantly higher mAP than both early and late fusion

methods, it presents clear benefits over state-of-the-art methods.

The 5-branch HydraFusion was slower and less energy efficient

than 3-branch and also achieved a lower mAP score (as shown in

Table 3), so 3-branch would be preferred for real-world implemen-

tation. For both 3-branch and 5-branch HydraFusion, Attention

Gating was slightly more efficient than Deep Gating, likely because

TensorRT better optimized its architecture.

5.5 Discussion

5.5.1 Practicality. As mentioned in Section 5.4.3, the energy, la-

tency, andmemory usage of HydraFusion on the industry-standard

Nvidia Drive PX2 is comparable to that of late fusion — meaning

that HydraFusion can be used in any CPS where late fusion is

currently in use. Thus, to implement HydraFusion in a real AV,

the trained model and hardware can be installed in the vehicle and

integrated with the perception module of the existing modular AV

software stack. Although we evaluated one hardware platform with

four sensors in our experiments, our approach is hardware- and

sensor-agnostic. It can be used with any hardware platform and

sensor configuration by using the corresponding model compilation

tools and aligning the sensor data to the model’s input. Addition-

ally, our approach can be applied to a wide range of CPS problems

besides object detection. Any CPS application using sensor fusion

can potentially benefit from our context-aware selective sensor

fusion approach. The model size and memory requirements will

increase proportionally with more sensors due to the increased

number of branches. However, they will likely still be comparable

to late fusion with the same number of sensors. The branches must

also be defined using domain knowledge for the new task; for ex-

ample, sensors that cover the same FOV or complement each other

can be combined to form early fusion branches.

5.5.2 Limitations and Future Work. We statically defined the set

of branches used in HydraFusion for AV object detection using

domain knowledge. Thus, our approach does not enable select-

ing between every possible set of sensor combinations for each

branch. Doing so would not be computationally feasible as the

space complexity would be 𝑂 (2𝑛), and the training time would
increase similarly. Thus, our approach currently requires domain

knowledge to identify the subset of branches that provide the most

coverage across scenarios without exceeding model complexity or

size requirements. Future research could explore automated tech-

niques for defining the optimal set of branches to use in the model.

76

Additionally, we only explored the use of top-k branch selection

for multiple fixed k in this work. It would be valuable to explore

if the branch selection parameters are learnable based on the data

in future work. In this paper, we focused on the problem of object

detection for AVs; however, our approach can be directly applied to

a wide range of multi-modal CPS and internet-of-things (IoT) prob-

lems. Different backbone models or fusion methods can be used to

enable HydraFusion to model new tasks, such as tracking, localiza-

tion, and control. We also believe that improved gating strategies

with temporal modeling components could provide avenues for

improving context identification, task performance, and resource

utilization. It would also be prudent to evaluate the difference in

safety between our approach and existing methods, especially in

challenging driving conditions.

6 CONCLUSION

In this paper, we present HydraFusion — a sensor fusion frame-

work that can selectively fuse sensor inputs in a context-aware

manner. We validate our approach through theoretical, qualitative,

and quantitative analysis on the task of object detection performed

by AV perception systems on a challenging and diverse real-world

dataset. On average, our selective sensor-fusion approach achieved

a mAP score 13.66% and 14.54% higher than early fusion and late

fusion approaches, respectively, supporting our hypothesis that a

context-aware selective sensor fusion approach improves robust-

ness. Additionally, we proposed and evaluated several gating mod-

els to perform context identification and branch selection, finding

that an attention-based deep learning gate model was 4.94% more

effective than static selection methods. Lastly, we evaluated our

proposed approach on industry-standard AV hardware, showing

that our approach had comparable energy consumption, latency,

and memory usage to existing fusion architectures. Ultimately, Hy-

draFusion offers a novel sensor fusion approach for multi-modal

CPS that can not only improve performance but also help support

safer autonomous driving.

REFERENCES
[1] Karim Ahmed, Mohammad Haris Baig, and Lorenzo Torresani. 2016. Network of

experts for large-scale image categorization. In European Conference on Computer
Vision. Springer, 516–532.

[2] Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars. 2017. Expert gate:
Lifelong learning with a network of experts. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 3366–3375.

[3] Eduardo Arnold, Omar Y Al-Jarrah, Mehrdad Dianati, Saber Fallah, David Ox-
toby, and Alex Mouzakitis. 2019. A survey on 3D object detection methods for
autonomous driving applications. IEEE Transactions on Intelligent Transportation
Systems 20, 10 (2019), 3782–3795.

[4] Yaakov Bar-Shalom, X Rong Li, and Thiagalingam Kirubarajan. 2004. Estimation
with applications to tracking and navigation: theory algorithms and software. John
Wiley & Sons.

[5] Navaneeth Bodla, Bharat Singh, Rama Chellappa, and Larry S Davis. 2017. Soft-
NMS–improving object detection with one line of code. In Proceedings of the IEEE
International Conference on Computer Vision. 5561–5569.

[6] Changhao Chen, Stefano Rosa, Chris Xiaoxuan Lu, Niki Trigoni, and Andrew
Markham. 2019. SelectFusion: a generic framework to selectively learn multisen-
sory fusion. arXiv preprint arXiv:1912.13077 (2019).

[7] Changhao Chen, Stefano Rosa, Yishu Miao, Chris Xiaoxuan Lu, Wei Wu, Andrew
Markham, and Niki Trigoni. 2019. Selective sensor fusion for neural visual-
inertial odometry. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 10542–10551.

[8] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and
Andrew Zisserman. 2010. The pascal visual object classes (VOC) challenge.
International journal of computer vision 88, 2 (2010), 303–338.

[9] Di Feng, Ali Harakeh, Steven Waslander, and Klaus Dietmayer. 2020. A Review
and Comparative Study on Probabilistic Object Detection in Autonomous Driving.
arXiv preprint arXiv:2011.10671 (2020).

[10] Daniel D Fong, Kourosh Vali, and Soheil Ghiasi. 2020. Contextually-aware
fetal sensing in transabdominal fetal pulse oximetry. In 2020 ACM/IEEE 11th
International Conference on Cyber-Physical Systems (ICCPS). IEEE, 119–128.

[11] Vineet Gokhale, Gerardo Moyers Barrera, and R Venkatesha Prasad. 2021. FEEL:
fast, energy-efficient localization for autonomous indoor vehicles. arXiv preprint
arXiv:2102.00702 (2021).

[12] Yiping Gong, Zhifeng Xiao, Xiaowei Tan, Haigang Sui, Chuan Xu, Haiwang
Duan, and Deren Li. 2019. Context-aware convolutional neural network for
object detection in VHR remote sensing imagery. IEEE Transactions on Geoscience
and Remote Sensing 58, 1 (2019), 34–44.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 770–778.

[14] Radoslav Ivanov, James Weimer, and Insup Lee. 2018. Context-aware detection in
medical cyber-physical systems. In 2018 ACM/IEEE 9th International Conference
on Cyber-Physical Systems (ICCPS). IEEE, 232–241.

[15] Sanghoon Lee, Dongkyu Lee, Pyung Choi, and Daejin Park. 2020. Accuracy–
power controllable lidar sensor system with 3D object recognition for au-
tonomous vehicle. Sensors 20, 19 (2020), 5706.

[16] Yanghao Li, Yuntao Chen, NaiyanWang, and Zhaoxiang Zhang. 2019. Scale-aware
trident networks for object detection. In Proceedings of the IEEE/CVF International
Conference on Computer Vision. 6054–6063.

[17] Shih-Chieh Lin, Yunqi Zhang, Chang-Hong Hsu, Matt Skach, Md EHaque, Lingjia
Tang, and JasonMars. 2018. The architectural implications of autonomous driving:
Constraints and acceleration. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and Operating
Systems. 751–766.

[18] Enrique David Martí, David Martín, Jesús García, Arturo De la Escalera,
José Manuel Molina, and José María Armingol. 2012. Context-aided sensor
fusion for enhanced urban navigation. Sensors 12, 12 (2012), 16802–16837.

[19] Ravi Teja Mullapudi, William R Mark, Noam Shazeer, and Kayvon Fatahalian.
2018. Hydranets: Specialized dynamic architectures for efficient inference. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
8080–8089.

[20] National Transportation Safety Board. 2019. Collision between vehicle controlled
by developmental automated driving system and pedestrian. Technical Report
NTSB/HAR-19/03. National Transportation Safety Board.

[21] National Transportation Safety Board. 2020. Collision Between a Sport Utility Vehi-
cle Operating With Partial Driving Automation and a Crash Attenuator. Technical
Report NTSB/HAR-20/01. National Transportation Safety Board.

[22] Felix Nobis, Maximilian Geisslinger, Markus Weber, Johannes Betz, and Markus
Lienkamp. 2019. A deep learning-based radar and camera sensor fusion architec-
ture for object detection. In 2019 Sensor Data Fusion: Trends, Solutions, Applications
(SDF). IEEE, 1–7.

[23] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster R-CNN:
Towards real-time object detection with region proposal networks. Advances in
neural information processing systems 28 (2015), 91–99.

[24] Francisca Rosique, Pedro J Navarro, Carlos Fernández, and Antonio Padilla. 2019.
A systematic review of perception system and simulators for autonomous vehicles
research. Sensors 19, 3 (2019), 648.

[25] Sara Saeedi, Adel Moussa, and Naser El-Sheimy. 2014. Context-aware personal
navigation using embedded sensor fusion in smartphones. Sensors 14, 4 (2014),
5742–5767.

[26] Babak Shahian Jahromi, Theja Tulabandhula, and Sabri Cetin. 2019. Real-time
hybrid multi-sensor fusion framework for perception in autonomous vehicles.
Sensors 19, 20 (2019), 4357.

[27] Marcel Sheeny, Emanuele De Pellegrin, Saptarshi Mukherjee, Alireza Ahrabian,
Sen Wang, and Andrew Wallace. 2020. RADIATE: A radar dataset for automotive
perception. arXiv preprint arXiv:2010.09076 3, 4 (2020), 7.

[28] Lauro Snidaro, Jesús García, and James Llinas. 2015. Context-based information
fusion: a survey and discussion. Information Fusion 25 (2015), 16–31.

[29] Roman Solovyev, Weimin Wang, and Tatiana Gabruseva. 2021. Weighted boxes
fusion: Ensembling boxes from different object detection models. Image and
Vision Computing 107 (2021), 104117.

[30] Danfei Xu, Dragomir Anguelov, and Ashesh Jain. 2018. Pointfusion: Deep sensor
fusion for 3D bounding box estimation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 244–253.

[31] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. 2019. Self-
attention generative adversarial networks. In International Conference on Machine
Learning. PMLR, 7354–7363.

77

A SENSOR COORDINATE FRAME
TRANSFORMATIONS

The transformations to convert the detections from one sensing

modality to the reference frame occur in three main steps, which are

detailed for the radar sensor as follows. Firstly, a point in the radar

pixel coordinates, [𝑢, 𝑣]𝑟 , is transformed into the radar Cartesian
frame:

[𝑥,𝑦]𝑟 = 𝛾 · ([𝑢,−𝑣]𝑟 − [𝑤/2,−ℎ/2]), (15)

where 𝛾 is the radar resolution expressed as meters/pixel,𝑤 is the

width of the radar image in pixels, and ℎ is the height of the radar
image in pixels. An additional step to add a height, 𝑧𝑟 , is computed
by mapping the object’s classification to a defined set of average

class heights. Secondly, this Cartesian representation in the radar

coordinate frame must be expressed in the chosen reference frame

— the camera Cartesian frame. This is accomplished by subsequent

the translation and rotation of coordinate frames via the following:

[𝑥,𝑦, 𝑧]𝑐 = 𝑅𝑐𝑟 · ([𝑥,𝑦, 𝑧]
𝑟 +𝑇 𝑟), (16)

where the superscript 𝑐 indicates the world camera frame, 𝑅𝑐𝑟 is
the 3 × 3 rotation matrix from the radar to the camera frame, and

𝑇 𝑟 is the 1 × 3 translation vector between the radar and camera.

Thirdly, the intrinsic parameters of the camera are used to convert

the points from the Cartesian camera frame to the pixels in the

image frame:

𝑠

⎡⎢⎢⎢⎢⎣

𝑢
𝑣
1

⎤⎥⎥⎥⎥⎦

𝑐

= 𝑃 ·

⎡⎢⎢⎢⎢⎣

𝑥
𝑦
𝑧

⎤⎥⎥⎥⎥⎦

𝑐

, (17)

𝑃 =

⎡⎢⎢⎢⎢⎣

𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

⎤⎥⎥⎥⎥⎦
(18)

where 𝑠 is an arbitrary scaling factor and 𝑃 is the camera intrinsic
projection matrix, which is constructed during calibration of the

camera using camera focal length parameters (𝑓𝑥 , 𝑓𝑦) along with
the principal point, or optical center of the camera (𝑐𝑥 , 𝑐𝑦). Using
two stereo cameras provides the ability to derive depth information

from the image to complete the necessary transformation presented

above. The same procedures are repeated for the other sensors, with

the respective adjustments to the translation and rotation vectors

as needed. We note that this transformation process introduces

additional uncertainties into the fusion as factors such as road

elevation can alter the result in certain scenarios.

B ADDITIONAL RESULTS

B.1 Extended Object Detection Results

Table 5 expands on the late fusion results from Table 2 and shows

a comparison between different late fusion algorithms for the cho-

sen sensor combinations. Here, we examine results using WBF,

NMS, and Soft-NMS across the different models. Only the fourth

model, Radar + Lidar + L/R Cameras, has a noticeable improvement

using WBF, while the other variations remained within similar

score ranges. We attribute the closeness of these results to the

three chosen fusion algorithms having similar statistical techniques

embedded within them.

Model mAP %

WBF NMS Soft-NMS

L/R Cameras 65.71 65.71 65.71

Radar + Lidar 65.33 65.33 65.33

L/R Cameras + Lidar 66.06 66.20 66.18

Radar + Lidar + L/R Cameras 71.16 67.11 65.42

All-Branches 64.85 63.64 65.47

Table 5: Object detection mAP scores on the RADIATE

dataset for different late fusion algorithms: (i)WBF, (ii) NMS,

(iii) Soft-NMS.

Gate Model
Fusion

Alg.

mAP %

𝑘 = 1 𝑘 = 3 𝑘 = 5 𝑘 = 𝐴𝑙𝑙
Knowledge Gating WBF 76.30 75.56 74.66 73.96

Knowledge Gating NMS 77.59 76.37 76.53 75.81

Knowledge Gating Soft-NMS 76.95 68.75 68.75 65.71

Deep Gating WBF 67.62 75.19 72.95 73.96

Deep Gating NMS 67.43 78.14 73.31 75.81

Deep Gating Soft-NMS 67.27 77.36 74.70 65.71

Attn. Gating WBF 67.86 74.54 72.93 73.96

Attn. Gating NMS 67.43 78.51 73.47 75.81

Attn. Gating Soft-NMS 67.27 81.31 69.88 65.71

Optimal Gating WBF 75.57 74.62 72.45 73.96

Optimal Gating NMS 74.69 77.10 73.20 75.81

Optimal Gating Soft-NMS 73.03 81.57 72.93 65.71

Table 6: Evaluation of different gatingmethods for selecting

the 𝑘 best branches for across different fusion methods. For
each input, the top 𝑘 branches selected by the gate are fused
to produce a set of detections scored using mAP.

B.2 Extended Gating Results

Table 6 shows our extended gating results. It includes mAP scores

evaluated with the four gating strategies, each used withWBF, NMS,

and Soft-NMS fusion. The results indicate that NMS and Soft-NMS

with 𝑘 = 3 result in the highest mAP score for most of the gating

methods evaluated. Interestingly, NMS seems to be more robust

to different 𝑘 values than Soft-NMS, which varies by up to 15%

depending on 𝑘 . WBF works well with Knowledge Gating for all

𝑘 and works decently well for the other gates with 𝑘 ∈ {3, 5, 𝐴𝑙𝑙}.
As mentioned in Section 5.4.2, regardless of the performance of

other configurations, only the highest scoring configuration would

be deployed in an actual vehicle. Thus, these extended results con-

firm that Attention Gating with Soft-NMS and 𝑘 = 3 is the best

configuration to deploy in the real world.

B.3 Branch Selection

In Table 7, we show the frequency at which each branch was se-

lected by each gate model for different values of 𝑘 . The branches
listed are the seven branches explicitly defined in our experiments

(four single-sensor and three early fusion). The branch selection

rate is the percent of inputs in the test dataset for which a specific

branch was selected as part of the top-𝑘 . The selection results for
a single input can vary depending on the context; however, these

aggregated results illuminate which sensors contributed more to

the final detection results than others. The deep learning-based

78

𝑘 Gate Model
Branch Selection Rate (%)

Radar L Cam. R Cam. Lidar L/R Cam. L/R Cam.+ Lidar Radar+Lidar

1

KnowledgeGating 8.61 0.00 0.00 0.00 76.82 0.00 14.57

DeepGating 7.95 0.00 0.00 18.54 1.32 19.87 52.32

AttentionGating 9.93 0.66 0.00 6.62 8.61 12.58 61.59

Optimal Gating 19.87 4.64 1.99 25.83 13.25 9.27 25.17

3

KnowledgeGating 23.18 76.82 76.82 23.18 76.82 0.00 23.18

DeepGating 78.81 3.31 12.58 66.23 25.17 31.79 82.12

AttentionGating 78.81 1.32 7.95 72.19 28.48 28.48 82.78

Optimal Gating 74.17 16.56 15.23 62.91 32.45 23.84 74.83

5

KnowledgeGating 23.18 76.82 76.82 23.18 100.00 100.00 100.00

DeepGating 97.35 32.45 21.19 87.42 82.78 94.04 84.77

AttentionGating 89.40 29.14 19.87 96.03 76.82 95.36 93.38

Optimal Gating 87.42 54.30 47.68 80.13 67.55 78.81 84.11

Table 7: Evaluation on how often each gate model selected each branch as part of the top-𝑘 for various 𝑘 . The branch selection
rate is expressed as a percentage over the number of inputs for the test dataset.

gating models heavily favored selecting radar and lidar branches.

We propose that this dependence on sensors that are tradition-

ally more robust to severe weather was reinforced throughout the

model’s learning process as feedback taught the model that the

cameras were susceptible to high amounts of error in specific con-

texts. Knowledge gating tends to favor the camera selection more

often but does not perform as well as the deep learning models (see

Table 6). This illuminates a limitation in using domain knowledge

to define the gate as some sensors, like cameras, dominate the selec-

tion process. Optimal Gating shows the most consistent responses

across the branches as expected due to its a posteriori knowledge

of each branch’s loss.

79

