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ABSTRACT

With the introduction of ultra-low-powermachine learning (TinyML),

IoT devices are becoming smarter as they are driven by ML models.

However, any loss of communication at the device level can lead to

a failure of the entire IoT system or misleading information trans-

mission. Since there exist numerous heterogeneous devices within

an IoT system, it is not feasible to centrally monitor all devices or

explore system logs to determine communication loss.

In this work, to maintain the highest possible communication

quality and enable devices adapt according to context changes, we

implement a lightweight ML-based adaptive strategy (ASB) and

deploy it using a memory-optimized approach over the designed

Pycom FiPy based multi-protocol IoT hardware. In real-world ex-

periments, ASB equipped FiPy board accurately predicted the RSSI

of WiFi 4 & WiFi 5 in real-time and switched between protocols -

demonstrating interoperability amongst multiple IoT communica-

tion protocols and resilience against communication breakdown.
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1 INTRODUCTION

In IoT systems, the response time of edge devices is calculated dur-

ing the design phase. These edge devices continuously provide data

streams to ensure the smooth execution of a real-time IoT system

[1, 2]. However, edge devices are prone to errors and often suf-

fer from communication breakdowns [3] when trying to maintain

an acceptable level of communication quality in the presence of

external interference - can lead to a failure of the entire system.

In the majority of cases, communication breakdowns occur due

to lack of interoperable mechanism and protocols. A typical example

scenario could be when the warning raised by smoke monitoring

edge sensors is not real-time due to a loss in communication quality

and without other forms of communication to indicate waning

could lead to compromising the safety and health of the workers.

The next challenge is the lack of resilience where an IoT system is

unaware of how to handle uncertainties as it cannot predict failures

and automatically switch to alternative protocols.

Another challenge is the lack of scalability when non-stationary

devices are unable to contribute data. In many use-cases, edge

devices stream the operational behavior data of appliances, vehicles,

machines, etc., to on-premise or cloud-based servers for historical

storage and analytics. The quality of received data depends on the

behavior of wireless protocols, which can vastly fluctuate due to

signal impairment problems. When noisy data is recorded due to

Figure 1: Multi-protocol (WiFi, Bluetooth, LoRa, Sigfox, dual

LTE-M) IoT hardware designed, used for RIS-IoT evaluation.

poor or unstable transmission signal quality, during data cleaning,

the rows with missing values often get removed even if they were

to contain crucial information - reducing IoT device-based data

collection scalability.

Similar to the above scenarios, there are several cases where

there is a need to equip multiple communication protocols on a sin-

gle device and equip them with algorithms to instruct the devices

when to seamlessly switch to improve communication quality [4].

The contributions of RIS-IoT applied research work are: (i) Intro-

ducing resilience property in the IoT architecture at the device level

to realize reliable information distribution; (ii) Equipping embed-

ded devices with multiple communication protocols and providing

interoperability at scale; (iii) Providing run-time re-configuration

of devices in accordance with the dynamic-network context.

2 APPROACH FOR RIS-IOT

This section presents our Adaptive Strategy Block (ASB) to improve

the resiliency, interoperability, scalability of IoT systems. We next

present the design flow and experiments to port ML algorithms like

ASB and efficient execution on IoT devices.

2.1 Adaptive Strategy Block (ASB)

ASB is a resource-friendly intelligence layer designed using a radial

basis function (RBF) kernel-based support vector regression (SVR)

[3]. ASB can predict upcoming issues due to potential degradation
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Figure 2: Indoor (yellow trace) & outdoor (red trace) combined

experiment sites. Left: Corridor, roads near NUIG. Right: Car

park, public roads surrounding our DSI lab.

in the communication quality based on the received signal strength

indicator (RSSI). ASB tracks the current state of IoT communication

protocols (e.g. Wi-Fi, LoRa) and keeps predicting their future RSSI.

Then, switching is performed based on the RSSI prediction results -

re-directs IoT app data to the switched alternate protocol.

ASB is well suited for a range of wireless devices - non-stationary

personal devices (e.g. smartwatches, mobile, handsfree) and indus-

trial autonomous devices (e.g. drones, warehouse bots). When such

devices move out of the coverage area of WiFi 5 (5 GHz for higher

bandwidth), ASB would have sensed this movement based on the

RSSI prediction. Therefore, it will intelligently switch devices from

WiFi 5 to WiFi 4 (2.4 GHz for long-range). As the distance from

the router increases further, ASB will switch devices from WiFi 4

to LTE-M (CAT-M1, NB-IoT). Thus, ASB-equipped IoT devices are

interoperable amongst multiple IoT communication protocols and

resilient against communication breakdown. Example use-case:

When using high-bandwidth apps for live streaming, video calls,

gaming, etc., smartphones are connected to the building WiFi over

mobile data. When smartphones leave the building while using the

apps, interruptions or service drops may encounter. Once WiFi is

out-of-range, then the apps start using mobile data to reconnect

and continue. In this commonly faced scenario, ASB senses the

movement based on RSS predictions and will make smartphones

seamlessly switch to mobile data, eliminating any service drops.

2.2 Porting & Execution of ASB on IoT Devices

In MCUs and small CPUs based tiny devices, the program space

(flash memory) is always much greater than the available SRAM

(e.g., Raspberry Pi Pico with ARM Cortex-M0+ has 16MB Flash,

264KB SRAM). So, we use our recent SRAM optimized approach

[5], to produce a C version of the SVR ML model of ASB. This C

version, during execution on boards (e.g., on Pycom FiPy in Figure

1), does not depend on the SRAM. Instead, it used the larger flash

memory to enable the accommodation and efficient execution of

larger ML models as well as TinyML models [6].

Similar to our scenario of porting and executing ASB on Pycom

FiPy, when users apply this approach, they can successfully deploy

and execute their ML models of choice on low-cost and low-power

IoT devices that have only a few KB of memory.

3 EXPERIMENTS & INITIAL RESULTS

Figure 2 presents the experimental sites (at NUIG, DSI), and the

designed Pycom FiPy [7] based hardware in Figure 1 over which

we deployed the ASB. This FiPy device connects to the dual-band

(supports WiFi 4, WiFi 5) access point (AP) and follows (a person

walks with the device) the trace (yellow, red lines) via points (circled

A to E). For example, at the NUIG site, the device is taken starting

from circle A -> B -> C -> D -> back to A .

When FiPy was connected to WiFi 5, although it had higher

bandwidth, throughout the travel (following the trace) of 14minutes

at the NUIG site, FiPy stayed without internet for 8.3 min. In the

same scenario, when FiPy was connected to WiFi 4, although it has

a better range (interference tolerance nature), FiPy stayed without

internet for 6.7 min. But when ASB was activated, it predicted the

future RSSI and efficiently switched between WiFi 5 and WiFi 4,

leaving FiPy without internet for only 4.2 min. This is a 2.5 min

improvement than only using WiFi 4 and a 4.1 min improvement

than only using WiFi 5. Similarly, at the DSI site, throughout the

travel of 11 minutes, with ASB activated, FiPy was disconnected

for only 4.9 min. This is a 3.1 min improvement than only using

WiFi 4 and a 5.4 min improvement than only using WiFi 5.

4 CONCLUSION & FUTUREWORK

In this work, we ported and executed an RBF kernel SVR based

adaptive strategy (ASB) on a multi-protocol IoT hardware. The

real-world experimentation demonstrated that ASB improves the

resilience, interoperability, scalability of IoT devices by accurately

predicting the future RSS in real-time and seamlessly switching to

the wireless protocol with the best communication quality.

Future work plans to (i) Deploy ASB on a drone and investigate

how it adds value to flying-IoT use cases such as long-range forest

surveillance, life signs detector in disaster zones, etc., all of which

demand highwireless communication quality; (ii) Fly the drone over

Kilometers to examine ASB behavior under high-speed dynamic

settings; (iii) Give IoT hardware access to global LPWAN networks,

make the ASB perform switching between LoRa, Sigfox, dual LTE-M

to verify whether ASB is location, protocol, and device-independent.
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