
Development and optimization of an MTConnect
based edge computing node for remote monitoring

in cyber manufacturing systems
S M Nahian Al Sunny*, Xiaoqing “Frank” Liu, Md Rakib Shahriar

Department of Computer Science and Computer Engineering

University of Arkansas, Fayetteville, Arkansas, USA

Email: {smsunny*, frankliu, mrshahri}@uark.edu

Abstract—In recent years, MTConnect has emerged as a
potential communication standard for cyber manufacturing (CM)
domain by establishing remote monitoring of manufacturing
processes through XML based data reporting structure and
RESTful services. This paper presents the development and
optimization of an MTConnect based edge computing node
in service-oriented CM systems by utilizing data caching and
processing at the edge. Unlike MTConnect agents, proposed
MTConnect Edge Nodes (MENs) not only convert collected
machining data to XML messages and host RESTful services,
but also perform as an edge node by adopting a ”hold-until-
changed” approach for deciding which data to store and by
keeping tracks of previously transmitted data to its clients to
determine which data to transmit to whom and when. The
primary objective is to minimize data storage requirements and
cost while enabling rapid transmission and low bandwidth usage
without increasing information loss. This paper describes the
architecture of an MEN and its data caching and transmission
strategies in details. Experiments were conducted in a CM
testbed with three machine tools, raspberry pis hosting MENs
and MTConnect agents, and two client applications to evaluate
MEN’s performance with respect to the conventional approach.
Results showed 96.2 percent reduction in required storage size
with 52.5 percent reduction in average communication latency
and 99.5 percent reduction in average message size for proposed
MEN in different manufacturing scenarios.

Index Terms—MTConnect, edge computing, MTConnect Edge
Node, data catching, performance optimization

I. INTRODUCTION

Like many other aspects of today’s world, the rapid growth

of Internet has been reshaping manufacturing domain over past

few decades. Emerging Internet-enabled technologies such as

cloud computing, cyber-physical systems, Internet-of-Things

(IoT), fog and edge computing etc. are opening up endless

possibilities for advanced automation and manufacturing and

also paving the path leading towards next industrial revolution,

the so-called Industry 4.0 [1]. One of the primary objectives

of Industry 4.0 is to enable seamless integration of web based

client applications and physical machine tools for real-time

data acquisition and analysis. In recent years, MTConnect

has emerged as a potential communication standard for in-

teracting with physical machines over the Internet and thus

enabling development of cyber manufacturing (CM) systems

[2]–[4]. MTConnect is an open-source standard that converts

heterogeneous machining data into a common XML based

format and transmits them to client applications via RESTful

services [5]. However, manufacturing machine tools generates

tremendous amount of data every second which are required to

be transmitted at high-speed. This may lead to network traffic

bottleneck and scalability issues, specially for large-scale CM

systems managing hundreds of machines. Edge computing [6]

can aid in this regard by storing and processing data locally

before transmission. As the primary function of MTConnect

is to transform data and provide a uniform interface for client

applications, developing an MTConnect based edge computing

node has the promise of resolving the aforementioned issues.

But MTConnect is not specifically designed to be readily used

for edge computing, as it does not offer specifications for local-

ized data caching or processing in order to minimize cost and

maximize efficiency, specially for resource constrained edge

platforms. Therefore, adopting proper optimization strategies

and evaluating performance through experimentation are re-

quired to develop such a scalable solution for CM systems.

In this paper we present the design and development of

an MTConnect Edge Node (MEN) for CM systems. MEN is

an extension of existing MTConnect agent program, as it not

only converts collected machining data to XML messages and

host MTConnect RESTful services, but also works as an edge

node by efficiently caching data and performing computation

locally to determine which data to be stored and transmitted

to whom and when. To enhance its feasibility and perfor-

mance while minimizing cost, we adopted unique optimization

strategies for localized data caching and transmission using a

“hold-until-changed” approach. Our primary objective is to

minimize data storage requirements and cost while enabling

high-speed transmission and low bandwidth usage without

increasing information loss. Experiments were conducted in a

CM testbed with three machine tools, raspberry pi devices, and

two client applications - one deployed in a cloud server and

another deployed as a web based smartphone app to evaluate

proposed MEN’s performance with respect to the conventional

MTConnect agent. Results showed 96.24 percent reduction in

required storage size with 52.5 percent reduction in average

communication latency and 99.5 percent reduction in average

message size for MEN in different manufacturing scenarios

and thus providing proof of proposed concept.

Rest of the paper is organized as follows. Section II reviews

related works and literatures. Architecture of the proposed

MEN and optimization strategies are discussed in Section III.

48

2020 IEEE International Conference on Fog Computing (ICFC)

978-1-7281-1086-8/20/$31.00 ©2020 IEEE
DOI 10.1109/ICFC49376.2020.00014

Section IV presents our experimental setup and analysis of

results. Conclusions are given in Section V.

II. RELATED WORKS

Machine Tool Connect or MTConnect was first introduced

in 2008 with a view to developing a open-source and royalty-

free standard for machining data collected from different

types of machine tools, sensors, and other data sources

during manufacturing processes [5], [7]. It is a read-only

mechanism that uses a semantic ontology and XML based

messaging structure to enable remote monitoring of machine

tools through RESTful services. In recent years, MTConnect

has been widely accepted and adopted for different types of

manufacturing machines such as CNC (Computer Numeric

Control) machines [8], robots [9], 3D printers [10], [11] etc.

Moreover, MTConnect was recognized as a suitable candidate

for establishing communication between machine tools and

client applications hosted in web and cloud servers [12]. It

was used in development of multiple web based machine

monitoring systems for data collection, analysis, event no-

tification, and machine health prediction [13], [14]. Lynn

et al. evaluated three broad solutions for collecting data

from machines using rapidly deployable MTConnect based

monitoring systems [15]. Mazak Cooperation showcased a

scalable, end-to-end Industrial IoT platform called ‘Mazak

SmartBox’ which connects manufacturing equipment to a

factory’s network and management systems via MTConnect

[16]. By extending MTConnect, an Internet-scale communi-

cation method titled MTComm was developed for performing

both monitoring and operations of heterogeneous machine

tools over the Internet [17]. Several researchers proposed

frameworks for cyber-physical manufacturing systems using

MTConnect [2]–[4], [18], [19]. However, there exist very few

researches that utilized MTConnect to enable fog and edge

computing in CM systems. Wu et al. proposed a fog computing

based framework for process monitoring and prognosis in CM

where machine data collected using different communication

protocols including MTConnect was stored and processed in

a local private cloud before transmitting to a central public

cloud [20]. Parto et al. presented a MTConnect-compatible

secured machine monitoring platform by integrating fog com-

puting, cloud computing, and communication protocols [1].

They used microcontrollers as fog computing platforms where

MTConnect XML messages were collected, converted to

JSON format, and then transmitted to client applications using

web APIs. We found no literature focusing on developing

an MTConnect based edge computing node and adopting

optimization techniques to enable scalable and efficient remote

monitoring and enhance overall system performance.

III. PROPOSED METHODOLOGY

A. Architecture of an MTConnect Edge Node

An MTConnect agent (MTCagent) works as a translator on

an HTTP server. It is a software program that periodically

acquires data either from MTConnect-compatible machine

tools or from MTConnect adapters, which transform raw data

Fig. 1: Architecture of proposed MEN

from heterogeneous machine tools and sensors into simple

text format understandable by MTCagents, and converts them

to XML messages using MTConnect standard schemas and

its semantic ontology [7], [11]. In MTConnect ontology,

each machine tool is considered as a device and its parts

or associated sensors are termed as components. A dataitem
represents any piece of data generated by a device or its

components. MTCagent also hosts RESTful services on an

HTTP server to receive requests from client applications and

responds with corresponding XML messages. There are four

MTConnect services – probe which provides structural and

configuration information of a machine tool and its associated

dataitems, current that responds with most recent values

of dataitems, sample which gives values of dataitems over

a certain time period, and error to report invalid requests

and other errors. All services are requested using HTTP GET

method, except error which is generated by the agent upon

an error occurrence. MTCagent usually has a buffer storage

to temporarily store acquired data before transmission. It may

also include a security manager for imposing access control

mechanisms, malicious attack prevention etc. One MTCagent

can support one or multiple device(s).
To introduce edge computing using MTConnect in a CM

system, we proposed to expand MTCagent’s capabilities be-

yond data transformation and service hosting and convert it

to an MTConnect Edge Node (MEN). Figure 1 illustrates the

architecture of our proposed MEN. In addition to the modules

of a typical MTCagent (data collector, XML generator, HTTP

server, and security manager), an MEN also includes a local

storage and a computing module. The data caching process

of this storage is fundamentally different from a typical

MTCagent’s buffer storage, which is discussed in next section.

The computing module performs additional computations to

49

optimize MEN’s overall performance by analyzing incoming

data from machine tools to determine which data to be stored

locally and how, and also requests from client applications to

determine which data to be transmitted and how. Its primary

focus is to reduce data transmission latency and bandwidth

usage without increasing information loss and also to enhance

scalability of overall system by offloading tasks at the edge.

Like an MTCagent, an MEN can support multiple machine

tools and communicate with multiple clients over the Internet

using HTTP. An MEN is designed as a standalone software

program that is easily deployable in constrained embedded

platforms. It can even be embedded into a machine’s controller

unit. The size of local storage and processing power of

computing module depends on the hardware.

B. Optimization strategies

As MENs are primarily designed for constrained edge

devices, it is necessary to adopt optimization strategies in

order to reduce storage and processing power requirements

and speed up data transmission mechanisms. In this section,

we discussed two computing strategies for proposed MEN –

data caching strategy and data transmission strategy.

1) Data caching at the edge: As described before, an

MTCagent usually contains a buffer storage to temporarily

store acquired data. It is a circular buffer storage meaning

data are stored sequentially and when the storage is full,

most recent data entry overwrites the oldest one [7]. Also

MTCagent stores the last value for each dataitem, even if

it is no longer in the buffer or the buffer is empty. As a

machine tool usually generates significant amount of data at

high frequency and MTCagent stores every data collected from

it, the buffer storage can fill up very fast. Therefore, the buffer

storage should be large enough to allow for adequate space

required to minimize information loss. Typically MTCagents

are deployed in desktop computers or servers, which contains

enough storage to fulfill this requirement. However, for a con-

strained edge computing device, this can become a significant

issue as large storage requirement leads to increased cost. So

it is necessary to optimize data catching strategy in a MEN to

minimize storage size and cost without losing information.

Therefore, the proposed MEN adopts a “hold-until-
changed” approach where only unique dataitem values are

stored in a local storage along with associated timestamp

and sequence number while discarding repeating or redundant

values. Algorithm 1 illustrates our data caching procedure. At

the beginning, MEN uses the probe document and creates an

object for each dataitem to hold associated attributes, such as

id, name, type etc., and values. When MEN acquires data from

machine tools for the first time, it stores all dataitem values

in a local database with id, timestamp, and sequence number

(which is 1 at this point). When next batch of data arrives,

unlike MTCagent which just stores these new data without any

processing, MEN’s computing module checks whether the new

value of a dataitem is different from its previously stored value

or not. If the new value is same as the old one, it is discarded.

Otherwise, a new entry is created in the database with this new

Algorithm 1 data caching procedure

Require: new data available from a device
1: device.currentSeq ← device.currentSeq + 1
2: timestamp← current time

3: hasNewEntry ← False
4: for each item object in dataitemsList do
5: if (item.lastStoredData = NULL or

6: (item.lastStoredData �= NULL and

7: item.currentData �= item.lastStoredData))
8: then
9: hasNewEntry ← True

10: Add a new entry to database with values of

11: (device.currentSeq, timestamp, item.id,
12: item.currentData)
13: item.lastStoredData← item.currentData
14: end if
15: end for
16: if hasNewEntry = False then
17: device.currentSeq ← device.currentSeq − 1
18: else
19: commit database

20: end if

dataitem value, latest timestamp, and incremented sequence

number. If no dataitem has new value, then the whole batch

is ignored and current sequence number remains the same.

This way MEN’s local database only contains unique data for

all dataitems. Sequence numbers and timestamps are used to

retrieve dataitem values at a certain time. The time interval

between two consecutive sequences indicate that the dataitem
had the same value for that particular time period. Using this

method, information loss is minimized as all unique values

are stored and timestamped, yet the amount of data stored for

a given time and thus the minimum size of local storage are

considerably smaller than those of a conventional MTCagent.

2) Data transmission strategy: Usually when an MTCagent

receives a current request, it immediately responds with

most recent dataitem values. It also allows client applications

to perform queries with specific parameters, such as dataitem
id, sequence number, timestamp etc. Also using sample
service, a client application can request for data of a certain

time interval, e.g. from sequence 20 to sequence 85. Therefore,

it is upto client applications to determine how to send requests

to an MTCagent. If a client wants to ensure that it receives all

available data, it has to keep track of what data sequences it

previously received and also determine which sequences are

to be requested and how often. For a large-scale system, this

may lead to scalability issue. Also this may lead to significant

data loss for simple client applications. In one experiment,

we developed a simple remote monitoring web application

which was only capable of sending consecutive current
requests to an MTCagent and displaying data extracted from

response messages. The results showed considerable gaps

between sequence numbers of consecutive responses, ranging

50

Algorithm 2 Prepare response for incoming request

Require: receive a new current request for a device
1: timestamp← current time

2: clientAddr ← address/url of client

3: Fetch clientDict containing list of previous clients

4: Create an empty dictionary named itemsToAdd
5: if clientAddr exists in clientDict then
6: responseSeq ← clientDict[clientAddress] + 1
7: if responseSeq ≤ device.currentSeq then
8: results← all entries in database WHERE

9: sequence = currentSeq
10: for each item in results do
11: add (item.id, item.data) to itemsToAdd
12: end for
13: end if
14: else
15: responseSeq ← device.currentSeq
16: for each item in dataitemsList do
17: add (item.id, item.currentData) to

18: itemsToAdd
19: end for
20: end if
21: if itemsToAdd is empty then
22: Send HTTP 204 response

23: else
24: for each item in itemsToAdd do
25: Call function createXmlElement with

26: (currentSeq, timestamp, item.id, item.data)
27: end for
28: Send HTTP 200 response with XML message

29: end if
30: add/update (clientAddr, currentSeq) pair in clientDict

from tens to thousands, as data acquisition and conversion rate

of the agent is faster than transmission rate over the Internet.

Performing computation at the edge of a factory floor en-

vironment can assist in overcoming these issues by offloading

simple repetitive tasks to MTCagents. Therefore, our proposed

MEN keeps track of its clients and determines which and

how much data should be sent to a client. Algorithm 2

demonstrates the procedure used for preparing responses for

a client. Alongside its database, MEN maintains a key-value

pair based dictionary which contains ip addresses or URLs

of all client applications it has communicated with and last

sequence numbers associated with them. When MEN receives

an incoming current request, its computing module uses the

client’s address to check if this client has any entry in the client

dictionary. If no pair is found, then it identifies the client as

a new one. Then an XML response message is created with

most recent values of all dataitems. As all dataitem objects

holds their most recent values, this particular step does not

require fetching data from local database. The XML message

is timestamped and sequenced with corresponding values at

that point. It also contains additional information such as

header elements, attributes of dataitems etc., which can be

acquired from the probe document. Then MEN sends an

HTTP 200 response with the generated XML message and

adds an entry to its client dictionary with client’s address as

key and latest sequence number used to create the response

as value. When MEN receives a new request from the same

client, it finds its entry in the client dictionary and retrieves

associated sequence number. Then it tries to find dataitems
associated with the next sequence number. If no entry is found

for this new sequence, it means the machine has not generated

any new data since the client’s last query. So MEN sends an

HTTP 204 response with no content. In case where MEN finds

relevant database entries, it fetches those dataitem entries and

create an XML element for each entry using id and stored

value of the dataitem, most recent timestamp and sequence

number, and other associated information. As mentioned in

the previous section, the local database only stores dataitems
with changed values, so the response XML only contains new

data that were not previously transmitted to the client. After

XML generation is completed, MEN sends an HTTP 200
response with it and updates this client’s entry in the client

dictionary with new sequence number. The client dictionary

has a time-out functionality which removes an entry when

the stored sequence is no longer available in local database

indicating that client has not communicated in a long time.

Using this strategy, MEN reduces bandwidth usage by

preventing transmission of repeating or redundant dataitem
values. It enables faster data transmission and processing as

HTTP 204 responses has no message body and thus can

be processed much quickly. Also not all dataitems change

values in every data acquisition cycle, specially in idle states,

so the HTTP 200 responses of proposed method contains

fewer elements in average that those of a typical MTCagent.

Furthermore, MEN keeps tracks of its clients and thus enhance

scalability of CM systems through edge computing.

IV. EXPERIMENTATION AND EVALUATION

A. Experimental Setup

To evaluate the performance of proposed MEN, experiments

were conducted in a cyber manufacturing testbed with three

machine tools, as shown in Figure 2. Ultimaker 2 and Bukito

are 3D printers and X-Carve is a CNC drilling machine.

Each machine tool was connected to a Raspberry Pi (RPi)

3, which contained both MEN and conventional MTCagent

programs developed in Python. SQLite3 databases were used

as local storages. As none of these machines were MTConnect

compatible, MTconnect adapter programs were developed

and deployed in corresponding RPis. Although one RPi had

sufficient storage and processing capacity to support all three

machines, individual RPis were used to simulate a manufac-

turing environment with multiple MTCagents. Ultimaker 2,

Bukito, and X-Carve had 15, 11, and 7 dataitems respectively.

A client application was developed and deployed in a virtual

machine (cloud server) in the university network. Also another

web based client application was developed for Android

smartphones. Both applications were designed to continuously

51

Fig. 2: Experimental setup

send HTTP GET requests to RPis, store and analyze response

messages, display extracted data values, and calculate response

time and message size. Data were collected using both con-

ventional and proposed methods from all machine tools in

different manufacturing scenarios. At first, only one machine

was kept active at a time and clients sent continuous requests to

its RPi in both idle and busy (performing a drilling or printing

operation) states. Duration of operations done by Ultimaker

2, Bukito, and X-Carve were about 5, 13, and 2 minutes

respectively. Then data were collected in a ’Combined’ state,

where all three machine were kept active and in busy state

and clients queried machines sequentially (one-at-a-time), e.g.

Ultimaker 2 → X-Carve → Bukito → Ultimaker 2 and so on.

B. Results and analysis

Performance of MEN was evaluated in three categories –

response time (RT) depicting the time between client sending

a current request and getting response back, minimum size

of local storage, and bandwidth usage or size of response mes-

sages. Table I and Figure 3 presents the comparison of average

RT for each machines in both states calculated from 10000

consecutive requests. In each case, MEN provided about 50-

55 percent reduction in RT compared to conventional method,

52.5 percent in average. In [15], average time to complete an

MTConnect HTTP GET request using conventional method

TABLE I: Average response time in milliseconds(ms)

Machine Machine Avg. RT for Avg. RT for RT
name state conventional proposed reduction

method method (%)

X-Carve
Idle State 7.365 ± 1.2 3.813 ± 0.9 48.228

Busy State 7.756 ± 1.3 4.002 ± 1.1 48.401

Ultimaker 2
Idle State 13.053 ± 2.7 6.438 ± 2.4 50.678

Busy State 16.057 ± 2.9 7.237 ± 2.6 54.929

Bukito
Idle State 12.931 ± 1.3 5.706 ± 1.7 55.874

Busy State 14.608 ± 2.9 6.255 ± 2.5 57.181

Fig. 3: Comparison of average response time (in milliseconds)

was 4.2 ms in a setup where MTCagent and its client were

close and part of the same local area network (LAN). In our

setup, all RPIs were given global static ip addresses and client

applications communicated with MTCagents and MENs over

the Internet. Still the average RT of MENs was very close (5.6

ms). As HTTP 204 responses contain no message body, clients

can process such responses quicker than HTTP 200 responses.

Also this reduces the amount of data transferred or bandwidth

used, which is supported by Table II showing total local

storage size required and total number and size of messages

transferred during an operation in individual and combined

scenarios. For combined state, data were collected from all

machines, but results were calculated only for Ultimaker 2, to

understand how collecting data sequentially from additional

machines affects performance of an agent. As MEN only

stores unique dataitem values, required size of local storage to

store all available data during an operation was more than 90

percent less in all cases (96.24 percent in average), compared

to a conventional MTCagent which stores all incoming data.

This also shows that the minimum storage size required to

ensure minimal information loss is significantly smaller for

proposed MEN, which is very crucial for constrained edge

devices. Table II also shows significant decrease in amount of

data (bytes) being transmitted by MENs during an operation

– 85.32 percent in average. Total number of messages were

also reduced in proposed method, except in combined state

which showed a 19.32 percent increase. However, this increase

actually indicates performance improvement, as it shows that

proposed method was able to extract more information in

combined state than conventional method. Typical MTCagent

has to process full-size responses from all three machines

before querying the first machine again. This time delay is

much smaller for MEN, as its responses are shorter and in

some cases empty. Therefore, in a given time, MEN allows

clients to query one machine in a multi-machine factory floor

more frequently than an MTCagent and thus receive more

messages leading to better information gain.

As depicted in Table III, the average size of response

messages also showed a significant reduction in proposed

method – 99.5 percent in average. This is expected though, as

MEN only sends changed values and thus generates smaller

messages less frequently than a typical MTCagent, specially in

52

TABLE II: Comparison of total size of local database and

transferred messages and total no. of messages

X-carve Bukito Ultimaker 2 Combined

Total
size of
database

Conven. 3147732 13085696 2787263 1171046

Proposed 8616 368640 102672 96635

Reduction 99.726 96.316 97.183 91.748

Total
bytes
sent

Conven. 47739494 198461787 16489780 6928051

Proposed 111439 47679347 2854141 2686327

Reduction 99.767 97.598 82.691 61.225

Total
No. of
messages

Conven. 17449 50728 4201 1765

Proposed 115 4699 2381 2106

Reduction 99.341 90.737 43.323 -19.32

TABLE III: Average size of response message in bytes

Machine Machine Avg. size for Avg. size for Size
name state conventional proposed reduction

method method (%)

X-Carve
Idle State 2721 1.7 99.938

Busy State 2725.677 4.047 99.852

Ultimaker 2
Idle State 3896 6.847 99.824

Busy State 3923.496 64.616 98.353

Bukito
Idle State 3918 5.646 99.856

Busy State 3906.316 33.212 99.149

idle states. For instance, 3D printers have temperature sensors

for extruders and heatbeds, which change values with room

temperature. All other dataitem values remain unchanged in

idle states. Even in busy state, not all dataitems generate new

values in every clock cycle. For example, the ”AVAILABIL-

ITY” dataitem of a machine only changes its value at the start

and end of an operation, so is only required to be transmitted

twice during a manufacturing process. Conventional method

still reports these redundant unchanged values to client, which

leads to bandwidth wastage.

V. CONCLUSION

As modern manufacturing machines are producing more and

more data, it is high time to adopt edge computing strategies

to offload iterative small-scale computations to network edges

and reduce load on cloud and web applications. The proposed

MEN has the potential to become a suitable and efficient

edge computing solution for cyber manufacturing systems.

Our proposed optimization strategies for data caching and

transmission significantly improve MTConnect’s performance,

efficiency, and feasibility for edge computing. As MENs are

software programs capable of rapid data transmission with low

storage and processing power requirements, it can be easily

deployable in low-cost plug-n-play embedded hardware, even

be embedded within a machine’s controller unit, and thus

enhance overall system scalability. Our experimental results

demonstrated MEN’s superiority over traditional MTConnect

agent in communication latency, bandwidth usage, and local

storage size requirement. Future works may include further

enhancement of MENs by using high-performance hardware

platforms such as FPGAs and introducing advanced edge

based data processing mechanisms such as big data analysis,

artificial intelligence, deep and machine learning etc.

ACKNOWLEDGMENT

This was partially supported by NSF Grant CMMI 1551448

entitled “EAGER/Cybermanufacturing: Architecture and Pro-

tocols for Scalable Cyber-Physical Manufacturing Systems”.

REFERENCES

[1] M. Parto, M. Dinar, and T. Kurfess, “An mtconnect-compatible platform
for secured machine monitoring through integration of fog computing,
cloud computing, and communication protocols,” in Proceedings of the
International Symposium on Flexible Automation, 2018, pp. 329–336.

[2] S. M. N. A. Sunny, X. F. Liu, and M. R. Shahriar, “Communication
method for manufacturing services in a cyber–physical manufacturing
cloud,” International Journal of Computer Integrated Manufacturing,
vol. 31, no. 7, pp. 636–652, 2018.

[3] A. J. Álvares, L. E. S. d. Oliveira, and J. C. E. Ferreira, “Development
of a cyber-physical framework for monitoring and teleoperation of a
cnc lathe based on mtconnect and opc protocols,” Int. J. of Computer
Integrated Manuf., vol. 31, no. 11, pp. 1049–1066, 2018.

[4] C. Liu, X. Xu, Q. Peng, and Z. Zhou, “Mtconnect-based cyber-physical
machine tool: a case study,” Procedia CIRP, vol. 72, pp. 492–497, 2018.

[5] A. Vijayaraghavan, W. Sobel, A. Fox, D. Dornfeld, and P. Warndorf,
“Improving machine tool interoperability using standardized interface
protocols: Mt connect,” 2008.

[6] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE internet of things journal, vol. 3, no. 5, pp. 637–646,
2016.

[7] M. Institue, MTConnect Standard Specification - Version 1.4.0, 2019
(accessed November 3, 2019). [Online]. Available: http://mtconnect.org/

[8] S. Chen, C. Yin, and X. Li, “Implementation of mtconnect in machine
monitoring system for cncs,” in 2017 5th International Conference on
Enterprise Systems (ES). IEEE, 2017, pp. 70–75.

[9] M. Robinson, Cost Effective Coordinated and Cooperative Robotics
Enabled by Open Technologies, NIST, 2019 (accessed November 3,
2019). [Online]. Available: https://www.nist.gov/

[10] E. Rodriguez and A. J. Alvares, “Implementation of the step-nc and mt-
connect standards for additive manufacturing,” in Anais do X Congresso
Brasileiro de Engenharia de Fabricaçao, ABCM, 2019, pp. 1–5.

[11] X. F. Liu, S. M. N. A. Sunny, M. R. Shahriar, M. C. Leu, M. Cheng, and
L. Hu, “Implementation of mtconnect for open source 3d printers in cy-
ber physical manufacturing cloud,” in ASME 2016 International Design
Engineering Technical Conferences and Computers and Information in
Engineering Conference. ASME, 2016, p. V01AT02A019.

[12] X. Xu, “From cloud computing to cloud manufacturing,” Robotics and
computer-integrated manufacturing, vol. 28, no. 1, pp. 75–86, 2012.

[13] S. Atluru and A. Deshpande, “Data to information: can mtconnect
deliver the promise,” Transactions of NAMRI/SME, vol. 37, no. 2009,
pp. 197–204, 2009.

[14] B. Edrington, B. Zhao, A. Hansel, M. Mori, and M. Fujishima, “Machine
monitoring system based on mtconnect technology,” Procedia Cirp,
vol. 22, pp. 92–97, 2014.

[15] R. Lynn, W. Louhichi, M. Parto, E. Wescoat, and T. Kurfess, “Rapidly
deployable mtconnect-based machine tool monitoring systems,” in Pro-
ceedings of the 12th ASME Manufacturing Science and Engineering
Conference (MSEC), 2017.

[16] M. Corporation, Mazak SmartBox, 2017 (accessed November 3, 2019).
[Online]. Available: https://www.mazakusa.com/

[17] S. M. N. A. Sunny, X. F. Liu, and M. R. Shahriar, “Mtcomm: A semantic
ontology based internet scale communication method of manufacturing
services in a cyber-physical manufacturing cloud,” in 2017 IEEE Inter-
national Congress on Internet of Things. IEEE, 2017, pp. 121–128.

[18] L. Wang, R. Gao, and I. Ragai, “An integrated cyber-physical system
for cloud manufacturing,” in ASME 2014 International Manufacturing
Science and Engineering Conference collocated with the JSME 2014
International Conference on Materials and Processing and the 42nd
North American Manufacturing Research Conference. ASME, 2014.

[19] C. Liu, H. Vengayil, Y. Lu, and X. Xu, “A cyber-physical machine
tools platform using opc ua and mtconnect,” Journal of Manufacturing
Systems, vol. 51, pp. 61–74, 2019.

[20] D. Wu, S. Liu, L. Zhang, J. Terpenny, R. X. Gao, T. Kurfess, and J. A.
Guzzo, “A fog computing-based framework for process monitoring and
prognosis in cyber-manufacturing,” Journal of Manufacturing Systems,
vol. 43, pp. 25–34, 2017.

53

